

CS 287 Advanced Robotics (Fall 2019)

Lecture 15

Partially Observable Markov Decision Processes

(POMDPs)

Pieter Abbeel

Outline

- Introduction to POMDPs
 - Formalism
 - Exact (usually impractical) solution
- Locally Optimal Solutions for POMDPs
 - Trajectory Optimization in (Gaussian) Belief Space
 - Accounting for Discontinuities in Sensing Domains
- Separation Principle

Markov Decision Process (S, A, H, T, R)

Given

- S: set of states
- A: set of actions
- H: horizon over which the agent will act
- T: $S \times A \times S \times \{0,1,...,H\} \rightarrow [0,1]$, $T_t(s,a,s') = P(s_{t+1} = s' \mid s_t = s, a_t = a)$
- R: $S \times A \times S \times \{0, 1, ..., H\} \rightarrow \mathbb{R}$, $R_t(s,a,s') = \text{reward for } (S_{t+1} = s', S_t = s, a_t = a)$

Goal:

• Find π : $S \times \{0, 1, ..., H\} \rightarrow A$ that maximizes expected sum of rewards, i.e.,

$$\pi^* = \arg\max_{\pi} E[\sum_{t=0}^{H} R_t(S_t, A_t, S_{t+1}) | \pi]$$

POMDP – Partially Observable MDP

= MDP, BUT

don't get to observe the state itself, instead get sensory measurements

Now: what action to take given current probability distribution rather than given current state.

POMDPs: Tiger Example

S0
"tiger-left"
Pr(o=TL | S0, listen)=0.85
Pr(o=TR | S1, listen)=0.15

S1
"tiger-right"
Pr(o=TL | S0, listen)=0.15
Pr(o=TR | S1, listen)=0.85

Actions={ 0: listen,

1: open-left,

2: open-right}

Reward Function

- Penalty for wrong opening: -100
- Reward for correct opening: +10
- Cost for listening action: -1

Observations

- to hear the tiger on the left (TL)
- to hear the tiger on the right(TR)

Belief State

- Probability of S0 vs S1 being true underlying state
- Initial belief state: p(S0)=p(S1)=0.5
- Upon listening, the belief state should change according to the Bayesian update (filtering)

Policy – Tiger Example

- Policy π is a map from $[0,1] \rightarrow \{\text{listen, open-left, open-right}\}$
- What should the policy be?
 - Roughly: listen until sure, then open
- But where are the cutoffs?

- Canonical solution method 1: Continuous state "belief MDP"
 - Run value iteration, but now the state space is the space of probability distributions
 - → value and optimal action for every possible probability distribution
 - will <u>automatically trade off information gathering actions versus</u> <u>actions</u> that affect the underlying state

- Value iteration updates cannot be carried out because uncountable number of belief states
 - -> need approximate methods

Belief State Update

- Each belief node has |A| action node successors
- Each action node has |O| belief successors
- Each (action, observation) pair (a,o) requires predict/update step
- Matrix/vector formulation:
 - b(s): vector b of length |S|
 - p(s'|s,a): set of |S|x|S| matrices T_a
 - p(o|s): vector o of length |S|
- $\mathbf{b}_a = T_a \mathbf{b}$ (predict)
- $p(o|a,b) = o^T b_a$ (probability of observation)
- $\mathbf{b}_{\mathsf{a},\mathsf{o}} = \mathsf{diag}(\mathbf{o}) \, \mathbf{b}_{\mathsf{a}} \, / \, (\mathbf{o}^\mathsf{T} \, \mathbf{b}_{\mathsf{a}}) \, (\mathsf{update})$

$$\equiv b_{a,o}(s') = \frac{p(o \mid s', a) \sum_{s_i \in S} p(s' \mid s_i, a) b(s_i)}{p(o \mid a, b)}$$

- Canonical solution method 2:
 - Search over sequences of actions with limited look-ahead
 - Branching over actions and observations

Finite horizon:

$$|\mathcal{A}|^{rac{|\mathcal{O}|^H-1}{|\mathcal{O}|-1}}$$
 nodes

- Approximate solution: becoming tractable for |S| in millions
 - α -vector point-based techniques (belief state)
 - Monte Carlo Tree Search (search over action/observation sequences from current state)
 - ...beyond scope of this course...

