CS 287 Advanced Robotics (Fall 2019)
 Lecture 13: Kalman Smoother, Maximum A Posteriori, Maximum Likelihood, Expectation Maximization

Pieter Abbeel

UC Berkeley EECS

Outline

- Kalman smoothing
- Maximum a posteriori sequence
- Maximum likelihood
- Maximum a posteriori parameters
- Expectation maximization

Outline

- Kalman smoothing
- Maximum a posteriori sequence
- Maximum likelihood
- Maximum a posteriori parameters
- Expectation maximization

Overview

- Filtering:

$$
P\left(x_{t} \mid z_{0}, z_{1}, \ldots, z_{t}\right)
$$

- Smoothing:

$$
P\left(x_{t} \mid z_{0}, z_{1}, \ldots, z_{T}\right)
$$

- Note: by now it should be clear that the " u " variables don't really change anything conceptually, and going to leave them out to have less symbols appear in our equations.

Filtering

$$
\begin{aligned}
& P\left(x_{2} \mid z_{0}, z_{1}, z_{2}\right) \propto P\left(x_{2}, z_{0}, z_{1}, z_{2}\right) \\
&= \sum_{x_{0}, x_{1}} P\left(z_{2} \mid x_{2}\right) P\left(x_{2} \mid x_{1}\right) P\left(z_{1} \mid x_{1}\right) P\left(x_{1} \mid x_{0}\right) P\left(z_{0} \mid x_{0}\right) P\left(x_{0}\right) \\
&= P\left(z_{2} \mid x_{2}\right) \sum_{x_{1}} P\left(x_{2} \mid x_{1}\right) P\left(z_{1} \mid x_{1}\right) \sum_{x_{0}} P\left(x_{1} \mid x_{0}\right) P\left(z_{0} \mid x_{0}\right) P\left(x_{0}\right) \\
& P\left(x_{0}, z_{0}\right) \\
& P\left(x_{1}, z_{0}\right)
\end{aligned}
$$

- Generally, recursively compute:

$$
\begin{aligned}
P\left(x_{t+1}, z_{0}, \ldots, z_{t}\right) & =\sum_{x_{t}} P\left(x_{t+1} \mid x_{t}\right) P\left(x_{t}, z_{0}, \ldots, z_{t}\right) \\
P\left(x_{t+1}, z_{0}, \ldots, z_{t}, z_{t+1}\right) & =p\left(z_{t+1} \mid x_{t+1}\right) P\left(x_{t+1}, z_{0}, \ldots, z_{t}\right)
\end{aligned}
$$

Smoothing

$P\left(x_{2} \mid z_{0}, z_{1}, z_{2}, z_{3}, z_{4}\right)$

$\propto P\left(x_{2}, z_{0}, z_{1}, z_{2}, z_{3}, z_{4}\right)$
$=\sum_{x_{0}, x_{1}, x_{3}, x_{4}} P\left(z_{4} \mid x_{4}\right) P\left(x_{4} \mid x_{3}\right) P\left(z_{3} \mid x_{3}\right) P\left(x_{3} \mid x_{2}\right) P\left(z_{2} \mid x_{2}\right) P\left(x_{2} \mid x_{1}\right) P\left(z_{1} \mid x_{1}\right) P\left(x_{1} \mid x_{0}\right) P\left(z_{0} \mid x_{0}\right) P\left(x_{0}\right)$
$=\sum_{x_{3}, x_{4}} P\left(z_{4} \mid x_{4}\right) P\left(x_{4} \mid x_{3}\right) P\left(z_{3} \mid x_{3}\right) P\left(x_{3} \mid x_{2}\right) P\left(z_{2} \mid x_{2}\right)\left(\sum_{x_{1}} P\left(x_{2} \mid x_{1}\right) P\left(z_{1} \mid x_{1}\right)\left(\sum_{x_{0}} P\left(x_{1} \mid x_{0}\right) P\left(z_{0} \mid x_{0}\right) P\left(x_{0}\right)\right)\right)$

