CS 287 Fall 2019 - Lecture 17
Imitation Learning



Outline

- Setup

- Supervised learning

- Inverse optimal control

- Other key directions, example applications



Problem Setup & Overview

- Input:
- State space, action space
- Transition model
- Demonstrations (samples from ™)

- Example: Cleaning robot

- Behavioral cloning
- Estimation of 7"
- Inverse optimal control/RL
- Estimation of R, and use to learn 7™
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Behavioral Cloning

- Input:
- State space, action space
- Transition model
- Demonstrations (samples from )
- (s0, a0), (s1, al), (s2, a2), ...

- Learn mapping from (state, action) pairs to estimatem”
- Neural network, decision tree, SVM, etc.



Distributional Shift

- Common assumption is that training and test are iid
- However, Dr* (Ot) 7’é Prg (Ot). Why?
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Example: DAVE-2

Recorded

steering
wheel angle | Adjust for shift Desired steering command

and rotation

( ) Network
Left camera computed
- g steering
> Random shift command
Center camera ———» o > CNN
\ . B
Right camera ?
Back propagation | Error
weight adjustment

End to End Learning for Self-Driving Cars, Bojarski et al. 2016
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End to End Learning for Self-Driving Cars, Bojarski et al. 2016



Example: DAVE-2



http://www.youtube.com/watch?v=qhUvQiKec2U&t=47

Example: DAgger

Initialize D « (.
Initialize 7r; to any policy in II.
for:=1to N do
Let m; = B;m* + (1 — ﬂz)ﬁ'z
Sample 7'-step trajectories using ;.

Get dataset D; = {(s,7*(s))} of visited states by ;
and actions given by expert.
Aggregate datasets: D < D | D;.

Train classifier 7;+1 on D.
end for
Return best 7; on validation.

Query expert for labels
on Pr, (Ot)

Train on aggregated
dataset

Theoretical guarantees
Expensive, not always
possible

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011



Example: DAgger
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Example: DAgger
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Example: DAgger

DAgger here reacts dynamically to an untrained obstacle

Learning Monocular Reactive UAV Control in Cluttered Natural Environments, Ross et al. 2013


http://www.youtube.com/watch?v=hNsP6-K3Hn4&t=64
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Can we do better with the expert data?

- Behavioral Cloning mimics the expert, no notion of intention
- Expert suboptimality
- Different embodiments
- Robustness
- Effectively finding out what the teacher is trying to do, can potentially enable
the agent to do better than the demonstrator



Inverse Optimal Control

- Input:
- State space, action space
- Transition model
- Demonstrations (samples from )
- (s0, a0), (s1, al), (s2, a2), ...

- Learn reward function R(s,a)
. Use the reward function to learn 7*



Some simplifying assumptions
- We assume a linear reward function on featurized state

Let R(s) = w'¢(s), where w € R”, and ¢ : S — R".

- The value function w.r.t. a particular reward function and policy is then:

Z'th st)|m] = Z’yw o(s¢)|m]

Z’Y d(st)|]
— w‘ —— ‘feature expectations’



Feature Matching

- The value of the optimal policy w.r.t. the ‘true’ reward function is greater than the
value of any other policy (by definition)

B> o V' R*(se)|m*] = E[3 2,20 V' R*(s¢)|m] Vo
- Plugging in from previous slide, we want to

Find w* such that w* " u(7*) > w* " u(x) vV



Feature Matching

- For a policy to be guaranteed to perform as well as the expert policy, it suffices that
the feature expectations ‘match’ Concretely,

it ||p(r) — p(m)||1 <€, then [w'p(m) —w'u(m*)| <e Vuw,|w|, <1

- Justification :
E[X%, 1 R (so)ln*]- B2 v R (sl = [0 () —wpa(m™) < e

IWlloo () = p(7) ]2

l-e=¢€

VAN VAN

Apprenticeship Learning via Inverse Reinforcement Learning, Abbeel and Ng 2004



Apprenticeship Learning via IRL [Abbeel & Ng 2004]
1. Let R(s) =w'¢(s), where w € R, and ¢ : S — R".

2. Initialize some policy 7
3. lteratefor?z =1,2,3......

- @Quess the reward : Find a reward function such that the demonstrator
policy maximally outperforms all previously found policies

- Find optimal control policy 7T;, for the current reward function
- If expert suboptimal, pick best policy in a mixture

- Exitify < €/2

Apprenticeship Learning via Inverse Reinforcement Learning, Abbeel and Ng 2004



A Note on Reward Functions

-  How do we “guess the reward”?
- Initial IRL formulation by [Ng and Russell, 2000]
- Degeneracy: “the existence of a large set of reward functions for which the
observed policy is optimal”
-  How do we resolve ambiguity?



Max Margin Formulation

Margin
Support vectors
- Recall standard g o Ve
. p- . L Decision boundary
classification problem SN+ o+ Wix=0 4
S + NS o
o 1+ 0 @ & <o
° 6\t\\\\ + “negative” 0 O \‘+ * “positive”
oS\ hyperpl
X, X1
. SVM:
Which hyperplane? Maximize the margin
- Similar idea here:

Maximally separate the policy induced by our learned reward function from
suboptimal policies

- Formally we can write: max v
vw:|lw|2<1

st w' p(n®) >w' w(r) +v Vr € {mo,m1,..., M1}

Apprenticeship Learning via Inverse Reinforcement Learning, Abbeel and Ng 2004
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Challenges

- Max-margin is one way to break ties, still not guaranteed to capture demonstrator’s
‘true’ objective
- Hard to optimize (constrained optimization) with more expressive reward functions
- e.g. neural networks
- Expert suboptimality?
- Add slack variables
- Analogous to soft-margin SVM
- See Maximum Margin Planning, Ratliff et al. 2006



