Introduction to Mobile Robotics

Bayes Filter – Particle Filter and Monte Carlo Localization

Wolfram Burgard

Motivation

- Estimating the state of a dynamical system is a fundamental problem
- The Recursive Bayes Filter is an effective approach to estimate the belief about the state of a dynamical system
 - How to represent this belief?
 - How to maximize it?
- Particle filters are a way to efficiently represent an arbitrary (non-Gaussian) distribution
- Basic principle
 - Set of state hypotheses ("particles")
 - Survival-of-the-fittest

\overline{z}	= observation
u	= action
x	= state

Bayes Filters

$$Bel(x_t) = P(x_t | u_1, z_1, ..., u_t, z_t)$$

Bayes = $\eta P(z_t | x_t, u_1, z_1, ..., u_t) P(x_t | u_1, z_1, ..., u_t)$

Markov =
$$\eta P(z_t | x_t) P(x_t | u_1, z_1, \dots, u_t)$$

Total prob.

$$= \eta P(z_t | x_t) \int P(x_t | u_1, z_1, \dots, u_t, x_{t-1}) P(x_{t-1} | u_1, z_1, \dots, u_t) dx_{t-1}$$

Markov

$$= \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) P(x_{t-1} \mid u_1, z_1, \dots, u_t) dx_{t-1}$$

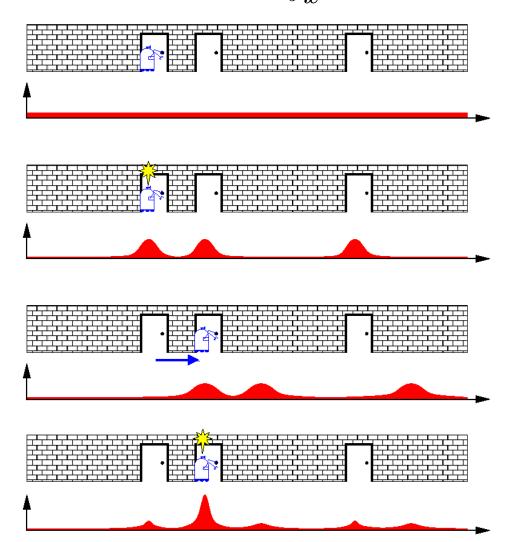
$$= \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) P(x_{t-1} \mid u_1, z_1, \dots, z_{t-1}) dx_{t-1}$$

Markov

$$= \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

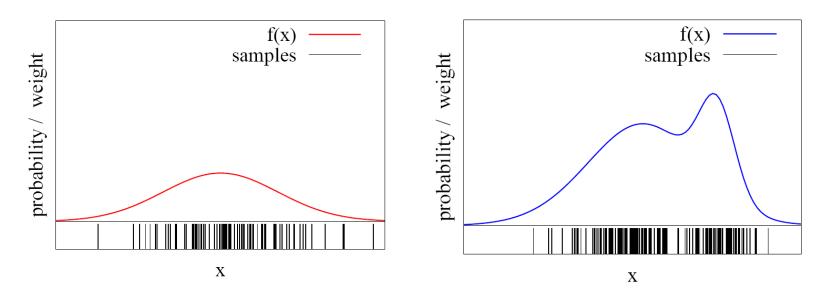
Probabilistic Localization

 $Bel(x \mid z, u) = \alpha p(z \mid x) \int_{x'} p(x \mid u, x') Bel(x') dx'$



Function Approximation

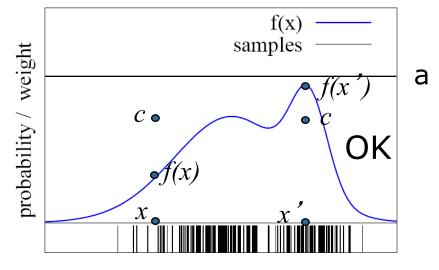
Particle sets can be used to approximate functions



- The more particles fall into an interval, the higher the probability of that interval
- How to draw samples from a function/distribution?

Rejection Sampling

- Let us assume that f(x) < a for all x</p>
- Sample x from a uniform distribution
- Sample c from [0,a]
- if f(x) > c keep the sample otherwise reject the sample



Importance Sampling Principle

- We can even use a different distribution g to generate samples from f
- Using an importance weight w, we can account for the "differences between g and f"
- w = f/g
- f is called target
- g is called proposal
- Pre-condition: $f(x) > 0 \rightarrow g(x) > 0$



Particle Filter Representation

Set of weighted samples

$$S = \left\{ \left\langle s^{[i]}, w^{[i]} \right\rangle \mid i = 1, \dots, N \right\}$$

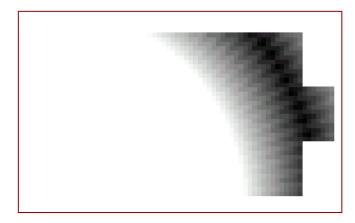
State hypothesis Importance weight

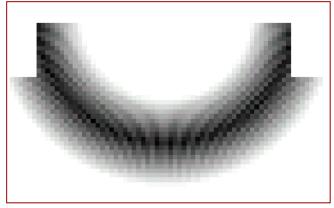
The samples represent the posterior

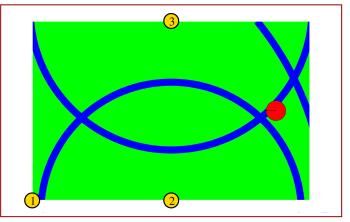
$$p(x) = \sum_{i=1}^{N} w_i \cdot \delta_{s^{[i]}}(x)$$

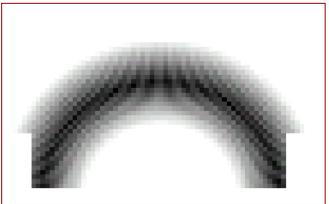
Importance Sampling with Resampling: Landmark Detection Example

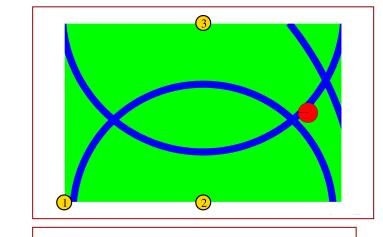
Distributions



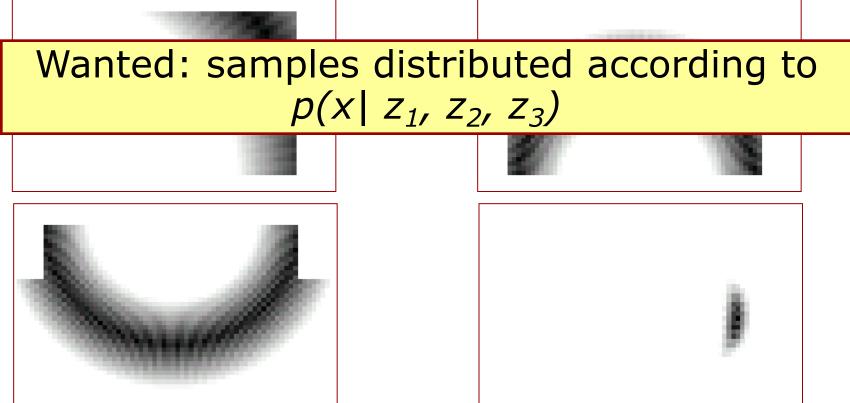






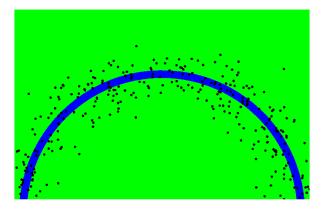


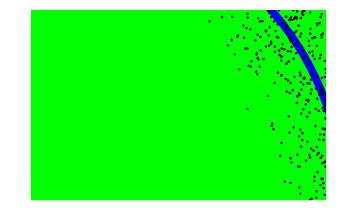
Distributions

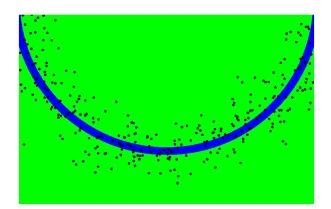


This is Easy!

We can draw samples from $p(x|z_l)$ by adding noise to the detection parameters.