$$
=\left(\sum_{x_{3}} P\left(z_{3} \mid x_{3}\right) P\left(x_{3} \mid x_{2}\right)\left(\sum_{x_{4}} P\left(z_{4} \mid x_{4}\right) P\left(x_{4} \mid x_{3}\right)\right)\right) P\left(z_{2} \mid x_{2}\right)\left(\sum_{x_{1}} P\left(x_{2} \mid x_{1}\right) P\left(z_{1} \mid x_{1}\right)\left(\sum_{x_{0}} P\left(x_{1} \mid x_{0}\right) P\left(z_{0} \mid x_{0}\right) P\left(x_{0}\right)\right)\right)
$$

$$
b\left(x_{2}\right)=P\left(z_{3}, z_{4} \mid x_{2}\right) \quad P\left(x_{2}, z_{0}, z_{1}, z_{2}\right)
$$

- Generally, recursively compute:
- Forward: (same as filter)

$$
\begin{aligned}
P\left(x_{t+1}, z_{0}, \ldots, z_{t}\right) & =\sum_{x_{t}} P\left(x_{t+1} \mid x_{t}\right) P\left(x_{t}, z_{0}, \ldots, z_{t}\right) \\
P\left(x_{t+1}, z_{0}, \ldots, z_{t}, z_{t+1}\right) & =p\left(z_{t+1} \mid x_{t+1}\right) P\left(x_{t+1}, z_{0}, \ldots, z_{t}\right)
\end{aligned}
$$

- Backward:

$$
\begin{aligned}
P\left(z_{t+1}, \ldots, z_{T} \mid x_{t+1}\right) & =P\left(z_{t+1} \mid x_{t+1}\right) P\left(z_{t+2}, \ldots, z_{T} \mid x_{t+1}\right) \\
P\left(z_{t+1}, \ldots, z_{T} \mid x_{t}\right) & =\sum_{x_{t+1}} P\left(x_{t+1} \mid x_{t}\right) P\left(z_{t+1}, \ldots, z_{T} \mid x_{t+1}\right)
\end{aligned}
$$

- Combine: $P\left(x_{t}, z_{0}, \ldots, z_{T}\right)=P\left(x_{t}, z_{0}, \ldots, z_{t}\right) P\left(z_{t+1}, \ldots, z_{T} \mid x_{t}\right)$

Complete Smoother Algorithm

- Forward pass (= filter):

1. Init: $a_{0}\left(x_{0}\right)=P\left(z_{0} \mid x_{0}\right) P\left(x_{0}\right)$
2. For $t=0, \ldots, T-1$

- $a_{t+1}\left(x_{t+1}\right)=P\left(z_{t+1} \mid x_{t+1}\right) \sum_{x_{t}} P\left(x_{t+1} \mid x_{t}\right) a_{t}\left(x_{t}\right)$
- Backward pass:

1. Init: $b_{T}\left(x_{T}\right)=1$
2. For $t=T-1, \ldots, 0$

- $b_{t}\left(x_{t}\right)=\sum_{x_{t+1}} P\left(x_{t+1} \mid x_{t}\right) P\left(z_{t+1} \mid x_{t+1}\right) b_{t+1}\left(x_{t+1}\right)$
- Combine:

Note 1: for all times tin one forward+backward pass Note 2: find $P\left(x_{t} \mid z_{0}, \ldots, z_{T}\right)$ by renormalizing

$$
\text { for } \quad t=0, \ldots, T
$$

$$
P\left(x_{t}, z_{0}, \ldots, z_{T}\right)=P\left(x_{t}, z_{0}, \ldots z_{t}\right) P\left(z_{t+1}, \ldots, z_{T} \mid x_{t}\right)=a_{t}\left(x_{t}\right) b_{t}\left(x_{t}\right)
$$