- Canonical solution method 3:
 - Plan in the MDP
 - Probabilistic inference (filtering) to track probability distribution
 - Choose optimal action for MDP for currently most likely state

Note: this is computationally efficient, but fails to explicitly seek out information

Outline

- Introduction to POMDPs
- Locally Optimal Solutions for POMDPs
 - Trajectory Optimization in (Gaussian) Belief Space
 - Accounting for Discontinuities in Sensing Domains
- Separation Principle

Motivation: Cost-effective, less precise robots

Low-cost arm (Quigley et al.)

Blue (Gealy, McKinley et al, 2019)

Raven surgical robot (Rosen et al.)

Model Uncertainty As Gaussians

Uncertainty parameterized by mean and covariance

Accounting for Uncertainty

Problem setting

State space plan

How to find this plan?

(Gaussian) Belief Space Planning

• Redefine (underlying state space) (belief space) (b

- Convert underlying dynamics to belief space dynamics
 - Bayesian filter (e.g., extended Kalman filter)

Belief Space Planning

State-space planning through optimization

Deterministic approximation

$$\min_{u,x} \quad \sum_{t=0}^{H} c(x_t, u_t) \qquad \qquad \min_{u,x} \quad \sum_{t=0}^{H} c(x_t, u_t) \\
\text{s.t.} \quad x_{t+1} = f_{\text{dynamics}}(x_t, u_t, w_t) \qquad \qquad \text{s.t.} \quad x_{t+1} = f_{\text{dynamics}}(x_t, u_t, 0)$$

Gaussian belief space planning

Deterministic approximation (= ML assumption)

$$\min_{u,\mu,\Sigma} \quad \sum_{t=0}^{H} c(\mu_{t}, \Sigma_{t}, u_{t}) \qquad \qquad \min_{u,\mu,\Sigma} \quad \sum_{t=0}^{H} c(\mu_{t}, \Sigma_{t}, u_{t}) \\
\text{s.t.} \quad (\mu_{t+1}, \Sigma_{t+1}) = \text{EKF}(\mu_{t}, \Sigma_{t}, u_{t}, z_{t+1}) \qquad \text{s.t.} \quad (\mu_{t+1}, \Sigma_{t+1}) = \text{EKF}(\mu_{t}, \Sigma_{t}, u_{t}, h(f(\mu_{t}, u_{t})))$$

Solved with Sequential Convex Programming

Dealing with Uncertainty

Problem setting

State space plan

Gaussian Belief Space Planning

Shooting	Partial Collocation	Full Collocation
$\min_{\mathbf{u}_{0:T-1}} \ \mathcal{C}(\mathbf{\hat{x}}_0, \mathbf{\Sigma}_0, \mathbf{u}_{0:T-1})$	$\min_{egin{subarray}{c} \mathbf{u}_{0:T-1} \ \hat{\mathbf{x}}_{0:T} \end{array}} \mathcal{C}(\hat{\mathbf{x}}_{0:T}, \Sigma_0, \mathbf{u}_{0:T})$	$\left(egin{array}{c} \mathbf{u}_{0:T-1} & \mathbf{min} & \mathcal{C}(\mathbf{\hat{x}}_{0:T}, \mathbf{\Sigma}_{0:T}, \mathbf{u}_{0:T-1}) \ \mathbf{\hat{x}}_{0:T} & \mathbf{\Sigma}_{0:T} \end{array} ight)$
1 0: <i>T</i> -1	s.t $\hat{\mathbf{x}}_{t+1} = \mathbf{f}(\hat{\mathbf{x}}_t, \mathbf{u}_t, 0)$	s.t $\hat{\mathbf{x}}_{t+1} = \mathbf{f}(\hat{\mathbf{x}}_t, \mathbf{u}_t, 0),$ $\Sigma_{t+1} = (I - K_t H_t) \Sigma_{t+1}^-,$ $\hat{\mathbf{x}}_T = \hat{\mathbf{x}}_{\text{target}},$ $\hat{\mathbf{x}}_t \in \mathcal{X}_{\text{feasible}},$ $\mathbf{u}_t \in \mathcal{U}_{\text{feasible}}$

