
CS 287 Lecture 18 (Fall 2019)
RL I: Policy Gradients

Pieter Abbeel
UC Berkeley EECS

Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics



n Super-quick Refresher: Markov 
Decision Processes (MDPs)

n Reinforcement Learning

n Policy Optimization

n Model-free Policy Optimization: Finite 
Differences

n Model-free Policy Optimization: Cross-
Entropy Method

Outline for Today’s Lecture
n Model-free Policy Optimization: Policy 

Gradients

n Policy Gradient basic derivation

n Temporal decomposition

n Baseline subtraction

n Value function estimation

n Advantage Estimation (A2C/A3C/GAE)

n Trust Region Policy Optimization 
(TRPO)

n Proximal Policy Optimization (PPO)



n Super-quick Refresher: Markov 
Decision Processes (MDPs)

n Reinforcement Learning

n Policy Optimization

n Model-free Policy Optimization: Finite 
Differences

n Model-free Policy Optimization: Cross-
Entropy Method

Outline for Today’s Lecture
n Model-free Policy Optimization: Policy 

Gradients

n Policy Gradient basic derivation

n Temporal decomposition

n Baseline subtraction

n Value function estimation

n Advantage Estimation (A2C/A3C/GAE)

n Trust Region Policy Optimization 
(TRPO)

n Proximal Policy Optimization (PPO)



[Drawing from Sutton and Barto, Reinforcement Learning: An Introduction, 1998]

Markov Decision Process

Assumption: agent gets to observe the state



Markov Decision Process (S, A, T, R, γ, H)
Given:

n S: set of states

n A: set of actions

n T: S x A x S x {0,1,…,H} à [0,1] Tt(s,a,s’) = P(st+1 = s’ | st = s, at =a)

n R:  S x A x S x {0, 1, …, H} à Rt(s,a,s’) = reward for (st+1 = s’, st = s, at =a)

n γ in (0,1]: discount factor  H: horizon over which the agent will act

Goal: 

n Find π*: S x {0, 1, …, H} à A  that maximizes expected sum of rewards, i.e., 

R
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Reinforcement Learning

[Figure source: Sutton & Barto, 1998]

ut

Still an MDP
BUT: MDP not given to us, agent needs to learn to 

optimize reward through trial and error



Policy Optimization in the RL Landscape



Policy Optimization

⇡✓(u|s)

ut

[Figure source: Sutton & Barto, 1998]



Policy Optimization
n Consider control policy parameterized 

by parameter vector

n Stochastic policy class (smooths out 
the problem):

: probability of action u in state s 

✓

max
✓

E[
HX

t=0

R(st)|⇡✓]

⇡✓(u|s)

⇡✓(u|s)

ut

[Figure source: Sutton & Barto, 1998]



n Often      can be simpler than Q or V

n E.g., robotic grasp

n V: doesn’t prescribe actions
n Would need dynamics model (+ compute 1 Bellman back-up)

n Q: need to be able to efficiently solve
n Challenge for continuous / high-dimensional action spaces*

Why Policy Optimization

⇡

*some recent work (partially) addressing this: 
NAF: Gu, Lillicrap, Sutskever, Levine ICML 2016
Input Convex NNs: Amos, Xu, Kolter arXiv 2016
Deep Energy Q: Haarnoja, Tang, Abbeel, Levine, ICML 2017 

argmax
u

Q✓(s, u)



Kohl and Stone, 2004

Pioneering Policy Optimization Success Stories

Tedrake et al, 2005 Kober and Peters, 2009Ng et al, 2004

Silver et al, 2014 
(DPG)

Lillicrap et al, 2015 
(DDPG)

Schulman et al, 
2016 (TRPO + GAE)

Levine*, Finn*, et 
al, 2016

(GPS)
Mnih et al, 2015 

(A3C)

Silver*, Huang*, et 
al, 2016

(AlphaGo**)



Conceptually:

