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n Introduction to POMDPs

n Formalism

n Exact (usually impractical) solution

n Locally Optimal Solutions for POMDPs
n Trajectory Optimization in (Gaussian) Belief Space

n Accounting for Discontinuities in Sensing Domains

n Separation Principle
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Markov Decision Process (S, A, H, T, R)

Given

n S: set of states

n A: set of actions

n H: horizon over which the agent will act

n T: S x A x S x {0,1,…,H} à [0,1] ,    Tt(s,a,s’) = P(st+1 = s’ | st = s, at =a)

n R:  S x A x S x {0, 1, …, H} à , Rt(s,a,s’) = reward for (st+1 = s’, st = s, at =a)

Goal: 

n Find    : S x {0, 1, …, H} à A  that maximizes expected sum of rewards, i.e., p



= MDP,   BUT

don’t get to observe the state itself, instead get sensory 
measurements

Now: what action to take given current probability distribution 
rather than given current state.

POMDP – Partially Observable MDP



POMDPs: Tiger Example



Belief State
n Probability of S0 vs S1 being true underlying state

n Initial belief state: p(S0)=p(S1)=0.5

n Upon listening, the belief state should change according to the Bayesian 
update (filtering)

TL TR



Policy – Tiger Example
n Policy p is a map from [0,1] ® {listen, open-left, open-right}

n What should the policy be?
n Roughly: listen until sure, then open

n But where are the cutoffs?

H=1 H=2



n Canonical solution method 1: Continuous state “belief MDP”

n Run value iteration, but now the state space is the space of probability 
distributions

n à value and optimal action for every possible probability distribution

n à will automatically trade off information gathering actions versus 
actions that affect the underlying state

n Value iteration updates cannot be carried out because uncountable 
number of belief states 
–> need approximate methods

Solving POMDPs



n Each belief node has |A| action node successors

n Each action node has |O| belief successors

n Each (action, observation) pair (a,o) requires predict/update step 

n Matrix/vector formulation:

n b(s): vector b of length |S|

n p(s’|s,a): set of |S|x|S| matrices Ta

n p(o|s): vector o of length |S|

n ba = Tab (predict)

n p(o|a,b) = oT ba (probability of observation)

n ba,o = diag(o) ba / (oT ba) (update)

Belief State Update
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n Canonical solution method 2:

n Search over sequences of actions with limited look-ahead

n Branching over actions and observations

Solving POMDPs

Finite horizon: 

nodes



n Approximate solution: becoming tractable for |S| in millions

n a-vector point-based techniques (belief state)

n Monte Carlo Tree Search (search over action/observation sequences 
from current state)

n …beyond scope of this course…

Solving POMDPs



n Canonical solution method 3: 

n Plan in the MDP

n Probabilistic inference (filtering) to track probability 
distribution

n Choose optimal action for MDP for currently most 
likely state

Note: this is computationally efficient, but fails to 
explicitly seek out information

Solving POMDPs



n Introduction to POMDPs

n Locally Optimal Solutions for POMDPs
n Trajectory Optimization in (Gaussian) Belief Space

n Accounting for Discontinuities in Sensing Domains
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Motivation: Cost-effective, less precise robots

Cable-driven 
7-DOF arms

Perception 
(stereo, depth)

Motors connected 
to joints using 

cables
Baxter (Rethink)

Low-cost arm (Quigley et al.)

Raven surgical robot (Rosen et al.)

Blue (Gealy, McKinley et al, 2019)



Model Uncertainty As Gaussians

Start

Uncertainty parameterized by 
mean and covariance

Start



Accounting for Uncertainty

State space plan

start

goal

Problem setting Belief space plan

How to find this plan?
[Example from Platt, Tedrake, Kaelbling, Lozano-Perez, 2010]



(Gaussian) Belief Space Planning

• Redefine 
problem

• Convert underlying dynamics to belief space dynamics

– Bayesian filter (e.g., extended Kalman filter)

(underlying state space) (belief space)

”xt” = (µt,�t)



n State-space planning through optimization

n Gaussian belief space planning

Belief Space Planning

Deterministic approximation

Deterministic approximation (= ML assumption)

Solved with Sequential Convex Programming
[Platt, Tedrake, Kaelbling, Lozano-Perez, 2010; also Roy et al ; van den Berg et al.]