Gaussian Belief Space Planning

Shooting	Pa	Partial Collocation		Full Collocation	
$\min_{\mathbf{u}_{0:T-1}} \ \mathcal{C}(\mathbf{\hat{x}}_0, \mathbf{\Sigma}_0, \mathbf{u}_{0:T-1})$	$\min_{\substack{\mathbf{u}_{0:T-1} \ \mathbf{\hat{x}}_{0:T}}}$	$\mathcal{C}(\mathbf{\hat{x}}_{0:T}, \Sigma_0, \mathbf{u}_{0:T-1})$	$\min_{oldsymbol{u}_{0:T-1} \ \hat{oldsymbol{x}}_{0:T} \ \Sigma_{0:T}}$	$\mathcal{C}(\mathbf{\hat{x}}_{0:T}, \mathbf{\Sigma}_{0:T}, \mathbf{u}_{0:T-1})$	
$\begin{vmatrix} \mathbf{a}_{0:T-1} \\ s.t & \mathbf{\tilde{f}}(\hat{\mathbf{x}}_0, \mathbf{u}_{0:T-1}, 0) = \hat{\mathbf{x}}_{target} \end{vmatrix}$	s.t	$\hat{\mathbf{x}}_{t+1} = \mathbf{f}(\hat{\mathbf{x}}_t, \mathbf{u}_t, 0)$	s.t	$\hat{\mathbf{x}}_{t+1} = \mathbf{f}(\hat{\mathbf{x}}_t, \mathbf{u}_t, 0),$	
$\mathbf{ ilde{f}}(\mathbf{\hat{x}}_0,\mathbf{u}_{0:t-1},0)\in\mathcal{X}_{ ext{feasib}}$		$\hat{\mathbf{x}}_T = \hat{\mathbf{x}}_{\text{target}},$		$\Sigma_{t+1} = (I - K_t H_t) \Sigma_{t+1}^-,$	
$\mathbf{u}_t \in \mathcal{U}_{ ext{feasible}}$		$\hat{\mathbf{x}}_t \in \mathcal{X}_{ ext{feasible}},$		$\hat{\mathbf{x}}_T = \hat{\mathbf{x}}_{\text{target}},$	
The asible		$\mathbf{u}_t \in \mathcal{U}_{ ext{feasible}}$		$\mathbf{\hat{x}}_t \in \mathcal{X}_{ ext{feasible}},$	
				$\mathbf{u}_t \in \mathcal{U}_{ ext{feasible}}$	
+ Much better scalability			+ C	an constrain states	
+ No infeasibility issues			+ B	ends itself into a solution	

- Poor scalability

- Infeasible local optima

- Poorly conditioned / small stepsizes / slow

- Can't constrain mu and Sigma

Gaussian Belief Space Planning						
Shooting	Partial Collocation	Full Collocation				
$(0, \Sigma_0, \mathbf{u}_{0:T-1})$	$\min_{\substack{\mathbf{u}_{0:T-1} \\ \hat{\mathbf{x}}_{0:T}}} \ \mathcal{C}(\hat{\mathbf{x}}_{0:T}, \Sigma_0, \mathbf{u}_{0:T-1})$	$\min_{\substack{\mathbf{u}_{0:T-1} \\ \mathbf{\hat{x}}_{0:T} \\ \Sigma_{0:T}}} \mathcal{C}(\mathbf{\hat{x}}_{0:T}, \mathbf{\Sigma}_{0:T}, \mathbf{u}_{0:T-1})$				