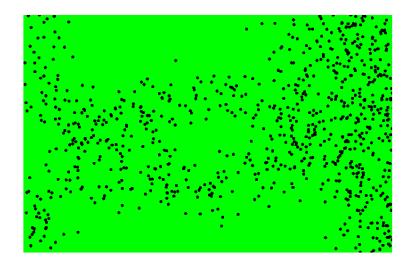
Importance Sampling

Target distribution f:
$$p(x | z_1, z_2, ..., z_n) = \frac{\prod_{k} p(z_k | x) p(x)}{p(z_1, z_2, ..., z_n)}$$

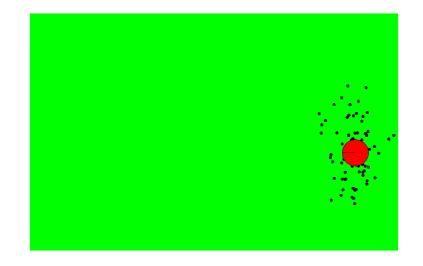
Sampling distribution g:
$$p(x | z_l) = \frac{p(z_l | x)p(x)}{p(z_l)}$$

Importance weights w:
$$\frac{f}{g} = \frac{p(x \mid z_1, z_2, ..., z_n)}{p(x \mid z_l)} = \frac{p(z_l) \prod_{k \neq l} p(z_k \mid x)}{p(z_1, z_2, ..., z_n)}$$

Importance Sampling with Resampling



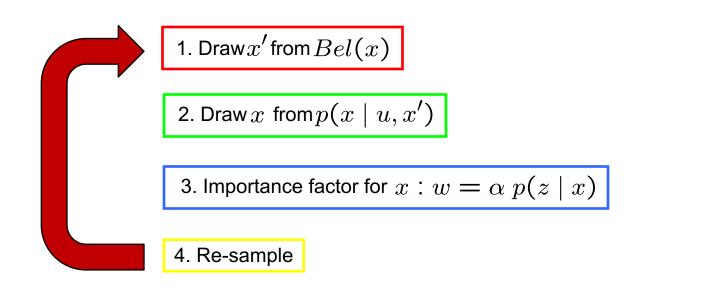
Weighted samples



After resampling

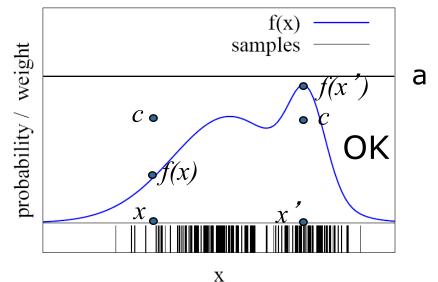
Particle Filter Localization

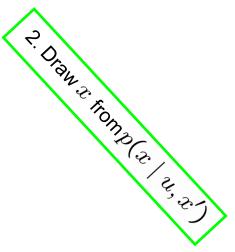
$$Bel(x \mid z, u) = \alpha p(z \mid x) \int_{x'} p(x \mid u, x') Bel(x') dx'$$



Rejection Sampling

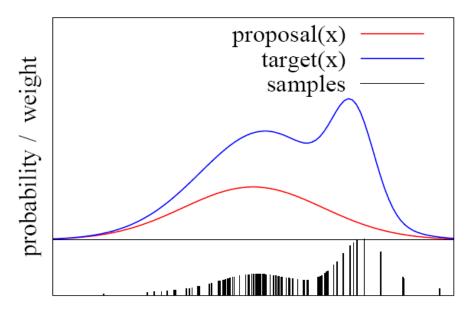
- Let us assume that f(x) < a for all x
- Sample x from a uniform distribution
- Sample c from [0,a]
- if f(x) > ckeep the sample otherwise reject the sample



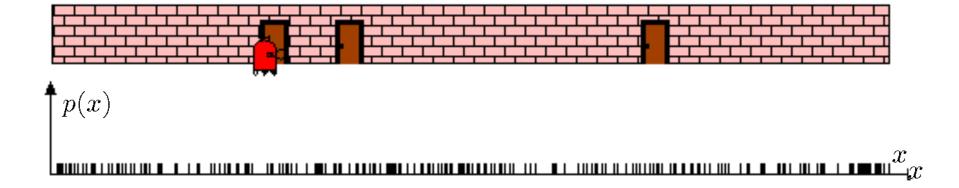


Importance Sampling Principle

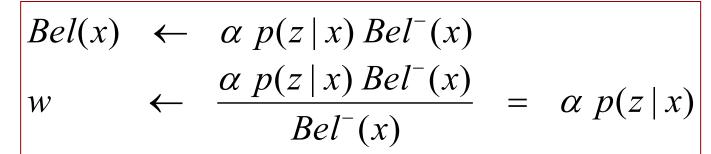
- We can even use a different distribution g to generate samples from f
- 3. IMPORTANCE FRECTOR FOR S. . W. 11 a. D. (2, 3.) Using an importance weight w, we can account for the "differences between g and f"
- w = f/g
- f is called target
- g is called proposal
- Pre-condition: $f(x) > 0 \rightarrow g(x) > 0$

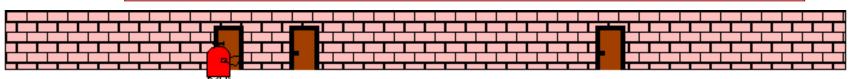


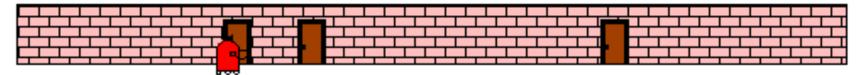
Particle Filters



Sensor Information: Importance Sampling





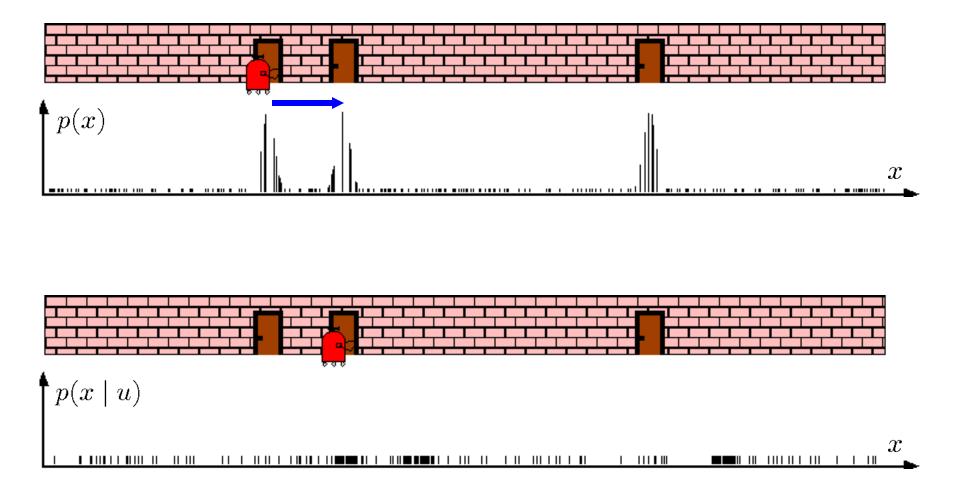


 $\mathbf{\uparrow} p(z \mid x)$

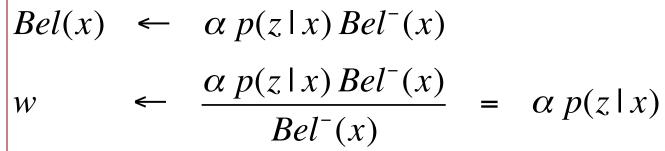
p(x)

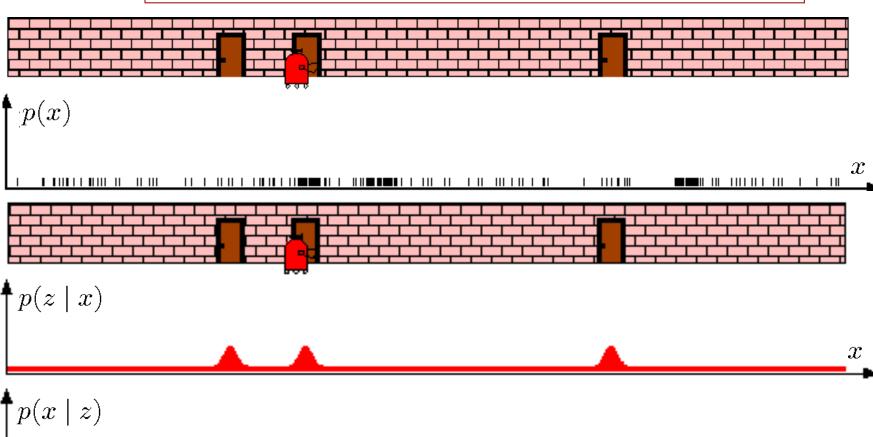
Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x | u, x') Bel(x') dx'$$