Policy Optimization     Dynamic Programming

Empirically:

Optimize what you care 
about

Indirect, exploit the problem 
structure, self-consistency

More compatible with rich 
architectures (including 
recurrence) 

More versatile

More compatible with 
auxiliary objectives

More compatible with 
exploration and off-policy 
learning

More sample-efficient when 
they work



n iLQR

n Optimization-based Control: Collocation, Shooting, MPC, 
Contact Invariant Optimization

à But these assumed access to the dynamics model, which we 
don’t have available now

Note: in 3rd lecture on RL we’ll cover model-based RL, which
learns the dynamics model, and can use above methods

Note: We have done policy optimization before!
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Black Box Gradient Computation



Challenge: Noise Can Dominate
E⇡✓ [R(⌧)]

R(T) R(T)

✓



Solution 1:  Average over many samples
E⇡✓ [R(⌧)]

R(T) R(T)

✓



Solution 2: Fix random seed

fixed random 
seed sample

E⇡✓ [R(⌧)]
R(T) R(T)

✓



n Randomness in policy and dynamics

n But can often only control randomness in policy..

n Example:  wind influence on a helicopter is stochastic, but if 
we assume the same wind pattern across trials, this will make 
the different choices of θ more readily comparable

n Note: equally applicable to evolutionary methods

[Ng & Jordan, 2000] provide theoretical analysis of gains from fixing randomness (“pegasus”)

Solution 2: Fix random seed



[Ng + al, ISER 2004][Policy search was done in simulation]



Learning to Hover



Example: Sidewinding

[Andrew Ng] [Video: SNAKE – climbStep+sidewinding



Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]



Example: Learning to Walk

Initial
[Video: AIBO WALK – initial][Kohl and Stone, ICRA 2004]



Example: Learning to Walk

Training
[Video: AIBO WALK – training][Kohl and Stone, ICRA 2004]



Example: Learning to Walk

Finished
[Video: AIBO WALK – finished][Kohl and Stone, ICRA 2004]



n Can work well!

n Most success in low-dimensional spaces…

Finite Differences
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n General Algorithm:

n Make some random change to the parameters

n If the result improves, keep the change

n Repeat

Evolutionary Methods

max
✓

U(✓) = max
✓

E[
HX

t=0

R(st)|⇡✓]



Cross-Entropy Method

CEM:
Initialize   
for iteration = 1, 2, …

Sample n parameters
For each     , perform one rollout to get return 
Select the top k% of    , and fit a new diagonal Gaussian 

to those samples. Update
endfor

✓i ⇠ N(µ, diag(�2))

µ 2 Rd,� 2 Rd
>0

✓i R(⌧i)
✓

µ,�



n Very simple and can work surprisingly well

n Very scalable

n Does not take advantage of any temporal structure

Cross-Entropy Method
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Likelihood Ratio Policy Gradient



Likelihood Ratio Policy Gradient

[Aleksandrov, Sysoyev, & Shemeneva, 1968]
[Rubinstein, 1969]
[Glynn, 1986]
[Reinforce, Williams 1992]
[GPOMDP, Baxter & Bartlett, 2001]
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n Valid even when 

n R is discontinuous and/or unknown

n Sample space (of paths) is a discrete set 

Likelihood Ratio Gradient: Validity

rU(✓) ⇡ ĝ =
1

m

mX

i=1

r✓ logP (⌧ (i); ✓)R(⌧ (i))



n Gradient tries to:

n Increase probability of paths with 
positive R

n Decrease probability of paths with 
negative R

Likelihood Ratio Gradient: Intuition

rU(✓) ⇡ ĝ =
1

m

mX

i=1

r✓ logP (⌧ (i); ✓)R(⌧ (i))

! Likelihood ratio changes probabilities of experienced paths, 
does not try to change the paths (<-> Path Derivative)



Let’s Decompose Path into States and Actions
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Let’s Decompose Path into States and Actions