 $\mathcal{C}(\hat{\mathbf{x}}_0)$ ${\bf u}_{0:T-1}$ s.t $\tilde{\mathbf{f}}(\hat{\mathbf{x}}_0, \mathbf{u}_{0:T-1}, \mathbf{0}) = \hat{\mathbf{x}}_{\text{target}}$ $\tilde{\mathbf{f}}(\hat{\mathbf{x}}_0, \mathbf{u}_{0:t-1}, \mathbf{0}) \in \mathcal{X}_{\text{feasible}}$ $\mathbf{u}_t \in \mathcal{U}_{\text{feasible}}$

 $s.t \quad \hat{\mathbf{x}}_{t+1} = \mathbf{f}(\hat{\mathbf{x}}_t, \mathbf{u}_t, \mathbf{0})$ $\hat{\mathbf{x}}_T = \hat{\mathbf{x}}_{\text{target}},$ $\hat{\mathbf{x}}_t \in \mathcal{X}_{\text{feasible}}$, $\mathbf{u}_t \in \mathcal{U}_{\text{feasible}}$

 $\mathbf{s.t} \quad \mathbf{\hat{x}}_{t+1} = \mathbf{f}(\mathbf{\hat{x}}_t, \mathbf{u}_t, \mathbf{0}),$ $\Sigma_{t+1} = (I - K_t H_t) \Sigma_{t+1}^-,$

 $\hat{\mathbf{x}}_T = \hat{\mathbf{x}}_{\text{target}},$ $\hat{\mathbf{x}}_t \in \mathcal{X}_{\text{feasible}}$, $\mathbf{u}_t \in \mathcal{U}_{\text{feasible}}$

- + Much better scalability + No infeasibility issues
- Poorly conditioned / small stepsizes / slow
- Can't constrain mu and Sigma

- + Can constrain states + Bends itself into a solution

- Poor scalability

- Infeasible local optima

Scalability

[Patil et al., WAFR 2014]

Active SLAM through Gaussian Belief Space Planning

Dealing with Discontinuities

Zero gradient, hence local optimum

Dealing with Discontinuities

Increasing difficulty

Noise level determined by signed distance to sensing region (computed with GJK/EPA) homotopy iteration

Signed Distance to Sensing Discontinuity

Field of view (FOV) discontinuity

Occlusion discontinuity

δ_t^s vs. Signed distance

$$\delta^s_t = \chi(exttt{sd}(\hat{\mathbf{b}}_t,\Pi^s))$$

Modified Belief Dynamics

$$\mathbf{x}_{t+1} = \mathbf{f}(\mathbf{x}_t, \mathbf{u}_t, \mathbf{q}_t), \quad \mathbf{q}_t \sim \mathcal{N}(\mathbf{0}, I),$$
 $\mathbf{z}_t = \mathbf{h}(\mathbf{x}_t, \mathbf{r}_t), \quad \mathbf{r}_t \sim \mathcal{N}(\mathbf{0}, I),$
 $\hat{\mathbf{b}}_{t+1} = \mathbf{g}(\hat{\mathbf{b}}_t, \hat{\mathbf{u}}_t) = \begin{bmatrix} \hat{\mathbf{x}}_{t+1} \\ \text{vec}[\sqrt{\Sigma_{t+1}^- - K_t H_t \Sigma_{t+1}^-}] \end{bmatrix}$

$$\hat{\mathbf{x}}_{t+1} = \mathbf{f}(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}, \mathbf{0}), \qquad \Sigma_{t+1}^{-} = A_{t} \sqrt{\Sigma_{t}} (A_{t} \sqrt{\Sigma_{t}})^{T} + Q_{t} Q_{t}^{T},$$

$$A_{t} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} (\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}, \mathbf{0}), \qquad Q_{t} = \frac{\partial \mathbf{f}}{\partial \mathbf{q}} (\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}, \mathbf{0}),$$

$$H_{t} = \frac{\partial \mathbf{h}}{\partial \mathbf{x}} (\hat{\mathbf{x}}_{t+1}, \mathbf{0}), \qquad R_{t} = \frac{\partial \mathbf{h}}{\partial \mathbf{r}} (\hat{\mathbf{x}}_{t+1}, \mathbf{0}),$$