Sensor Information: Importance Sampling

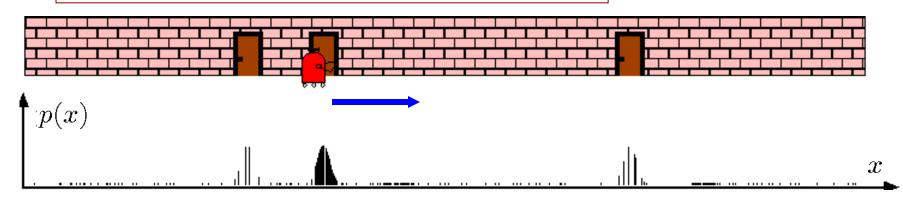


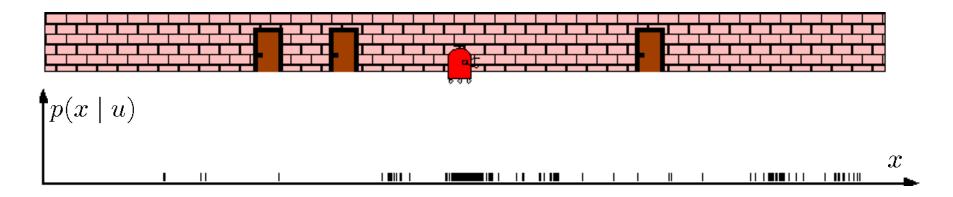


 \mathcal{X}

Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x | u, x') Bel(x') dx'$$





Particle Filter Algorithm

- Sample the next generation for particles using the proposal distribution
- Compute the importance weights : weight = target distribution / proposal distribution
- Resampling: "Replace unlikely samples by more likely ones"

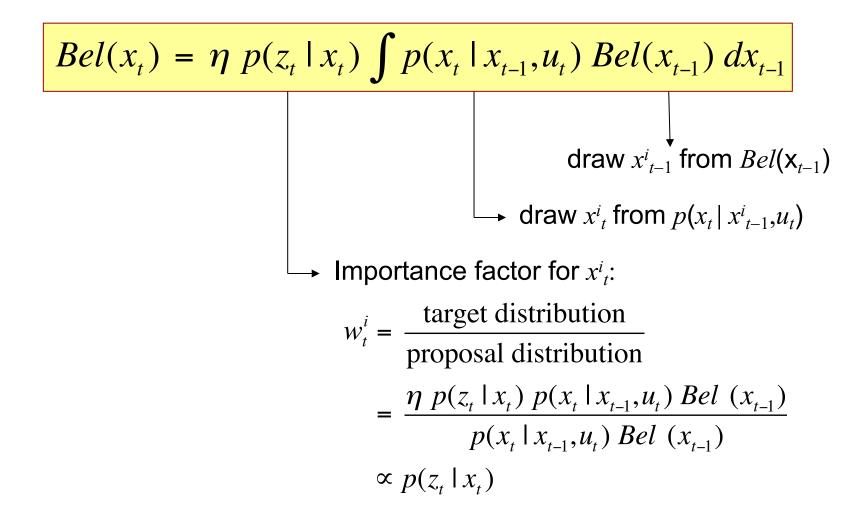
Particle Filter Algorithm

- 1. Algorithm **particle_filter**(S_{t-1} , u_t , z_t):
- $2. \quad S_t = \emptyset, \quad \eta = 0$
- *3.* For i = 1,...,n *Generate new samples*
- 4. Sample index j(i) from the discrete distribution given by w_{t-1}
- 5. Sample x_t^i from $p(x_t | x_{t-1}, u_t)$ using $x_{t-1}^{j(i)}$ and u_t
- $6. w_t^i = p(z_t \mid x_t^i)$
- $7. \qquad \eta = \eta + w_t^i$
- 8. $S_t = S_t \cup \{< x_t^i, w_t^i > \}$
- 9. For i = 1,...,n10. $w_t^i = w_t^i / \eta$

Compute importance weight Update normalization factor Add to new particle set

Normalize weights

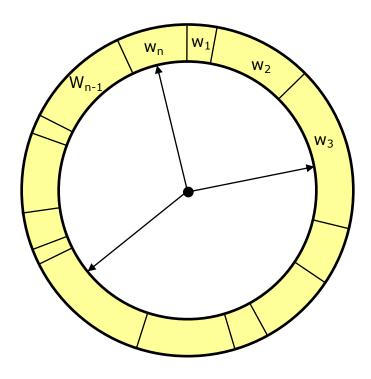
Particle Filter Algorithm



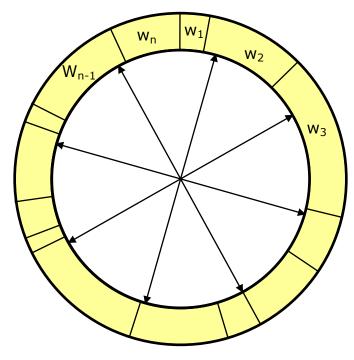
Resampling

- **Given**: Set *S* of weighted samples.
- Wanted : Random sample, where the probability of drawing x_i is given by w_i.
- Typically done n times with replacement to generate new sample set S'.

Resampling



- Roulette wheel
- Binary search, n log n



- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance

Resampling Algorithm

- 1. Algorithm **systematic_resampling**(*S*,*n*):
- 2. $S' = \emptyset, c_1 = w^1$ 3. For i = 2...n4. $c_i = c_{i-1} + w^i$ 5. $u_1 \sim U] 0, n^{-1}], i = 1$
- Generate cdf
- Initialize threshold
- 6. For j = 1...n Draw 2 7. While $(u_j > c_i)$ Skip u 8. i = i + 19. $S' = S' \cup \{< x^i, n^{-1} >\}$ Insert 10. $u_{j+1} = u_j + n^{-1}$ Increm
- Draw samples ... Skip until next threshold reached

Insert Increment threshold

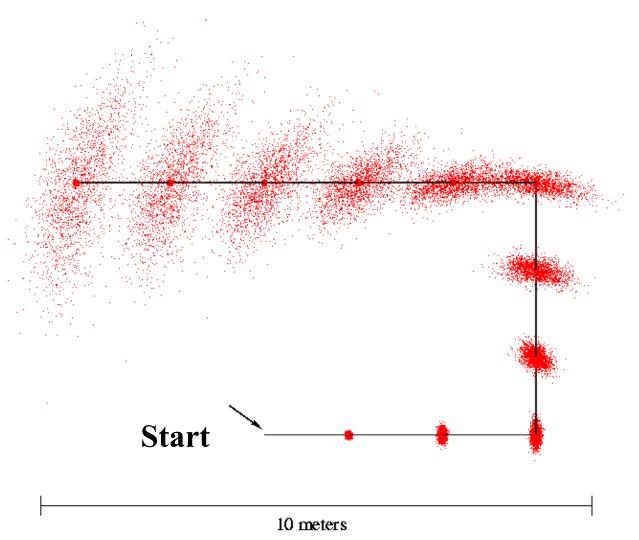
11. **Return** S'

Also called stochastic universal sampling

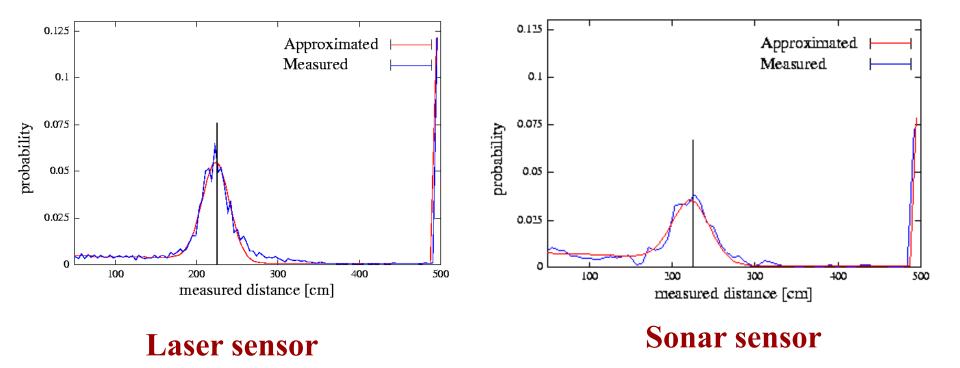
Particle Filters for Mobile Robot Localization