Pairwise Posterior

- Find $P\left(x_{t}, x_{t+1}, z_{0}, \ldots, z_{T}\right)$
- Recall: $a_{t}\left(x_{t}\right)=P\left(x_{t}, z_{0}, \ldots, z_{t}\right)$

$$
b_{t}\left(x_{t}\right)=P\left(z_{t+1}, \ldots, z_{T} \mid x_{t}\right)
$$

- So we can readily compute

```
P(xt, xt+1, z0},\ldots,\mp@subsup{z}{T}{}
=P(xt, z0,\ldots,\mp@subsup{z}{t}{})P(\mp@subsup{x}{t+1}{}|\mp@subsup{x}{t}{},\mp@subsup{z}{0}{},\ldots,\mp@subsup{z}{t}{})P(\mp@subsup{z}{t+1}{}|\mp@subsup{x}{t+1}{},\mp@subsup{x}{t}{},\mp@subsup{z}{0}{},\ldots,\mp@subsup{z}{t}{})P(\mp@subsup{z}{t+2}{},\ldots,\mp@subsup{z}{T}{}|\mp@subsup{x}{t+1}{},\mp@subsup{x}{t}{},\mp@subsup{z}{0}{},\ldots,\mp@subsup{z}{t+1}{})
=P(\mp@subsup{x}{t}{},\mp@subsup{z}{0}{},\ldots,\mp@subsup{z}{t}{})P(\mp@subsup{x}{t+1}{}|\mp@subsup{x}{t}{})P(\mp@subsup{z}{t+1}{}|\mp@subsup{x}{t+1}{})P(\mp@subsup{z}{t+2}{},\ldots,\mp@subsup{z}{T}{}|\mp@subsup{x}{t+1}{})
= at( (xt)P(\mp@subsup{x}{t+1}{}|\mp@subsup{x}{t}{})P(\mp@subsup{z}{t+1}{}|\mp@subsup{x}{t+1}{})\mp@subsup{b}{t+1}{}(\mp@subsup{x}{t+1}{})

\section*{Exercise}
- Find \(P\left(x_{t}, x_{t+k}, z_{0}, \ldots, z_{T}\right)\)

\section*{Kalman Smoother}
- = the smoother algorithm just covered for particular case when \(P\left(x_{t+1} \mid x_{t}\right)\) and \(P\left(z_{t} \mid x_{t}\right)\) are linear Gaussians
- We already know how to compute the forward pass (=Kalman filtering)
- Backward pass: \(\quad b_{t}\left(x_{t}\right)=\int_{x_{t+1}} P\left(x_{t+1} \mid x_{t}\right) P\left(z_{t+1} \mid x_{t+1}\right) b_{t+1}\left(x_{t+1}\right) d x_{t+1}\)
- Combination:
\[
P\left(x_{t}, z_{0}, \ldots, z_{T}\right)=a_{t}\left(x_{t}\right) b_{t}\left(x_{t}\right)
\]

\section*{Kalman Smoother Backward Pass}
- Exercise: work out integral for \(b_{t}\)

\section*{Matlab Code Data Generation Example}
- \(\mathrm{A}=\left[\begin{array}{llll}0.99 & 0.0074 ;-0.0136 & 0.99\end{array}\right] ; \mathrm{C}=\left[\begin{array}{ll}11 ;-1+1\end{array}\right] ;\)
- \(x(:, 1)=[-3 ; 2]\);
- \(\quad\) Sigma_w = diag([.3 .7]); Sigma_v = [2 .05; . 05 1.5];
- \(\quad w=r a n d n(2, T) ; w=s q r t m\left(S i g m a \_w\right)^{*} w ; ~ v=r a n d n(2, T) ; v=s q r t m\left(S i g m a \_v\right)^{*} v ;\)
- for \(t=1: T-1\)
\[
\begin{aligned}
& x(:, t+1)=A^{*} x(:, t)+w(:, t) ; \\
& z(:, t)=C^{*} x(:, t)+v(:, t) ;
\end{aligned}
\]
end
- \% now recover the state from the measurements
- \(\quad\) _ \(0=\operatorname{diag}([100100]) ; x 0=[0 ; 0] ;\)
- \% run Kalman filter and smoother here
- \(\%+\) plot

\section*{Kalman Filter/Smoother Example}


\section*{Outline}
- Kalman smoothing
- Maximum a posteriori sequence
- Maximum likelihood
- Maximum a posteriori parameters
- Expectation maximization

\section*{Overview}
- Filtering:
\[
P\left(x_{t} \mid z_{0: t}\right)
\]

- Smoothing:
\(P\left(x_{t} \mid z_{0: T}\right)\)

- MAP:
\(\max P\left(x_{0: T} \mid z_{0: T}\right)\)
\(x_{0: T}\)


\section*{MAP Sequence}
\[
\begin{aligned}
& \max _{x_{0}, x_{1}, x_{2}, x_{3}} P\left(x_{0}, x_{1}, x_{2}, x_{3} \mid z_{0}, z_{1}, z_{2}, z_{3}\right) \\
& \propto \max _{x_{0}, x_{1}, x_{2}, x_{3}} P\left(x_{0}, x_{1}, x_{2}, x_{3}, z_{0}, z_{1}, z_{2}, z_{3}\right) \\
& =\max _{x_{0}, x_{1}, x_{2}, x_{3}} P\left(z_{3} \mid x_{3}\right) P\left(x_{3} \mid x_{2}\right) P\left(z_{2} \mid x_{2}\right) P\left(x_{2} \mid x_{1}\right) P\left(z_{1} \mid x_{1}\right) P\left(x_{1} \mid x_{0}\right) P\left(z_{0} \mid x_{0}\right) P\left(x_{0}\right) \\
& =\max _{x_{3}}\left(P\left(z_{3} \mid x_{3}\right) \max _{x_{2}}\left(P\left(x_{3} \mid x_{2}\right) P\left(z_{2} \mid x_{2}\right) \max _{x_{1}}\left(P\left(x_{2} \mid x_{1}\right) P\left(z_{1} \mid x_{1}\right) \max _{x_{0}}\left(P\left(x_{1} \mid x_{0}\right) P\left(z_{0} \mid x_{0}\right) P\left(x_{0}\right)\right)\right)\right)\right)
\end{aligned}
\]
\[
m_{1}\left(x_{1}\right)
\]
\[
m_{2}\left(x_{2}\right)
\]
\[
m_{3}\left(x_{3}\right)
\]
- Generally: \(\quad m_{t}\left(x_{t}\right)=\max _{x_{0: t-1}} P\left(x_{0: t}, z_{0: t}\right)\)
\[
\begin{aligned}
& =\max _{x_{0: t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(z_{t} \mid x_{t}\right) P\left(x_{0: t-1}, z_{0: t-1}\right) \\
& =P\left(z_{t} \mid x_{t}\right) \max _{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) \max _{x_{0: t-2}} P\left(x_{0: t-1}, z_{0: t-1}\right) \\
& =P\left(z_{t} \mid x_{t}\right) \max _{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) m_{t-1}\left(x_{t-1}\right)
\end{aligned}
\]

\section*{MAP --- Complete Algorithm}
1. Init: \(m_{0}\left(x_{0}\right)=P\left(z_{0} \mid x_{0}\right) P\left(x_{0}\right)\)
2. For all \(t=1,2, \ldots, T-1\)
- For all \(x_{t}: \quad m_{t}\left(x_{t}\right)=P\left(z_{t} \mid x_{t}\right) \max _{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) m_{t-1}\left(x_{t-1}\right)\)
- For all \(x_{t}\) : Store argmax in pointer \({ }_{t \rightarrow t-1}\left(x_{t}\right)\)
3. maximum \(=\max _{x_{T}} m_{T}\left(x_{T}\right)\)
4. \(x_{T}^{*}=\arg \max _{x_{T}} m_{T}\left(x_{T}\right)\)
5. For all \(t=T, T-1, \ldots, 1\)
- \(x_{t-1}^{*}=\) pointer \(_{t \rightarrow t-1}\left(x_{t}^{*}\right)\)

\section*{Kalman Filter (aka Linear Gaussian) Setting}
- Summations \(\rightarrow\) integrals
- But: can't enumerate over all instantiations
- However, we can still find solution efficiently:
- the joint conditional \(P\left(X_{0: T} \mid Z_{0: T}\right)\) is a multivariate Gaussian
- for a multivariate Gaussian the most likely instantiation equals the mean
\(\rightarrow\) we just need to find the mean of \(P\left(x_{0: T} \mid Z_{0: T}\right)\)
- the marginal conditionals \(P\left(X_{t} \mid Z_{0: T}\right)\) are Gaussians with mean equal to the mean of \(X_{t}\) under the joint conditional, so it suffices to find all marginal conditionals