Likelihood Ratio Gradient Estimate
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Derivation from Importance Sampling

U(✓) = E⌧⇠✓old


P (⌧ |✓)

P (⌧ |✓old)
R(⌧)

�

r✓U(✓) = E⌧⇠✓old


r✓P (⌧ |✓)
P (⌧ |✓old)

R(⌧)

�

r✓ U(✓)|✓=✓old
= E⌧⇠✓old

r✓ P (⌧ |✓)|✓old
P (⌧ |✓old)

R(⌧)

�

= E⌧⇠✓old

⇥
r✓ logP (⌧ |✓)|✓old R(⌧)

⇤

Note: Suggests we can also look at more than just gradient![Tang&Abbeel, NeurIPS 2011]
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Suggests we can also look at more than just gradient!
E.g., can use importance sampled objective as “surrogate loss” (locally) [[à later: PPO]]

[Tang&Abbeel, NeurIPS 2011]



n Super-quick Refresher: Markov 
Decision Processes (MDPs)

n Reinforcement Learning

n Policy Optimization

n Model-free Policy Optimization: Finite 
Differences

n Model-free Policy Optimization: Cross-
Entropy Method

Outline for Today’s Lecture
n Model-free Policy Optimization: Policy Gradients

n Policy Gradient standard derivation

n Temporal decomposition

n Policy Gradient importance sampling 
derivation

n Baseline subtraction and temporal structure

n Value function estimation

n Advantage Estimation (A2C/A3C/GAE)

n Trust Region Policy Optimization (TRPO)

n Proximal Policy Optimization (PPO)



n As formulated thus far: unbiased but very noisy

n Fixes that lead to real-world practicality
n Baseline

n Temporal structure

n [later] Trust region / natural gradient

Likelihood Ratio Gradient Estimate



n Gradient tries to:

n Increase probability of paths with 
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à Consider baseline b:

Likelihood Ratio Gradient: Baseline
rU(✓) ⇡ ĝ =

1

m

mX

i=1

r✓ logP (⌧ (i); ✓)R(⌧ (i))

rU(✓) ⇡ ĝ =
1

m

mX

i=1

r✓ logP (⌧ (i); ✓)(R(⌧ (i))� b)

still unbiased!
[Williams 1992]

E [r✓ logP (⌧ ; ✓)b]

=
X

⌧

P (⌧ ; ✓)r✓ logP (⌧ ; ✓)b

=
X

⌧

P (⌧ ; ✓)
r✓P (⌧ ; ✓)

P (⌧ ; ✓)
b

=
X

⌧

r✓P (⌧ ; ✓)b

=r✓

 
X

⌧

P (⌧)b

!

=r✓ (b)

=0

= br✓(
X

⌧

P (⌧)) = b⇥ 0

OK as long as baseline 
doesn’t depend on action

in logprob(action)



n Current estimate:

n Removing terms that don’t depend on current action can lower variance:

Likelihood Ratio and Temporal Structure
ĝ =

1

m

mX

i=1

r✓ logP (⌧ (i); ✓)(R(⌧ (i))� b)

=
1

m

mX

i=1

 
H�1X

t=0

r✓ log ⇡✓(u
(i)
t
|s(i)

t
)

! 
H�1X

t=0

R(s(i)
t
, u(i)

t
)� b

!

[Policy Gradient Theorem: Sutton et al, NIPS 1999; GPOMDP: Bartlett & Baxter, JAIR 2001; Survey: Peters & Schaal, IROS 2006] 

Doesn’t depend on u(i)
t Ok to depend on s(i)t

1

m

mX

i=1

H�1X

t=0

r✓ log ⇡✓(u
(i)
t
|s(i)

t
)

 
H�1X

k=t

R(s(i)
k
, u(i)

k
)� b(s(i)

t
)

!

