CS 287 Advanced Robotics (Fall 2019)
Lecture 15
Partially Observable Markov Decision Processes
(POMDPs)

Pieter Abbeel

Outline

m Introduction to POMDPs

s Formalism

= Exact (usually impractical) solution

= Locally Optimal Solutions for POMDPs
= Trajectory Optimization in (Gaussian) Belief Space

= Accounting for Discontinuities in Sensing Domains

= Separation Principle

Markov Decision Process (S, A, H, T, R)

—=(e—

Given state reward action
T a
St t

S: set of states YA _
' 5., | Environment [<—

\,

= A: set of actions

= H: horizon over which the agent will act
m T:SxAxSx{0,l,. ,H} 2 [0,1], T.sas)=P(Su =5 |S, =S5, a, =a)

= R SxAxSx{0,1,..,H} 2R, R(sas)=rewardfor (S. =5, =s, a, =a)
Goal:

» Find 7:Sx {0, I, ..., H & A that maximizes expected sum of rewards, i.e.,

H
" = arg mgx E[Z Rt(Sta Ay, St+1)|7T]

t=0

POMDP — Partially Observable MDP

= MDP, BUT

don’t get to observe the state itself, instead get sensory
measurements

— World: 7(s’as) fe——

piemay
0 UOI}eAI3SGO
uolpy

~ Q
—>| Agent I—

Now: what action to take given current probability distribution
rather than given current state.

POMDPs: Tiger Example

SO
“tiger-left”

Pr(o=TL | SO, listen)=0.85
Pr(o=TR | S1, listen)=0.15

Actions={ 0: listen,
> 1: open-lefft,
2: open-right}

Reward Function Observations
- Penalty for wrong opening: -100 - to hear the tiger on the lefi (TL)
- Reward for correct opening: +10 - to hear the tiger on the right(TR)

- Cost for listening action: -1

Belief State

Probability of SO vs S1 being true underlying state
Initial belief state: p(S0)=p(S1)=0.5

Upon listening, the belief state should change according to the Bayesian
update (filtering)

0 0.15 1 0 085 1

Policy — Tiger Example

s Policy mis a map from [0,1] — {listen, open-left, open-right}

= What should the policy be?

= Roughly: listen until sure, then open

s But where are the cutoffs?

H=1 H=2

[0.00,0.02] [0.02,0.39] [0.39,0.61] [0.61,0.98] [0.98, 1.00]

[0.00, 0.10] [0.10, 0.90] [0.90, 1.00]

©

[0.00, 0.10] [0.10, 0.90] [0.90, 1.00]

Solving POMDPs

= Canonical solution method 1: Continuous state “belief MDP”

= Run value iteration, but now the state space is the space of probability
distributions

= — value and optimal action for every possible probability distribution

= — will automatically trade off information gathering actions versus
actions that affect the underlying state

= Value iteration updates cannot be carried out because uncountable

number of belief states
—> need approximate methods

Belief State Update

Each belief node has |A| action node successors

Each action node has |O| belief successors

Each (action, observation) pair (a,0) requires predict/update step

Matrix/vector formulation:
= b(s): vector b of length |S|
= p(s’|s,a): set of |S|x|S| matrices T,
= p(o]s): vector o of length |S|

b, =T,b (predict)

p(o]a,b) = 0" b, (probability of observation)

b, = diag(o) b, / (0" b,) (update)

Solving POMDPs

s Canonical solution method 2:
= Search over sequences of actions with limited look-ahead

= Branching over actions and observations

H steps to go

Finite horizon:

. ° ° |(9|H—
. . . | A| =T nodes

2 steps to go

1 step to go

Solving POMDPs

= Approximate solution: becoming tractable for |S| in millions

= o-vector point-based techniques (belief state)

= Monte Carlo Tree Search (search over action/observation sequences
from current state)

= ..beyond scope of this course...

Solving POMDPs

s Canonical solution method 3:

= Planin the MDP

= Probabilistic inference (filtering) to track probability
distribution

= Choose optimal action for MDP for currently most
likely state

Note: this is computationally efficient, but fails to
explicitly seek out information

Outline

= Locally Optimal Solutions for POMDPs

= Trajectory Optimization in (Gaussian) Belief Space

Motivation: Cost-effective, less precise robots

Motors connected |, Cable-driven / Perception
to joints using ' 7-DOF arms'”’ (ctereo, depth)
cables |

Blue (Gealy, McKinley et al, 2019)

Model Uncertainty As Gaussians

10 meters

Uncertainty parameterized by
mean and covariance

Accounting for Uncertainty

Problem setting State space plan Belief space plan

How to find this plan?