- We already know how to do so: marginal conditionals can be computed by running the Kalman smoother.
- Alternatively: solve convex optimization problem

\section*{Outline}
- Kalman smoothing
- Maximum a posteriori sequence
- Maximum likelihood
- Maximum a posteriori parameters
- Expectation maximization

\section*{Thumbtack}
- Let \(\theta=P(\) up \(), 1-\theta=P(\) down \()\)
- How to determine \(\theta\) ?

- Empirical estimate: 8 up, 2 down \(\rightarrow \quad \theta=\frac{8}{2+8}=0.8\)

\section*{\(2 \cdot 6\) \\ A Thumbtack Experiment}

Make a guess: If you drop a thumbtack, is it more likely
to land with the point up or with the point down?
\(\qquad\) Soin doNV
The experiment described below will enable you to make an estimate of the chance that a thumbtack will land point down.
1. Work with a partner. You should have 10 thumbtacks and 1 small cup. Do the experiment at your desk or a table so you are working over a smooth, hard surface.

Place the 10 thumbtacks inside the cup. Shake the cup a few times, and then carefully drop the tacks onto the desk surface. Record the number of thumbtacks that land point up and the number that land point down.

Toss the 10 thumbtacks 9 more times and record the results each time.
\begin{tabular}{|c|c|c|}
\hline Toss & Number Landing Point Up & Number Landing Point Down \\
\hline 1 & 0 & \\
\hline 2 & 0 & \\
\hline 3 & 6 & \\
\hline 4 & & \\
\hline 5 & & \\
\hline 6 & & \\
\hline 7 & & \\
\hline 8 & & \\
\hline 9 & & \\
\hline 10 & & \\
\hline & Total Up \(=\) & \\
\hline
\end{tabular}
2. In making your 10 tosses, you dropped a total of 100 thumbtacks.

What fraction of the thumbtacks landed point down? \(\qquad\)
3. Write this fraction on a small stick-on note. Also write it as a decimal and as a percent.
4. For the whole class, the chance that a tack will land point down is \(\square\)

\section*{Maximum Likelihood}
- \(\theta=P(u p), 1-\theta=P(\) down \()\)
- Observe:

- Likelihood of the observation sequence depends on \(\theta\) :
\[
\begin{aligned}
l(\theta) & =\theta(1-\theta) \theta(1-\theta) \theta \theta \theta \theta \theta \theta \theta \theta \\
& =\theta^{8}(1-\theta)^{2}
\end{aligned}
\]
- Maximum likelihood finds
\(\arg \max _{\theta} l(\theta)=\arg \max _{\theta} \theta^{8}(1-\theta)^{2}\)

\(\frac{\partial}{\partial \theta} l(\theta)=8 \theta^{7}(1-\theta)^{2}-2 \theta^{8}(1-\theta)=\theta^{7}(1-\theta)(8(1-\theta)-2 \theta)=\theta^{7}(1-\theta)(8-10 \theta)\)
\(\rightarrow\) extrema at \(\theta=0, \theta=1, \theta=0.8\)
\(\rightarrow\) Inspection of each extremum yields \(\theta_{\mathrm{ML}}=0.8\)

\section*{Maximum Likelihood}
- More generally, consider binary-valued random variable with \(\theta=P(1), 1-\theta=P(0)\), assume we observe \(\mathrm{n}_{\text {I }}\) ones, and \(\mathrm{n}_{0}\) zeros