=
1

m

mX

i=1

 
H�1X

t=0

r✓ log ⇡✓(u
(i)
t
|s(i)

t
)

"
� t�1X

k=0

R(s(i)
k
, u(i)

k
)
�
+
�H�1X

k=t

R(s(i)
k
, u(i)

k
)
�
� b

#!



n Good choice for b? 

n Constant baseline:

n Optimal Constant baseline:

n Time-dependent baseline: 

n State-dependent expected return: 

à Increase logprob of action proportionally to how much its returns are 
better than the expected return under the current policy

Baseline Choices

b(st) = E [rt + rt+1 + rt+2 + . . .+ rH�1]

b = E [R(⌧)] ⇡ 1

m

mX

i=1

R(⌧ (i))

[See: Greensmith, Bartlett, Baxter, JMLR 2004 for variance reduction techniques.] 

bt =
1

m

mX

i=1

H�1X

k=t

R(s(i)
k
, u(i)

k
)

= V ⇡(st)
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Monte Carlo Estimation of     
1

m

mX

i=1

H�1X

t=0

r✓ log ⇡✓(u
(i)
t
|s(i)

t
)

 
H�1X

k=t

R(s(i)
k
, u(i)

k
)� V ⇡(s(i)

k
)

!

How to estimate?

V ⇡

n Init

n Collect trajectories 

n Regress against empirical return:

V ⇡
�0

⌧1, . . . , ⌧m

�i+1  argmin
�

1

m

mX

i=1

H�1X

t=0

 
V ⇡

✓
(s(i)

t
)�

�H�1X

k=t

R(s(i)
k
, u(i)

k
)
�
!2



n Bellman Equation for 

n Init

n Collect data {s, u, s’, r}

n Fitted V iteration:

Bootstrap Estimation of

V ⇡(s) =
X

u

⇡(u|s)
X

s0

P (s0|s, u)[R(s, u, s0) + �V ⇡(s0)]

V ⇡

V ⇡

V ⇡
�0

�i+1  min
�

X

(s,u,s0,r)

kr + V ⇡
�i
(s0)� V�(s)k22 + �k�� �ik22



Vanilla Policy Gradient

~ [Williams, 1992]



n Super-quick Refresher: Markov 
Decision Processes (MDPs)

n Reinforcement Learning

n Policy Optimization

n Model-free Policy Optimization: Finite 
Differences

n Model-free Policy Optimization: Cross-
Entropy Method

Outline for Today’s Lecture
n Model-free Policy Optimization: Policy Gradients

n Policy Gradient standard derivation

n Temporal decomposition

n Policy Gradient importance sampling 
derivation

n Baseline subtraction & temporal structure

n Value function estimation

n Advantage Estimation (A2C/A3C/GAE)

n Trust Region Policy Optimization (TRPO)

n Proximal Policy Optimization (PPO)



n Estimation of Q from single roll-out

Recall Our Likelihood Ratio PG Estimator

Q⇡(s, u) = E[r0 + r1 + r2 + · · · |s0 = s, a0 = a]

1

m

mX

i=1

H�1X

t=0

r✓ log ⇡✓(u
(i)
t
|s(i)

t
)

 
H�1X

k=t

R(s(i)
k
, u(i)

k
)� V ⇡(s(i)

k
)

!

n = high variance per sample based / no generalization used

n Reduce variance by discounting

n Reduce variance by function approximation (=critic)   
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n Estimation of Q from single roll-out

Further Refinements

Q⇡(s, u) = E[r0 + r1 + r2 + · · · |s0 = s, a0 = a]
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n Estimation of Q from single roll-out

Recall Our Likelihood Ratio PG Estimator

Q⇡(s, u) = E[r0 + r1 + r2 + · · · |s0 = s, a0 = a]
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à introduce discount factor as a hyperparameter to improve 
estimate of Q:

Variance Reduction by Discounting

Q⇡(s, u) = E[r0 + r1 + r2 + · · · |s0 = s, a0 = a]