[Example from Platt, Tedrake, Kaelbling, Lozano-Perez, 2010]

(Gaussian) Belief Space Planning

5 (underlying state space)

 Redefine |
problem

........
»»»»»»»»»»»»»»»»

 Convert underlying dynamics to belief space dynamics

— Bayesian filter (e.g., extended Kalman filter)

Belief Space Planning

= State-space planning through optimization

Deterministic approximation
H

H
min Z c(xy, ug) min Z o(we, ut)
ux — ’ t=0
t=0
s.t. Tty = fdynamics (:Ct, U, wt) s.t. Ti4+1 = fdynamics (CUt, Ut, O)

= Gaussian belief space planning
Deterministic approximation (= ML assumption)

al H
min c(pe, Xe, ug) min c Y
TNy ; w5 ; (:U“ta ts t)
s.t. (:ut—i-l?Zt-i-l) - EKF(:LLt?Zt?ut?Zt-i-l) s.t. ,ut+1,2t+1) = EKF(,ut,Et,ut,h(f(,ut,ut)))

Solved with Sequential Convex Programming
[Platt, Tedrake, Kaelbling, Lozano-Perez, 2010; also Roy et al ; van den Berg et al.]

Dealing with Uncertainty

b&\
Y
X
AN

!
/

Problem setting State space plan Belief space plan

Gaussian Belief Space Planning

Shooting

Partial Collocation

Full Collocation

min C(ﬁ(b 20,U0:7—1)
Up:7-1

S.t f(ﬁ0>uO:T—la0) = ﬁtarget

f(ﬁ(), uo:r—1, 0) € Xfeasible
u; € ufeasible

min C(fio:T,Zo,llo:T—l)
.71
iO:T

S.t ﬁt-l—l :f(ﬁtautao)
X7 = ﬁtargeta
ﬁt S Xfeasiblea

Uy © Z/{feasible

min C(ﬁo;T , 20:7,00:7—1)

Up.7-1
ﬁO:T
EO:T

S.t ﬁt—l—l :f(ﬁtaut70)7

Zt+1 - (I_Kth)Et117

X7 = ﬁtargeta
ﬁt S Xfeasib]ea
U; € Useasible

Gaussian Belief Space Planning

Shooting

Partial Collocation

Full Collocation

min C(Xg,Xo,00:7—1)
uo.7-1

S.t

~

f(X0,u0.7-1,0) = Xtarget

f(f((), Uo:r—1, 0) S Xfeasible
u; € ufeasible

min C(Xo.7,20,80:7-1)
uo:7-1
i&T

S.t ﬁt-i—l :f(ﬁtautao)
X7 = ﬁtargeta
ﬁt S Xfeasiblea

Uy © Z/{feasible

min C(ﬁo;T , 20:7,00:7—1)

uo.7—1
Xo.T
EO:T

S.t

?A(t+1 = f(ﬁtautaﬂ)a

X 1= —-K:Hy)
X7 = ﬁtargeta

X; € Xfeasible;

Uy € Uteasible

Z:t+1’

+ Much better scalability
+ No infeasibility issues

- Poorly conditioned / small stepsizes / slow

- Can’t constrain mu and Sigma

+ Can constrain states
+ Bends itself into a solution
- Poor scalability

- Infeasible local optima

Gaussian Belief Space Planning

Shooting Partial Collocation Full Collocation
min C(ﬁo;T , 20:7,00:7—1)
. n Uuo.7—-1
| ufg}Tlfll C(Xo:.1,Z0,u0:7—1) Xo.7
min C(XO, 207 up:7-1) ib:T o

uo.7-1

~

S.t f(ﬁ0>uO:T—1>0) = ﬁtarget

f(ﬁ(), Ug:r—1, 0) € Xfeasible

S.t ﬁl‘—l—l :f(ﬁtaut70)7

Zt+1 - (I_Kth)Et117

S.t ﬁt-l—l :f(ﬁtautao)

XT — Xtarget,

X € Xronc: XT = ﬁtargeta
u € ufeasible t feasible s . Y
U; € Useasible Xt € Afeasibles
U; € Useasible
+ Much better scalability + Can constrain states
+ No infeasibility issues + Bends itself into a solution
- Poorly conditioned / small stepsizes / slow - Poor scalability

- Can’t constrain mu and Sigma - Infeasible local optima

Scalability

600 —— ' — . .]] :
. =4 Shooting
= Partial Coll.
500} =4 Full Coll. .
= iLQG
400}]