$$K_{t} = \Sigma_{t+1}^{-} H_{t}^{T} \Delta_{t+1} (\Delta_{t+1} H_{t} \Sigma_{t+1}^{-} H_{t}^{T} \Delta_{t+1} + R_{t} R_{t}^{T})^{-1} \Delta_{t+1}.$$

$$I \rightarrow \text{Measurement}$$

 δ_{i}^{s} : Binary variable {0,1}

Incorporating δ_t^s in SQP

- Binary non-convex program difficult to solve
- Solve successively smooth approximations

Algorithm Overview

- While δ not within desired tolerance
 - Solve optimization problem with current value of α
 - Increase α
 - Re-integrate belief trajectory
 - Update δ

Algorithm

```
Inputs:
```

 $\bar{\mathcal{B}}_{0:\ell} = [\bar{f b}_0 \dots \bar{f b}_\ell], \ \bar{\mathcal{U}}_{0:\ell-1} = [\bar{f u}_0 \dots \bar{f u}_{\ell-1}]$: Belief space trajectory initialization

 ℓ : Number of time intervals

Cost and constraint definitions (Eq. (4))

Parameters:

 α : Approximation parameter for relaxing discrete sensing constraints

k: Coefficient to control rate of increase of α

 τ : Execution time step $(0 \le \tau \le \ell)$

 ε : Convergence tolerance parameter

Variables:

```
\hat{\mathcal{B}}_{0:\ell} = [\hat{\mathbf{b}}_0 \dots \hat{\mathbf{b}}_\ell], \ \hat{\mathcal{U}}_{0:\ell-1} = [\hat{\mathbf{u}}_0 \dots \hat{\mathbf{u}}_{\ell-1}]: Optimization variables
```

 $\boldsymbol{\delta}_{0:\ell}$: Binary vector to track value of continuous approximation for convergence criterion

```
1: for \tau = 0, \dots, \ell - 1 do \triangleright Re-planning loop following the MPC paradigm
```

2: $\alpha \leftarrow \alpha_{\text{init}}$

3: **while** $\delta_{\tau:\ell}$ not within ε tolerance of true binary values $\{0,1\}$ **do**

4: Reset trust region size and penalty coefficient

5: $[\hat{\mathcal{B}}_{\tau:\ell}, \hat{\mathcal{U}}_{\tau:\ell-1}] \leftarrow \text{SQP-based optimization of approximation given } [\bar{\mathcal{B}}_{\tau:\ell}, \bar{\mathcal{U}}_{\tau:\ell-1}] \Rightarrow [25]$

▷ [25]

⊳ Eq. (6a)

6: $\alpha \leftarrow k * \alpha$ $\Rightarrow \alpha$ -update to increase noise outside sensing region

7: $\hat{\mathbf{b}}_{t+1} = \mathbf{g}(\hat{\mathbf{b}}_t, \hat{\mathbf{u}}_t) \forall t = \tau, \dots, \ell - 1$ \triangleright Integrate belief trajectory after α -update

8: Update $\boldsymbol{\delta}_{\tau:\ell} \leftarrow \boldsymbol{\delta}_{\tau:\ell}(\alpha)$ \triangleright Eq. (5) 9: $[\bar{\mathcal{B}}_{\tau:\ell}, \bar{\mathcal{U}}_{\tau:\ell-1}] \leftarrow [\hat{\mathcal{B}}_{\tau:\ell}, \hat{\mathcal{U}}_{\tau:\ell-1}]$ \triangleright Update trajectory initialization

10: end while

Execute $\bar{\mathbf{u}}_{\tau}$

2: Obtain measurement and update $\bar{\mathbf{b}}_{\tau+1}$ using EKF

13: Truncate $\bar{\mathbf{b}}_{\tau+1}$ w.r.t sensing region boundary

14: Update sensing regions for all sensors

15: $\bar{\mathbf{b}}_{t+1} = \mathbf{g}(\bar{\mathbf{b}}_t, \bar{\mathbf{u}}_t) \ \forall \ t = \tau + 1, \dots, \ell - 1$ \triangleright Integrate belief trajectory after Kalman update \triangleright using previously optimized control inputs $\bar{\mathcal{U}}_{\tau+1:\ell-1}$

Discontinuities in Sensing Domains

Increasing difficulty

Noise level determined by signed distance to sensing region * homotopy iteration

However...