Q⇡,�(s, u) = E[r0 + �r1 + �2r2 + · · · |s0 = s, a0 = a]



n Generalized Advantage Estimation uses an exponentially 
weighted average of these

n ~ TD(lambda)

Reducing Variance by Function Approximation
Q⇡,�(s, u) = E[r0 + �r1 + �2r2 + · · · | s0 = s, u0 = u]

= E[r0 + �V ⇡(s1) | s0 = s, u0 = u]

= E[r0 + �r1 + �2V ⇡(s2) | s0 = s, u0 = u]

= E[r0 + �r1 ++�2r2 + �3V ⇡(s3) | s0 = s, u0 = u]

= · · ·



n Generalized Advantage Estimation uses an exponentially 
weighted average of these

n ~ TD(lambda)

Reducing Variance by Function Approximation
Q⇡,�(s, u) = E[r0 + �r1 + �2r2 + · · · | s0 = s, u0 = u]

= E[r0 + �V ⇡(s1) | s0 = s, u0 = u]

= E[r0 + �r1 + �2V ⇡(s2) | s0 = s, u0 = u]

= E[r0 + �r1 ++�2r2 + �3V ⇡(s3) | s0 = s, u0 = u]

= · · ·



n Generalized Advantage Estimation uses an exponentially 
weighted average of these

n ~ TD(lambda)

Reducing Variance by Function Approximation
Q⇡,�(s, u) = E[r0 + �r1 + �2r2 + · · · | s0 = s, u0 = u]

= E[r0 + �V ⇡(s1) | s0 = s, u0 = u]

= E[r0 + �r1 + �2V ⇡(s2) | s0 = s, u0 = u]

= E[r0 + �r1 ++�2r2 + �3V ⇡(s3) | s0 = s, u0 = u]

= · · ·



n Async Advantage Actor Critic (A3C) [Mnih et al, 2016]

n one of the above choices (e.g.  k=5 step lookahead)
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n Generalized Advantage Estimation (GAE) [Schulman et al, ICLR 2016]

n = lambda exponentially weighted average of all the above

n ~ TD(lambda) / eligibility traces [Sutton and Barto, 1990]
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n Generalized Advantage Estimation (GAE) [Schulman et al, ICLR 2016]

n = lambda exponentially weighted average of all the above

n ~ TD(lambda) / eligibility traces [Sutton and Barto, 1990]
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n Policy Gradient + Generalized Advantage Estimation:

n Init

n Collect roll-outs {s, u, s’, r} and 

n Update:  

Actor-Critic with A3C or GAE
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n [Mnih et al, ICML 2016]

n Likelihood Ratio Policy Gradient

n n-step Advantage Estimation

Async Advantage Actor Critic (A3C)



A3C -- labyrinth



Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER – 40s]



GAE: Effect of gamma and lambda

[Schulman et al, 2016 -- GAE]



n Super-quick Refresher: Markov 
Decision Processes (MDPs)

n Reinforcement Learning

n Policy Optimization

n Model-free Policy Optimization: Finite 
Differences

n Model-free Policy Optimization: Cross-
Entropy Method

Outline for Today’s Lecture
n Model-free Policy Optimization: Policy Gradients

n Policy Gradient standard derivation

n Temporal decomposition

n Policy Gradient importance sampling 
derivation

n Baseline subtraction & temporal structure

n Value function estimation

n Advantage Estimation (A2C/A3C/GAE)

n Trust Region Policy Optimization (TRPO)

n Proximal Policy Optimization (PPO)



n Step-sizing necessary as gradient is only first-order 
approximation

Step-sizing and Trust Regions



n Terrible step sizes, always an issue, but how about just not so 
great ones?

n Supervised learning
n Step too far à next update will correct for it

n Reinforcement learning
n Step too far à terrible policy 

n Next mini-batch: collected under this terrible policy!