Dealing with Uncertainty

State space plan

start

goal

Problem setting Belief space plan



Gaussian Belief Space Planning



Gaussian Belief Space Planning

+ Can constrain states
+ Bends itself into a solution
- Poor scalability
- Infeasible local optima

+ Much better scalability
+ No infeasibility issues
- Poorly conditioned / small stepsizes / slow
- Can’t constrain mu and Sigma



Gaussian Belief Space Planning

+ Can constrain states
+ Bends itself into a solution
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Scalability

[Patil et al., WAFR 2014]



Active SLAM through Gaussian Belief Space Planning

[Patil et al., WAFR 2014]



Dealing with Discontinuities

Zero gradient, hence local optimum    

start

goal

“dark” “light”



Dealing with Discontinuities

Increasing difficulty
≈

[Patil et al., ICRA 2014]

Noise level determined by
signed distance to sensing region (computed with GJK/EPA)

homotopy iteration



Signed Distance to Sensing Discontinuity

Field of view (FOV) 
discontinuity

Occlusion 
discontinuity



vs. Signed distance



Modified Belief Dynamics

: Binary variable {0,1}
0 -> No measurement
1 -> Measurement 



Incorporating     in SQP  
n Binary non-convex program – difficult to solve

n Solve successively smooth approximations



Algorithm Overview

n While d not within desired tolerance
n Solve optimization problem with current value of a

n Increase a

n Re-integrate belief trajectory

n Update d



Algorithm



Increasing difficulty

≈
Noise level determined by signed distance to sensing region 

* homotopy iteration

Discontinuities in Sensing Domains



However…



“No measurement” Belief Update

Truncate Gaussian Belief if no measurement obtained



Without “No measurement” Belief Update

With “No measurement” Belief Update

Effect of Truncation



Experiments



Grasping: Planar 3-link Manipulator

n 6D state space: Arm joint angles + 
camera orientation + object position
n 27D belief space

n Objective: Reliably grasp object



Robot Arm Occluding Object from Camera View

Initial belief State space 
plan execution

(way-point)                (end)
Belief space plan execution



Same Scenario but Movable Camera

Initial belief State space 
plan execution

(way-point)                       (end)
Belief space plan execution



Car and Landmarks (Active Exploration)



n So far approximating robot geometry as points or spheres

n Articulated robots cannot be approximated as points/spheres

n Gaussian noise in joint space

n Need probabilistic collision avoidance w.r.t robot links

Collision Avoidance

Van den Berg et al.



n Definition: Convex hull of a robot link transformed (in joint space) according 
to sigma points

n Consider sigma points lying on the -standard deviation contour of uncertainty 
covariance (UKF)

Sigma Hulls



Collision Avoidance Constraint

Consider signed distance between obstacle and sigma hulls



n Discrete collision avoidance can lead to trajectories 
that collide with obstacles in between time steps

n Use convex hull of sigma hulls between 
consecutive time steps

n Advantages:

n Solutions are collision-free                                                          
in between time-steps

n Discretized trajectory can                                                      
have less time-steps

Continuous Collision Avoidance Constraint



n During execution, update the belief state based 
on the actual observation

n Re-plan after every belief state update

n Effective feedback control, provided one can re-
plan sufficiently fast

Belief Space Model Predictive Control



State space trajectory

Example: 4-DOF planar robot



1-standard deviation belief space trajectory

Example: 4-DOF planar robot



4-standard deviation belief space trajectory

Example: 4-DOF planar robot



Probability of collision

Example: 4-DOF planar robot



Mean distance from target

Example: 4-DOF planar robot
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n Trajectory Optimization in (Gaussian) Belief Space
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n Separation Principle
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n Assume:

n Goal:

n Then, optimal control policy consists of:

1. Offline/Ahead of time: Run LQR to find optimal control policy for fully 
observed case, which gives sequence of feedback matrices 

2. Online: Run Kalman filter to estimate state, and apply control

xt+1 = Axt +But + wt wt � N (0, Qt)

zt = Cxt + vt vt � N (0, Rt)

minimize E

"
HX

t=0

u>
t
Utut + x>

t
Xtxt

#

K1,K2, . . .

ut = Ktµt|0:t

Separation Principle 



Recap
n POMDP = MDP but sensory measurements instead of exact state 

knowledge

n Locally optimal solutions in Gaussian belief spaces 
n Augmented state vector (mean, covariance) 
n Trajectory optimization

n Homotopy methods for dealing with discontinuities in sensing 
domains 

n Sigma Hulls for probabilistic collision avoidance 

n Separation principle