"No measurement" Belief Update

Truncate Gaussian Belief if no measurement obtained

Effect of Truncation

Without "No measurement" Belief Update

With "No measurement" Belief Update

Experiments

Grasping: Planar 3-link Manipulator

- 6D state space: Arm joint angles + camera orientation + object position
 - 27D belief space

Objective: Reliably grasp object

Robot Arm Occluding Object from Camera View

Same Scenario but Movable Camera

Belief space plan execution

plan execution

Car and Landmarks (Active Exploration)

Collision Avoidance

So far approximating robot geometry as points or spheres

Van den Berg et al.

- Articulated robots cannot be approximated as points/spheres
 - Gaussian noise in joint space
 - Need probabilistic collision avoidance w.r.t robot links

Sigma Hulls

- Definition: Convex hull of a robot link transformed (in joint space) according to sigma points
- Consider sigma points lying on the -standard deviation contour of uncertainty covariance (UKF)

$$\mathcal{X} = [\hat{\mathbf{x}} \dots \hat{\mathbf{x}}] + \lambda [\mathbf{0} \ \sqrt{\Sigma} \ -\sqrt{\Sigma}]$$

Collision Avoidance Constraint

Consider signed distance between obstacle and sigma hulls

(a) Obstacle outside sigma hulls

(b) Obstacle overlaps sigma hulls

Continuous Collision Avoidance Constraint

- Discrete collision avoidance can lead to trajectories that collide with obstacles in between time steps
- Use convex hull of sigma hulls between consecutive time steps

$$sd(convhull(A_t, A_{t+1}), O) \ge d_{safe} \ \forall \ O \in \mathcal{O}$$

Advantages:

- Solutions are collision-free in between time-steps
- Discretized trajectory can have less time-steps

(a) Obstacle does not collide with discrete-time sigma hulls

(b) Obstacle overlaps with continuous-time sigma hulls

Belief Space Model Predictive Control

- During execution, update the belief state based on the actual observation
- Re-plan after every belief state update
- Effective feedback control, provided one can replan sufficiently fast

State space trajectory

1-standard deviation belief space trajectory

4-standard deviation belief space trajectory

Probability of collision

Mean distance from target

Outline

- Introduction to POMDPs
- Locally Optimal Solutions for POMDPs
 - Trajectory Optimization in (Gaussian) Belief Space
 - Accounting for Discontinuities in Sensing Domains
- Separation Principle

Separation Principle

Assume: $x_{t+1} = Ax_t + Bu_t + w_t$ $w_t \sim \mathcal{N}(0, Q_t)$ $z_t = Cx_t + v_t$ $v_t \sim \mathcal{N}(0, R_t)$

• Goal: minimize
$$\mathbf{E}\left[\sum_{t=0}^{H} u_t^{\top} U_t u_t + x_t^{\top} X_t x_t\right]$$

- Then, optimal control policy consists of:
 - 1. Offline/Ahead of time: Run LQR to find optimal control policy for fully observed case, which gives sequence of feedback matrices

$$K_1, K_2, \ldots$$

2. Online: Run Kalman filter to estimate state, and apply control $u_t = K_t \mu_{t|0:t}$

Recap

- POMDP = MDP but sensory measurements instead of exact state knowledge
- Locally optimal solutions in Gaussian belief spaces
 - Augmented state vector (mean, covariance)
 - Trajectory optimization
- Homotopy methods for dealing with discontinuities in sensing domains
- Sigma Hulls for probabilistic collision avoidance
- Separation principle