Time (seconds)
w
o
o

200

100

3456 10 15 20 25 30 35 40 45 50
Number of landmarks [Patil et al., WAFR 2014]

Active SLAM through Gaussian Belief Space Planning

[Patil et al., WAFR 2014]

Dealing with Discontinuities

Illight”

Zero gradient, hence local optimum

Dealing with Discontinuities

Increasing difficulty}

Noise level determined by
signed distance to sensing region (computed with GIK/EPA)
homotopy iteration [Patil et al., ICRA 2014]

Signed Distance to Sensing Discontinuity

Field of view (FOV)
discontinuity

(a) sd(by, IT¥) > 0 (b) sd(by, IT*) < 0

Outside field of view Inside field of view

Occlusion
discontinuity

(c) sd(by,IT*) > 0 (d) sd(by, IT°) < 0
Occluded view Unoccluded view

0; vs. Signed distance

(a) sd(by, 1) > 0 (b) sd(by, II*) < 0
Outside field of view Inside field of view 0

A
)

(c) sd(by,II*) > 0 (d) sd(by, II¥) < 0
Occluded view Unoccluded view

Modified Belief Dynamics

xt+l :f(xhuteqf)z qf NN(O*[)a
Z;:h(x,,r;), l‘,NN(O I/

Xi+1
Vec[\/ 1 — KiH r+|]

b1 =g(b,, 1) [

%1 =f(%.,0,0), I, =AVI(AVI) +00]

of of
A = —(X,,14,,0), = —(X;,10,,0), . .
1= oy B0, 0= 50 (R 0:,0) §¢ : Binary variable {0,1}
dh Jh
H, = a—x(xr+1,0)q R = X(xt—klao)a 0 -> No measurement
K, = 2,+1H At+1(At+lHtE,+1HTAt+I+RrRrT)_lAr+I- I -> Measurement

Incorporatings: in SQP

= Binary non-convex program — difficult to solve

= Solve successively smooth approximations
A

1

- \

Pt

a=4
a:8\-|*\
- >

"l sa(by, 1)

v
53 () = xX(sd(by, I1%),)

_ 1
1+exp(—a-Sd(bs,I19))

Algorithm Overview

= While o0 not within desired tolerance
= Solve optimization problem with current value of a.
= Increase a
= Re-integrate belief trajectory

= Update 0

Algorithm

Inputs:
Bo.e = [bg...by], Up.e—1 = [ig... 1, 1]: Belief space trajectory initialization
£: Number of time intervals
Cost and constraint definitions (Eq. (4))
Parameters:
a: Approximation parameter for relaxing discrete sensing constraints
k: Coefficient to control rate of increase of o
7: Execution time step (0 < 7 < /)
€: Convergence tolerance parameter
Variables:
Bo.c = [bg...b¢], Up.e—1 = [fig...0_]: Optimization variables
80.: Binary vector to track value of continuous approximation for convergence criterion

I: fort=0,....0—1do > Re-planning loop following the MPC paradigm
2: O < Olipit

3: while 8 not within € tolerance of true binary values {0,1} do

4: Reset trust region size and penalty coefficient > [25]
5: [Br.o,Uyr.o—1] + SQP-based optimization of approximation given [Br.;,Uzr—1] > [25]
6: a+—kxa > -update to increase noise outside sensing region
7 b =gb,o) V=1, . (-1 > Integrate belief trajectory after o-update
8: Update 8¢ < 81.¢(@) > Eq. (5)
9: (Bt ,Uro—1] < [Beo.Uro—1] > Update trajectory initialization

10: end while

11: Execute ti;

12: Obtain measurement and update b, | using EKF > Eq. (6a)

13: Truncate b;o; w.r.t sensing region boundary

14: Update sensing regions for all sensors

15: by =g(b,u) Vi=1t+1,....,4—1 > Integrate belief trajectory after Kalman update
> using previously optimized control inputs Uz 1.7

16: end for

Discontinuities in Sensing Domains

Increasing difficulty

>

Noise level determined by signed distance to sensing region
* homotopy iteration

However...