- Each particle is a potential pose of the robot
- Proposal distribution is the motion model of the robot (prediction step)
- The observation model is used to compute the importance weight (correction step)

Motion Model



Proximity Sensor Model (Reminder)



Mobile Robot Localization Using Particle Filters (1)

- Each particle is a potential pose of the robot
- The set of weighted particles approximates the posterior belief about the robot's pose (target distribution)

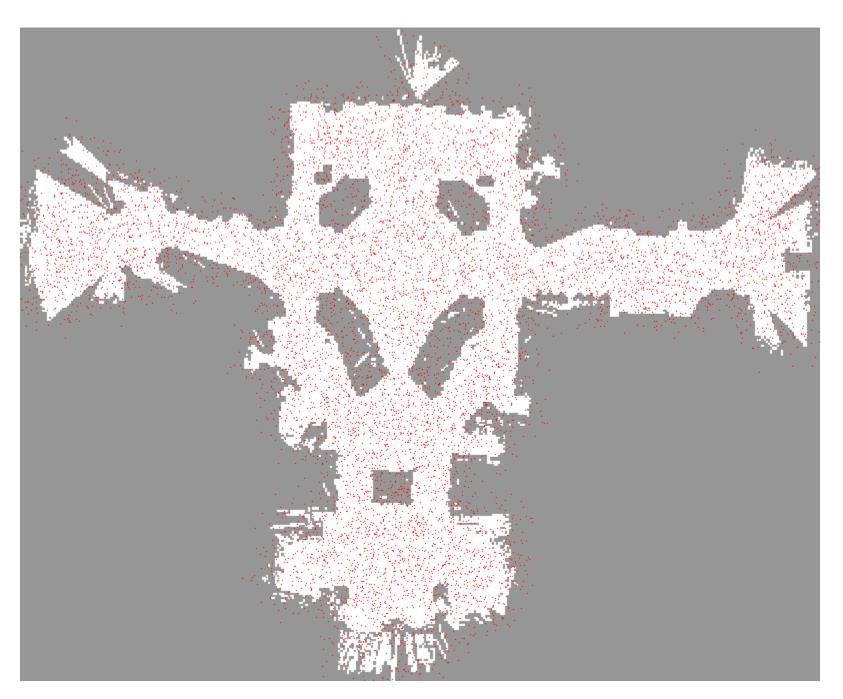
Mobile Robot Localization Using Particle Filters (2)

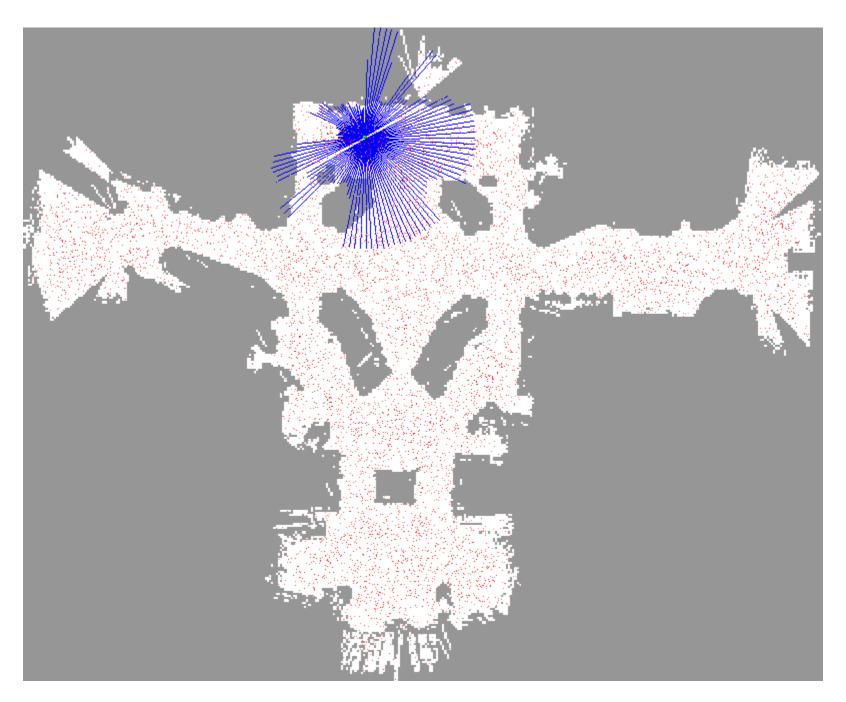
- Particles are drawn from the motion model (proposal distribution)
- Particles are weighted according to the observation model (sensor model)
- Particles are resampled according to the particle weights

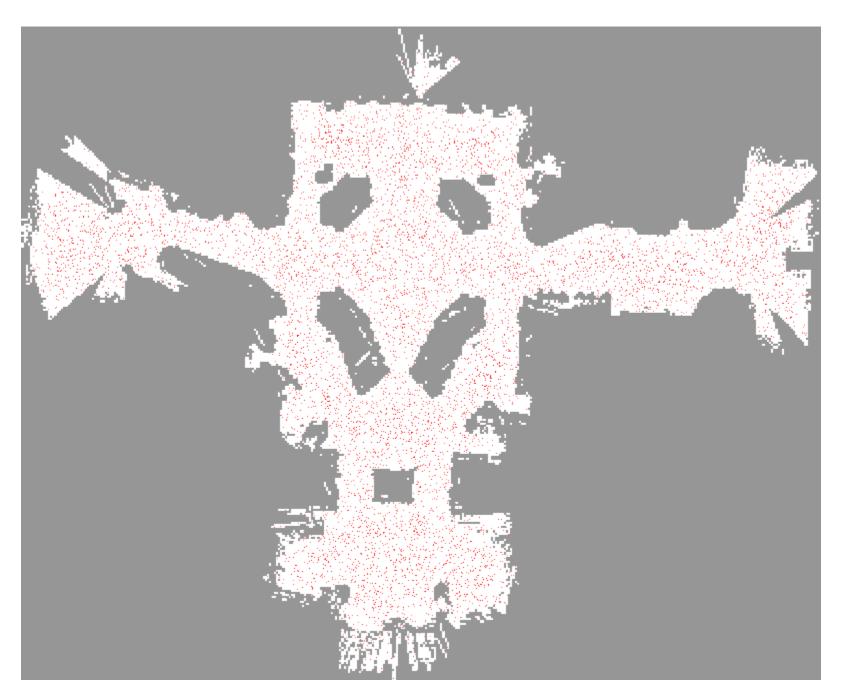
Mobile Robot Localization Using Particle Filters (3)

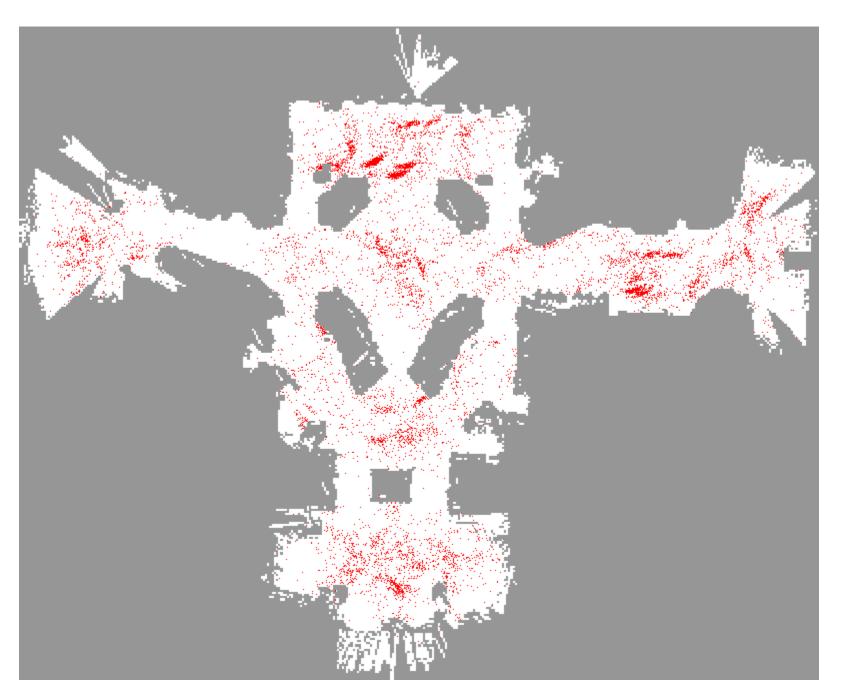
Why is resampling needed?