Max Entropy IRL

- Addressing ambiguity and expert suboptimality by modeling in a probabilistic
framework

- Employs the principle of maximum entropy (Jaynes, 1957)
- Pick the “least committed” distribution subject to constraints

- Assume linear reward function and known dynamics, modeling p(7) e—c(7)
is modeling the objective of the expert as:

min Elco(T)] — H(m)

Maximum Entropy Inverse Reinforcement Learning, Ziebart et al. 2008



Max Entropy IRL

Initialize 6, gather demonstrations D
Solve for optimal policy 7 (a | s) w.r.t cg

Solve for state visitation frequencies p(s | ,T)

= B =

Compute gradient

VoLl = % > £+ zsjp(s | 0, T)f,

T4ED

5. Update 6 with one gradient step using VoL

Maximum Entropy Inverse Reinforcement Learning, Ziebart et al. 2008 slide adapted from C. Finn
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Imitation via Consumer-Grade VR Teleoperation

- Motivation:

- There are existing control interfaces for driving cars/piloting drones. What about
robotic manipulation?

- Kinesthetic teaching introduces visual obstruction (problem if depend on vision)
- How else can we provide demonstrations?

- Highlights
- Developed cost-effective, consumer-grade VR teleoperation system
- Single neural network architecture that performs all tasks from vision
- Behavior cloning loss augmented with auxiliary loss making it goal-oriented
- Source of self-supervision, incorporating some concepts from IRL

Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation, Zhang et al. 2018



Imitation via Consumer-Grade VR Teleoperation

task: grasp-and-place
number of success rates | success rates
demonstrations (with) (without)
109 96% 80%
35 53% 26%
11 28% 20%

efficacy of auxiliary loss

Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation, Zhang et al. 2018




Imitation via Consumer-Grade VR Teleoperation

3 channels

120 auxiliary
predictions
RGB image || 7x7 conv
stride 2 spatial
64 channels 80 32 32 32 softmax
57 57 55 53
160
7x7 conv 1x1 conv 3x3 conv 3x3 conv
stride 2 (concat) stride 1 conv1 stride 1 conv2 stride 1 conv3
16 channels 32 channels 32 channels 32 channels
depth image 32 50
120 77 77 75 73 Xy

160 end-effector
positions —
5x9

Inputs to the policy include :
- Raw image observation
- End-effector position

For each auxiliary task (a), the loss is given by:

L) = [INN(f; 02).) — s\|2

auxr

Predict current pose and final pose -> accelerates learning

Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation, Zhang et al. 2018



Imitation via Consumer-Grade VR Teleoperation

View from inside VR

human feleoperation (environment reset) real-fime

Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation, Zhang et al. 2018


http://www.youtube.com/watch?v=rEQ8CGLV0o0&t=39

Imitation via Consumer-Grade VR Teleoperation

View from inside VR

human teleoperation (environment reset)

Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation, Zhang et al. 2018


http://www.youtube.com/watch?v=rEQ8CGLV0o0&t=91

Learning from a Single Demonstration

- Motivation:
- ldeally learn a task from just a few demonstrations and generalize to arbitrary
instantiations of the task
- If we can build a tower of blocks, we should be able to build any configuration of
blocks if shown an example

- Highlights:
- Meta-learning approach trained on pairs of demonstrations
- A key contribution is the proposed architecture consisting of demonstration,
context, and manipulation networks
- Use of soft attention allows the model to generalize to conditions and tasks
unseen in the training data

One-Shot Imitation Learning, Duan et al. 2017



Learning from a Single Demonstration
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One-Shot Imitation Learning, Duan et al. 2017



Learning from a Single Demonstration

One-Shot Imitation Learning, Duan et al. 2017


http://www.youtube.com/watch?v=oMZwkIjZzCM

Third-Person Imitation Learning

- Motivation:
- Stringent assumptions that we have access to observations and actions which are
consistent with the robot’s (first-person)
- We should be able to imitate by observing behavior “compensating for changes in
viewpoint, surroundings, object positions/types, and other factors” which
constitute different contexts

- Highlights
- Learn a context-aware translation model on multiple demonstrations taken in
different contexts
- When faced with a new context, translate demonstrations and use RL to follow
the trajectory of translated features

Imitation from Observation: Learning to Imitate Behaviors from Raw Video via Context Translation, Liu et al. 2018



Third-Person Imitation Learning
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Imitation from Observation: Learning to Imitate Behaviors from Raw Video via Context Translation, Liu et al. 2018



Third-Person Imitation Learning

Imitation from Observation: Learning to Imitate Behaviors from Raw Video via Context Translation, Liu et al. 2018


http://www.youtube.com/watch?v=CNr5T2vTX_I&t=152

Third-Person, One-Shot Imitation Learning

- Motivation:
- We, as humans, can imitate others by observing a single demonstration
- Imitation by observing humans is enticing, but it is difficult to resolve differences
in morphology (previous work we saw circumvented this challenge by using tools)

- Highlights:
- Instead of manual correspondence + pose detection to overcome differences
(maybe this isn’t even possible), take a data-driven approach and infer the goal
- Build a rich prior on structurally similar tasks during meta-training to be able to
infer a policy given a human demo
- Uses temporal convolutions to integrate temporal information in demonstration

One-Shot Imitation from Observing Humans via Domain-Adaptive Meta-Learning, Yu et al. 2018



Third-Person, One-Shot Imitation Learning

Pick-and-Place : [ Py 2
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One-Shot Imitation from Observing Humans via Domain-Adaptive Meta-Learning, Yu et al. 2018


http://www.youtube.com/watch?v=1eYqV_vGlJY&t=221