- Likelihood: \(l(\theta)=\theta^{n_{1}}(1-\theta)^{n_{0}}\)
- Derivative: \(\frac{\partial}{\partial \theta} l(\theta)=n_{1} \theta^{n_{1}-1}(1-\theta)^{n_{0}}-n_{0} \theta^{n_{1}}(1-\theta)^{n_{0}-1}\)
\[
=\theta^{n_{1}-1}(1-\theta)^{n_{0}-1}\left(n_{1}(1-\theta)-n_{0} \theta\right)
\]
\[
=\theta^{n_{1}-1}(1-\theta)^{n_{0}-1}\left(n_{1}-\left(n_{1}+n_{0}\right) \theta\right)
\]
- Hence we have for the extrema:
\[
\theta=0, \quad \theta=1, \quad \theta=\frac{n_{1}}{n_{0}+n_{1}}
\]
- \(\mathrm{n} 1 /(\mathrm{n} 0+\mathrm{n} 1)\) is the maximum
- = empirical counts.

\section*{Log-likelihood}
- The function
\[
\log : \mathbb{R}^{+} \rightarrow \mathbb{R}: x \rightarrow \log (x)
\]
is a monotonically increasing function of \(x\)

- Hence for any (positive-valued) function f:
\[
\arg \max _{\theta} f(\theta)=\arg \max _{\theta} \log f(\theta)
\]
- Often more convenient to optimize log-likelihood rather than likelihood
- Example: \(\quad \log l(\theta)=\log \theta^{n_{1}}(1-\theta)^{n_{0}}\)
\[
=n_{1} \log \theta+n_{0} \log (1-\theta)
\]
\[
\begin{aligned}
\frac{\partial}{\partial \theta} \log l(\theta) & =n_{1} \frac{1}{\theta}+n_{0} \frac{-1}{1-\theta}=\frac{n_{1}-\left(n_{1}+n_{0}\right) \theta}{\theta(1-\theta)} \\
& \rightarrow \theta=\frac{n_{1}}{n_{1}+n_{0}}
\end{aligned}
\]

\section*{Log-likelihood \(\leftarrow \rightarrow\) Likelihood}
- Reconsider thumbtacks: 8 up, 2 down
- Likelihood

- Log-likelihood


Concave
- Definition: A function \(f\) is concave if and only
\[
\forall x_{1}, x_{2}, \quad \forall \lambda \in(0,1), f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
\]
- Concave functions are generally easier to maximize then non-concave functions

\section*{Concavity and Convexity}
f is concave if and only
\(\forall x_{1}, x_{2}, \quad \forall \lambda \in(0,1)\),
\(f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)\)

"Easy" to maximize
f is convex if and only
\[
\begin{aligned}
& \forall x_{1}, x_{2}, \quad \forall \lambda \in(0,1) \\
& f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
\end{aligned}
\]

"Easy" to minimize

\section*{ML for Multinomial}
\[
p(x=k ; \theta)=\theta_{k}
\]
- Consider having received samples \(\left\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\right\}\)
\[
\begin{aligned}
& \log l(\theta)=\log \prod_{i=1}^{m} \theta_{1}^{1\left\{x^{(i)}=1\right\}} \theta_{2}^{1\left\{x^{(i)}=2\right\}} \cdots \theta_{K-1}^{1\left\{x^{(i)}=K-1\right\}}\left(1-\theta_{1}-\theta_{2}-\ldots-\theta_{K-1}\right)^{1\left\{x^{(i)}=K\right\}} \\
&=\sum_{i=1}^{m} 1\left\{x^{(i)}=1\right\} \log \theta_{1}+1\left\{x^{(i)}=2\right\} \log \theta_{2}+\cdots+1\left\{x^{(i)}=K-1\right\} \log \theta_{K-1}+1\left\{x^{(i)}=K\right\} \log \left(1-\theta_{1}-\theta_{2}-\cdots-\theta_{K-1}\right) \\