“No measurement” Belief Update

1
1
4

»
Sensing region boundary Truncated belief state

Truncate Gaussian Belief if no measurement obtained

Effect of Truncation

With “No measurement” Belief Update

Experiments

Distance to target (m)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

|

:/
|_—

T T T T T T T T T T T T T T

20% 80% 140% 200% 260% 320% 380% 440%
Noise level (% of input process and measurement noise)

==State space
==Continuous belief space

Our approach w/o truncation
=Q0ur approach w/ truncation

T T T 1

500%

Grasping: Planar 3-link Manipulator

m 6D state space: Arm joint angles +
camera orientation + object position

= 27D belief space

= Objective: Reliably grasp object

Robot Arm Occluding Object from Camera View

Initial belief State space (way-point) (end)
plan execution Belief space plan execution

Same Scenario but Movable Camera

Initial belief State space (way-point) (end)
plan execution Belief space plan execution

Car and Landmarks (Active Exploration)

Collision Avoidance

So far approximating robot geometry as points or spheres

Van den Berg et al.

Articulated robots cannot be approximated as points/spheres
= Gaussian noise in joint space

= Need probabilistic collision avoidance w.r.t robot links

Sigma Hulls

Definition: Convex hull of a robot link transformed (in joint space) according
to sigma points

Consider sigma points lying on the -standard deviation contour of uncertainty
covariance (UKF)

=

o-points

Gaussian belief o-stddev contours Sigma Hulls (per link)

X =[%.. x|+ 0V -3

Collision Avoidance Constraint

Consider signed distance between obstacle and sigma hulls

/

Obstacle

Robot links N

Obstacle

Sigma hulls

\

(a) Obstacle outside sigma hulls

(b) Obstacle overlaps sigma hulls

Continuous Collision Avoidance Constraint

Discrete collision avoidance can lead to trajectories
that collide with obstacles in between time steps

Use convex hull of sigma hulls between
consecutive time steps

sd(convhull(As, Air1),0) > dgre ¥V O € O

Advantages:

= Solutions are collision-free
in between time-steps

= Discretized trajectory can
have less time-steps

Robot links —

Sigma hulls at
discrete time steps

Continuous-time ‘
sigma hulls ’

\

(a) Obstacle does not collide with
discrete-time sigma hulls

(b) Obstacle overlaps with
continuous-time sigma hulls

Belief Space Model Predictive Control

During execution, update the belief state based
on the actual observation

Re-plan after every belief state update

Effective feedback control, provided one can re-
plan sufficiently fast

Example: 4-DOF planar robot

State space trajectory

Lsensing Initial state xq

. Intermediate states

X1..T-1
/
.

Obs?cacles

Final state xp

Target position

Example: 4-DOF planar robot

1-standard deviation belief space trajectory

Tsensing Initial mean state X
/

Final mean state xp B |
| .

Narrow clearance from obstacles

between consecutive time steps
(sigma hull for last time step)

Example: 4-DOF planar robot

4-standard deviation belief space trajectory

Lsensing Initial mean state X

Final mean state xp

-
/‘_

Wider clearance from obstacles

between consecutive time steps
(sigma hull at last time step

Example: 4-DOF planar robot

Probability of collision

== Belief space plan (Open-loop execution)
Belief space plan (Feedback policy)
= Belief space re-planning

100 1
< 80 1 v
S
—~ 60
S
© 20
O
0 1 1 1 1 1 1
1.0 1.5 2.0 2.5 3.0 3.5 4.0

A-parameter

Example: 4-DOF planar robot

e o =
o 0 KB N
J

o
()

Distance from target
o

S
H
1

Mean distance from target

== Belief space plan (Open-loop execution)
Belief space plan (Feedback policy)
== Belief space re-planning

1.0 1.5 2.0 2.5 3.0 3.5 4.0
A-parameter

Outline

m Introduction to POMDPs

s Locally Optimal Solutions for POMDPs
s Trajectory Optimization in (Gaussian) Belief Space

s Accounting for Discontinuities in Sensing Domains

= Separation Principle

Separation Principle

Assume: Tiy1 — A:Bt + But + wy Wy ~ N(O, Qt)

2t :CCCt+Ut (% NN(O,Rt)
H
Goal: minlmize u, Uruy + Ty X2y
t=0

Then, optimal control policy consists of:

1. Offline/Ahead of time: Run LQR to find optimal control policy for fully
observed case, which gives sequence of feedback matrices

K, Ko, ...

2. Online: Run Kalman filter to estimate state, and apply control

Ut = Kt,ut|0:t

Recap

POMDP = MDP but sensory measurements instead of exact state
knowledge

Locally optimal solutions in Gaussian belief spaces
= Augmented state vector (mean, covariance)

= Trajectory optimization

Homotopy methods for dealing with discontinuities in sensing
domains

Sigma Hulls for probabilistic collision avoidance

Separation principle