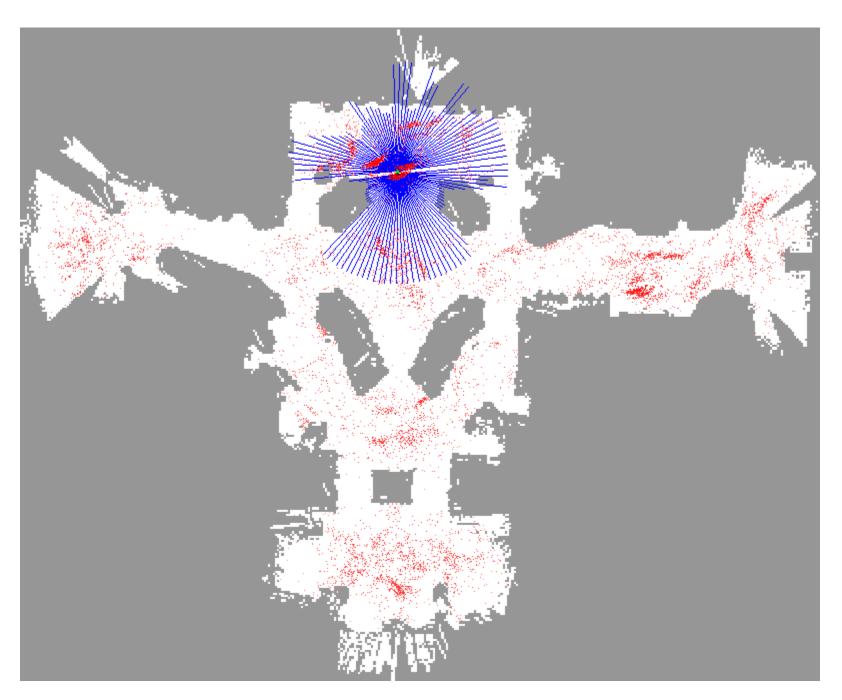
- We only have a finite number of particles
- Without resampling: The filter is likely to loose track of the "good" hypotheses
- Resampling ensures that particles stay in the meaningful area of the state space