n Not clear how to recover short of going back and shrinking the step size

What’s in a step-size?



n Simple step-sizing: Line search in direction of gradient

n Simple, but expensive (evaluations along the line)

n Naïve: ignores where the first-order approximation is good/poor

Step-sizing and Trust Regions



n Advanced step-sizing: Trust regions

n First-order approximation from gradient is a good 
approximation within “trust region”

à Solve for best point within trust region:

Step-sizing and Trust Regions
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n Our problem:

n Has become:
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ĝ>�✓

s.t. KL(P (⌧ ; ✓)||P (⌧ ; ✓ + �✓))  "

max
�✓
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n Our problem:

n Has become:

n How to enforce this constraint given complex policies like neural nets
n 2nd  approximation of KL Divergence

n (1) First order approximation is constant
n (2) Hessian is Fisher Information Matrix
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n Our problem:

n Has become:

n 2nd order approximation to KL:

Evaluating the KL
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n Our problem:

n Has become:

n 2nd order approximation to KL:

à Fisher matrix         easily computed from gradient calculations
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ĝ>�✓

s.t.
1

M

X

(s,u)⇠✓

log
⇡✓(u|s)

⇡✓+�✓(u|s)
 "



n Our problem:

n Done?
n Deep RL à high-dimensional, and building / inverting        impractical

n Efficient scheme through conjugate gradient [Schulman et al, 2015, TRPO]

n Can we do better?
n Replace objective by surrogate loss that’s higher order approximation yet equally 

efficient to evaluate [Schulman et al, 2015, TRPO]

n Note: surrogate loss idea is generally applicable when likelihood ratio gradients are 
used
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TRPO

max
⇡

L(⇡) = E⇡old


⇡(a|s)

⇡old(a|s)
A⇡old(s, a)

�
Surrogate loss:

Constraint: E⇡old [KL(⇡||⇡old)]  ✏



[Schulman, Levine, Moritz, Jordan, Abbeel, 2014]

Experiments in Locomotion



Learning Curves -- Comparison



Learning Curves -- Comparison



n Deep Q-Network (DQN) [Mnih et al, 2013/2015]

n Dagger with Monte Carlo Tree Search [Xiao-Xiao et al, 2014]

n Trust Region Policy Optimization [Schulman, Levine, Moritz, Jordan, Abbeel, 2015]

n …

Atari Games

Pong Enduro Beamrider Q*bert



Natural Gradients Work



Learning Locomotion (TRPO + GAE)

[Schulman, Moritz, Levine, Jordan, Abbeel, 2016]



n Super-quick Refresher: Markov 
Decision Processes (MDPs)

n Reinforcement Learning

n Policy Optimization

n Model-free Policy Optimization: Finite 
Differences

n Model-free Policy Optimization: Cross-
Entropy Method

Outline for Today’s Lecture
n Model-free Policy Optimization: Policy Gradients

n Policy Gradient standard derivation

n Temporal decomposition

n Policy Gradient importance sampling 
derivation

n Baseline subtraction & temporal structure

n Value function estimation

n Advantage Estimation (A2C/A3C/GAE)

n Trust Region Policy Optimization (TRPO)

n Proximal Policy Optimization (PPO)



n Not easy to enforce trust region constraint for complex policy 
architectures
n Networks that have stochasticity like dropout

n Parameter sharing between policy and value function

n Conjugate Gradient implementation is complex

n Would be good to harness good first-order optimizers like 
Adam, RMSProp…

A better TRPO?



Proximal Policy Optimization V1 – “Dual Descent TRPO”

TRPO PPO v1

Do dual descent update for beta



Can we simplify further?



Proximal Policy Optimization V2 – “Clipped Surrogate Loss”

Let:

Optimize:



RL: Learning Soccer

[Bansal et al, 2017]



OpenAI-5 was trained with PPO



OpenAI In-Hand Re-Orientation



OpenAI Rubik’s Cube