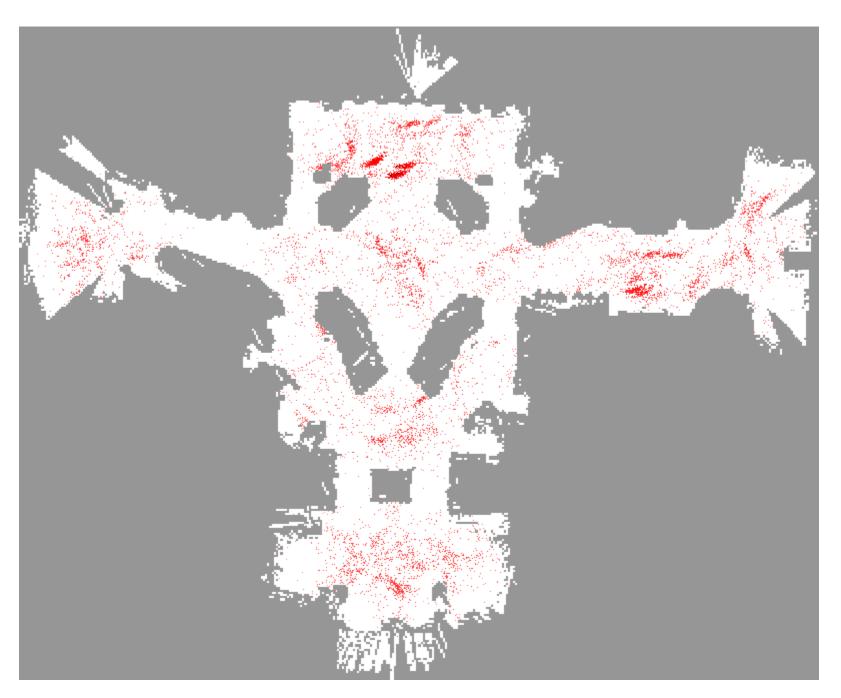


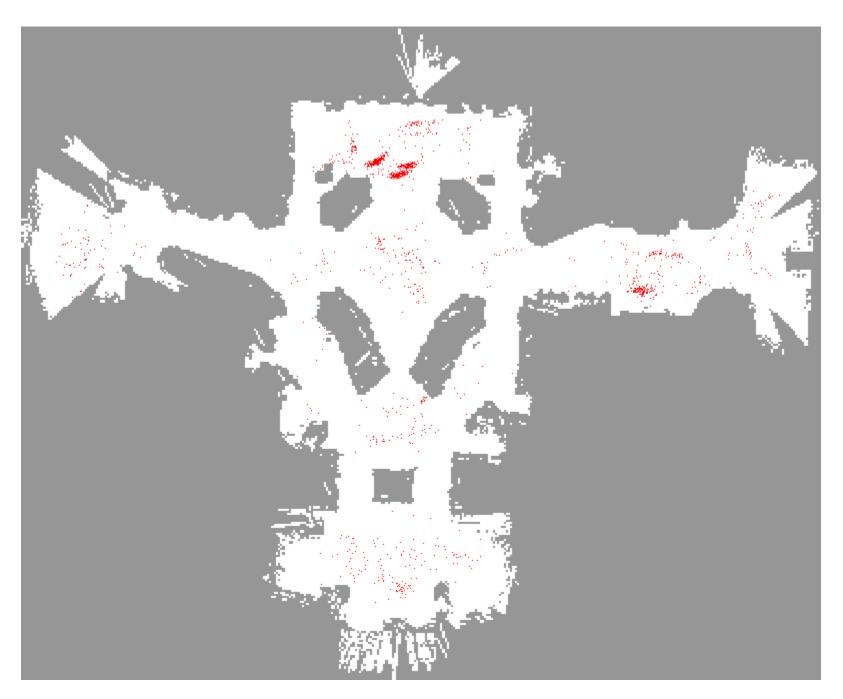


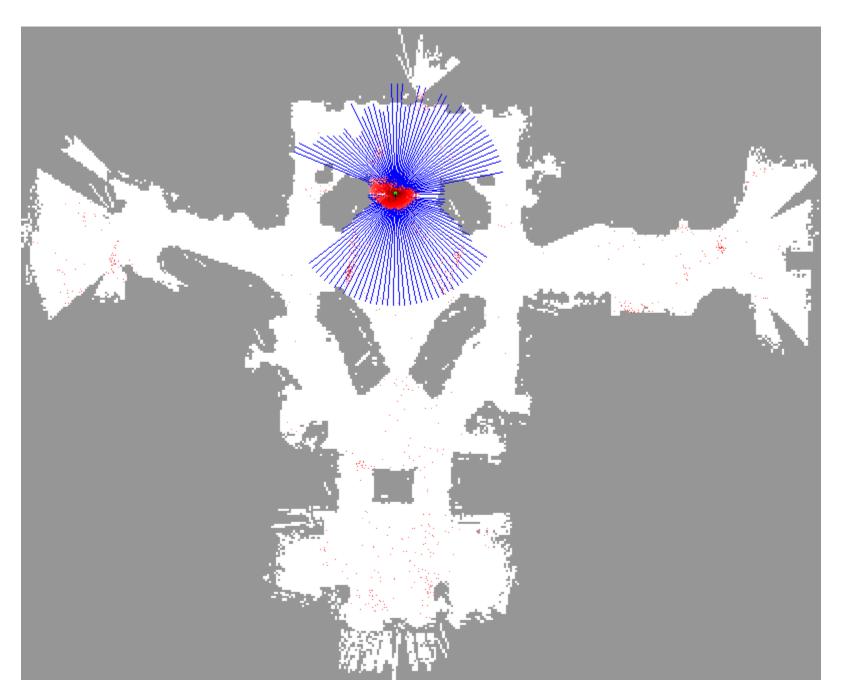


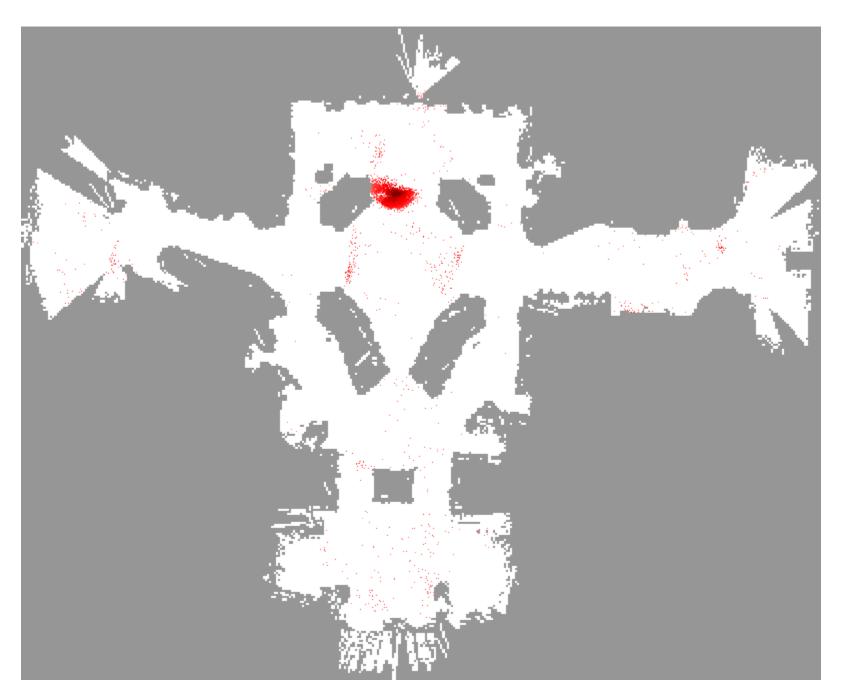


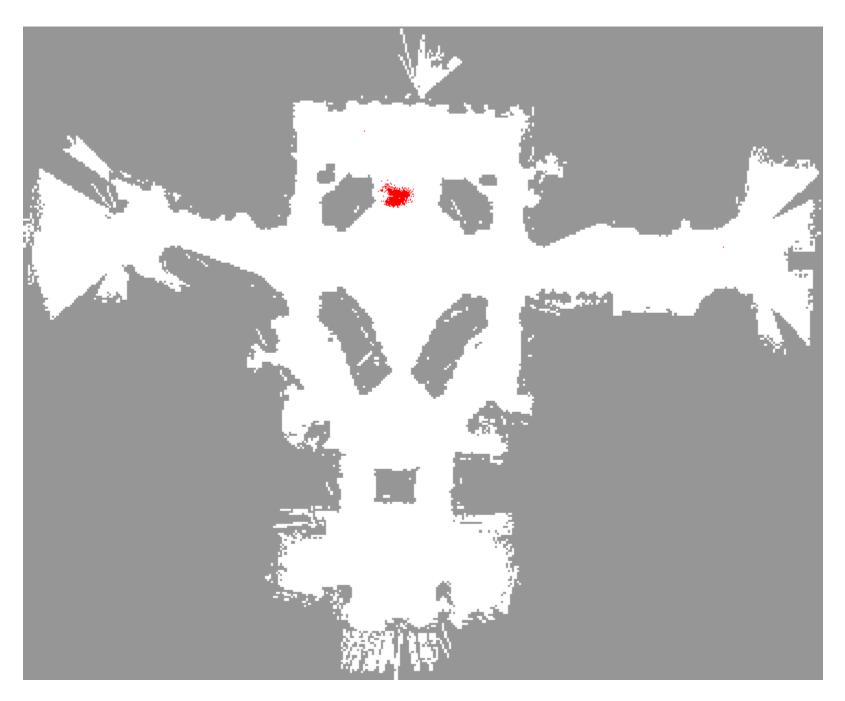


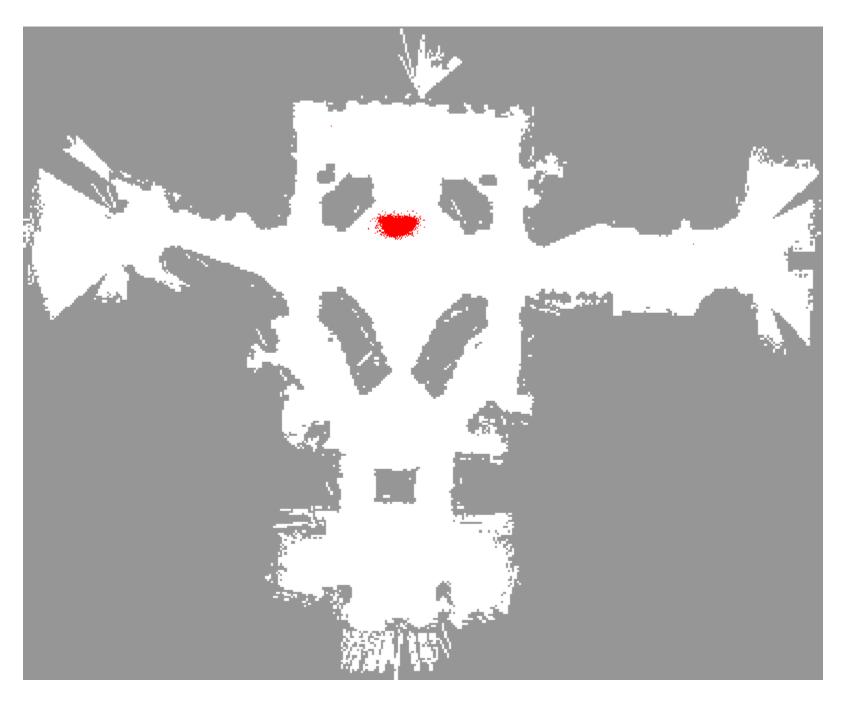


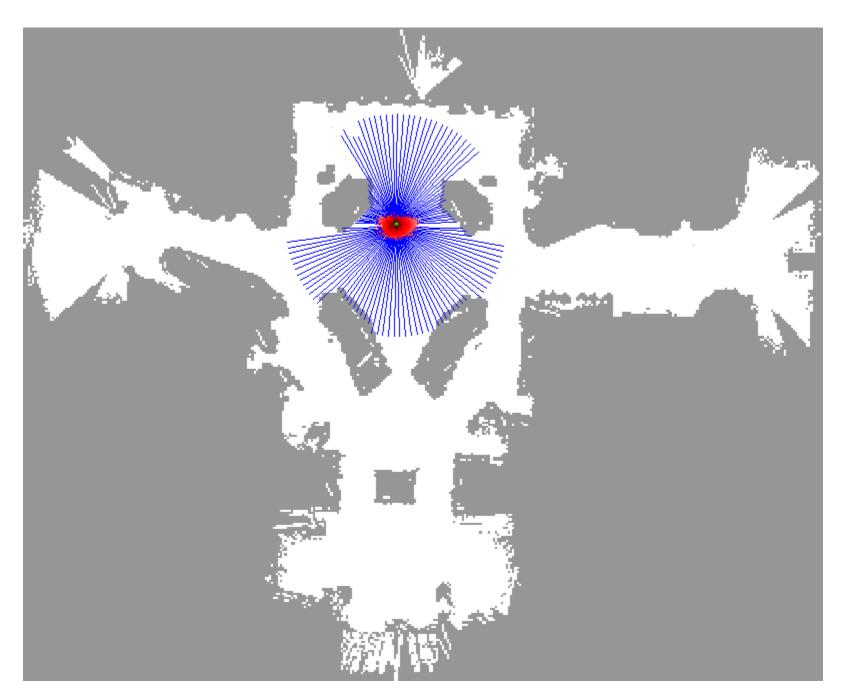


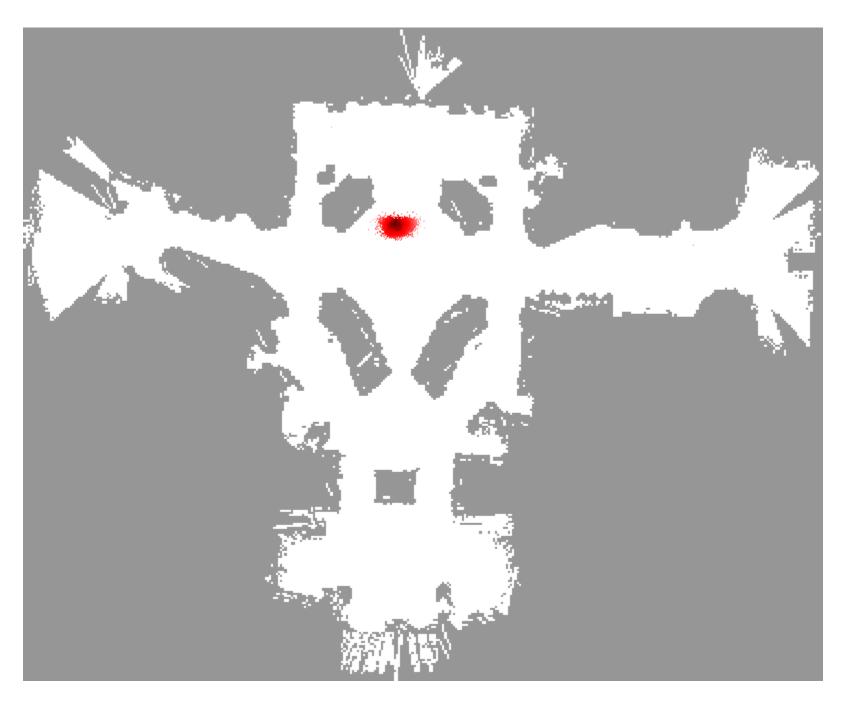


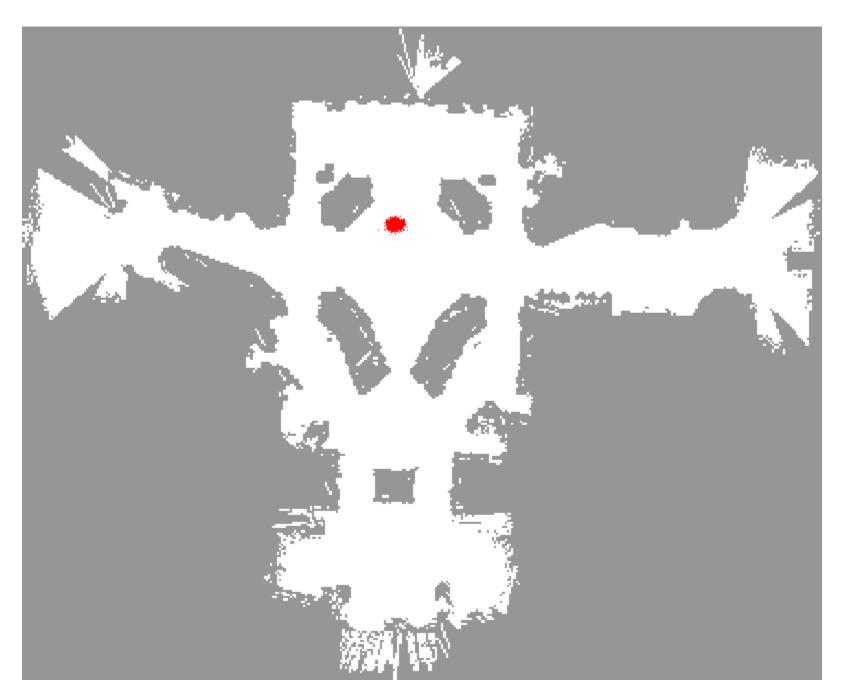


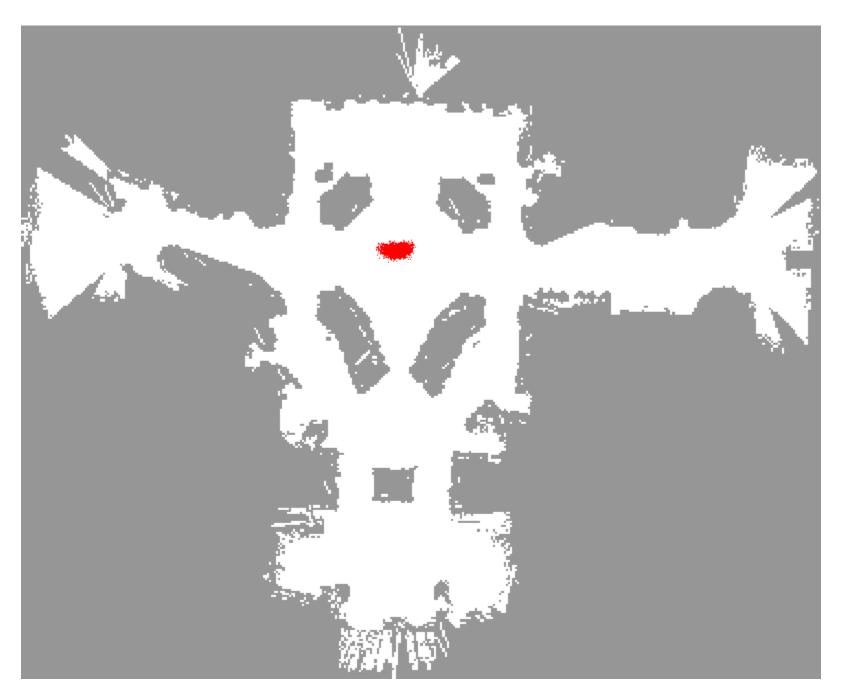


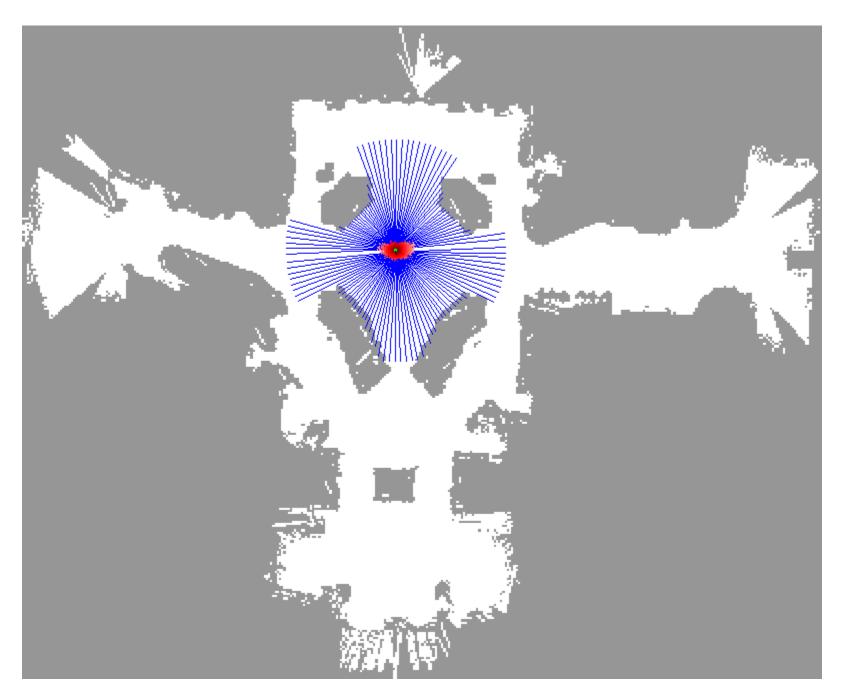




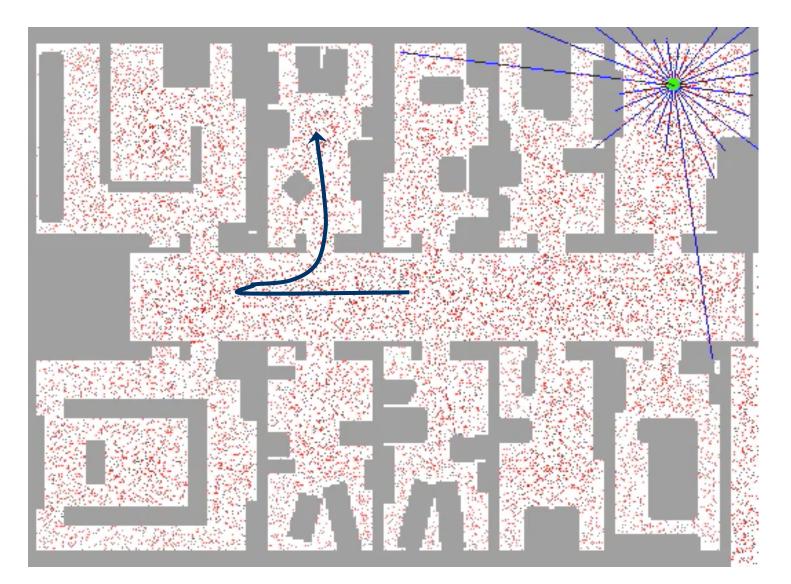




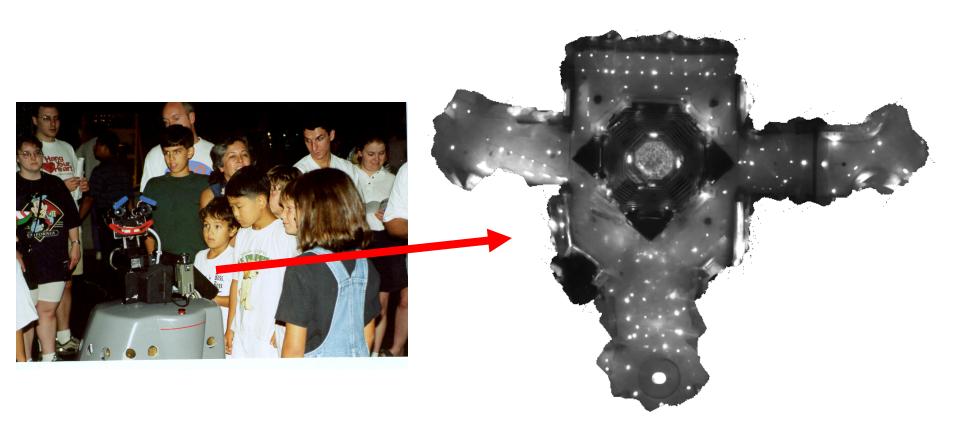




Sample-based Localization (Sonar)

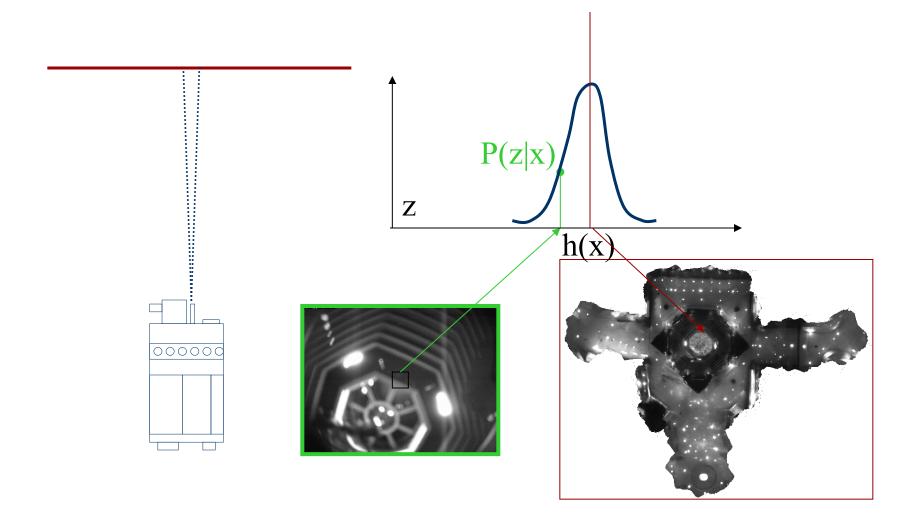


Using Ceiling Maps for Localization



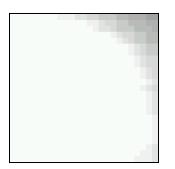
[Dellaert et al. 99]

Vision-based Localization

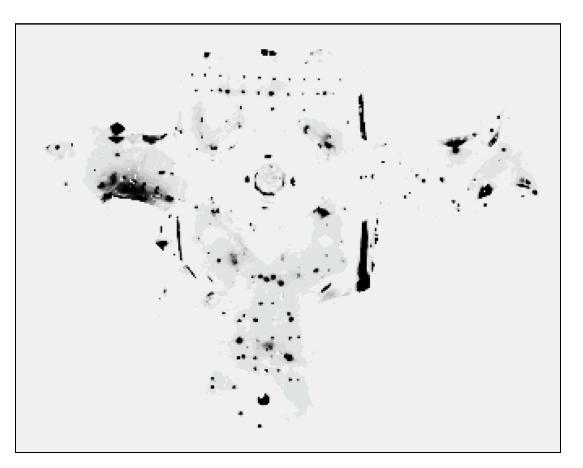


Under a Light

Measurement z:



P(z|x):



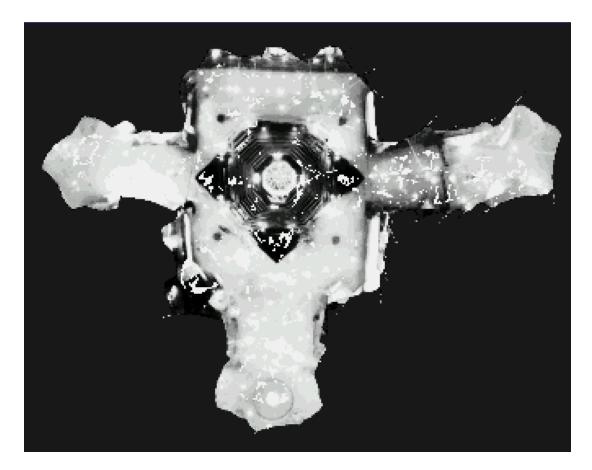
Next to a Light

Measurement z:

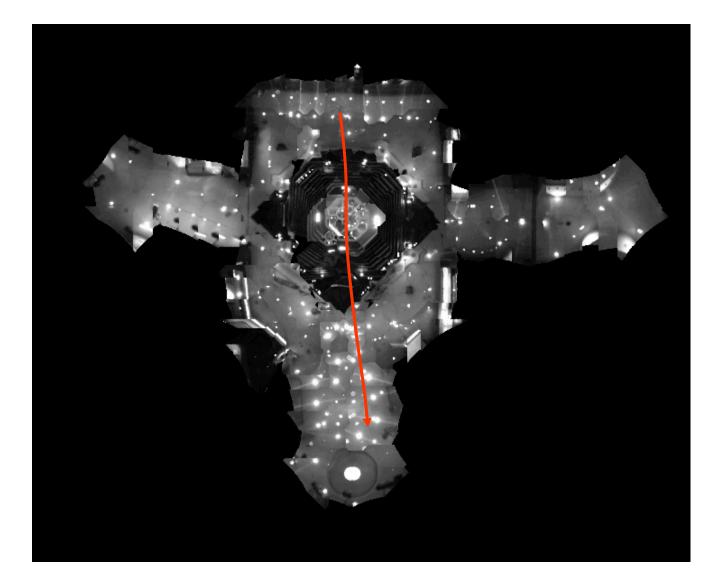
P(z|x):

Elsewhere

Measurement z:



Global Localization Using Vision



Limitations

- The approach described so far is able
 - to track the pose of a mobile robot and
 - to globally localize the robot
- How can we deal with localization errors (i.e., the kidnapped robot problem)?

Approaches

- Randomly insert a fixed number of samples with randomly chosen poses
- This corresponds to the assumption that the robot can be teleported at any point in time to an arbitrary location
- Alternatively, insert such samples inversely proportional to the average likelihood of the observations (the lower this likelihood the higher the probability that the current estimate is wrong).

Summary – Particle Filters

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples
- They can model arbitrary and thus also non-Gaussian distributions
- Proposal to draw new samples
- Weights are computed to account for the difference between the proposal and the target
- Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter

Summary – PF Localization

- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood model (likelihood of the observations).
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.
- This leads to one of the most popular approaches to mobile robot localization