&=\sum_{k=1}^{K-1} n_{k} \log \theta_{k}+n_{K} \log \left(1-\theta_{1}-\theta_{2}-\cdots-\theta_{K-1}\right) \\
& \frac{\partial}{\partial \theta_{k}} \log l(\theta)=\frac{n_{k}}{\theta_{k}}-n_{K} \frac{1}{1-\theta_{1}-\theta_{2}-\cdots-\theta_{K-1}} \\
& \rightarrow \theta_{k}^{\mathrm{ML}}=\frac{n_{k}}{\sum_{j=1}^{K} n_{j}}
\end{aligned}
\]

\section*{ML for Fully Observed HMM}

■ Given samples \(\left\{x_{0}, z_{0}, x_{1}, z_{1}, x_{2}, z_{2}, \ldots, x_{T}, z_{T}\right\}, x_{t} \in\{1,2, \ldots, I\}, z_{t} \in\{1,2, \ldots, K\}\)
- Dynamics model: \(P\left(x_{t+1}=i \mid x_{t}=j\right)=\theta_{i \mid j}\)
- Observation model: \(\quad P\left(z_{t}=k \mid z_{t}=l\right)=\gamma_{k \mid l}\)
\[
\begin{array}{rlr}
\log l(\theta, \gamma) & =\log P\left(x_{0}\right) \prod_{t=1}^{T} P\left(x_{t} \mid x_{t-1} ; \theta\right) P\left(z_{t} \mid x_{t} ; \gamma\right) & \\
& =\log P\left(x_{0}\right) \sum_{t=1}^{T} \log \theta_{x_{t} \mid x_{t-1}}+\sum_{t=1}^{T} \log \gamma_{z_{t} \mid x_{t}} & m_{(i, j)}: \text { number of occurences of } x_{t}=i, x_{t+1}=j . \\
& =\log P\left(x_{0}\right) \sum_{i=1}^{I} \sum_{j=1}^{I} \log \theta_{i \mid j}^{n_{(i, j)}}+\sum_{k=1}^{K} \sum_{l=1}^{K} \log \gamma_{k \mid l}^{m_{(k, l)}}
\end{array}
\]
\(\rightarrow\) Independent ML problems for each \(\theta_{\cdot \mid j}\) and each \(\gamma_{\cdot \mid l}\)
\[
\theta_{i \mid j}=\frac{n_{(i, j)}}{\sum_{i^{\prime}=1}^{I} n_{\left(i^{\prime}, j\right)}} \quad \gamma_{k \mid l}=\frac{m_{(k, l)}}{\sum_{k^{\prime}=1}^{K} m_{\left(k^{\prime}, l\right)}}
\]

\section*{ML for Exponential Distribution}
\[
p(x ; \lambda)= \begin{cases}\lambda e^{-\lambda x}, & x \geq 0 \\ 0, & x<0\end{cases}
\]

- Consider having received samples
- 3.1, 8.2, 1.7
\[
\begin{aligned}
\lambda_{\mathrm{ML}}= & \underset{\lambda}{\arg \max _{\lambda} \log l(\lambda)} \\
= & \underset{\lambda}{\arg \max _{\lambda}\left(\lambda e^{-\lambda 3.1} \lambda e^{-\lambda 8.2} \lambda e^{-\lambda 1.7}\right)} \\
= & \arg \max _{\lambda} 3 \log \lambda+(-3.1-8.2-1.7) \lambda \\
\frac{\partial}{\partial \lambda} \log l(\lambda)= & 3 \frac{1}{\lambda}-13 \\
& \rightarrow \lambda_{\mathrm{ML}}=\frac{3}{1.3}
\end{aligned}
\]


\section*{ML for Exponential Distribution}
\[
p(x ; \lambda)= \begin{cases}\lambda e^{-\lambda x}, & x \geq 0 \\ 0, & x<0\end{cases}
\]

- Consider having received samples \(\left\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\right\}\)
\[
\begin{array}{rlrl}
\log l(\lambda) & =\log \prod_{i=1}^{m} p\left(x^{(i)} ; \lambda\right) & \frac{\partial}{\partial \lambda} \log l(\lambda)=m \frac{1}{\lambda}-\sum_{i=1}^{m} x^{(i)} \\
& =\sum_{i=1}^{m} \log p\left(x^{(i)} ; \lambda\right) & \\
& =\sum_{i=1}^{m} \log \left(\lambda e^{\left.-\lambda x^{(i)}\right)}\right. & \rightarrow \lambda_{\mathrm{ML}}=\frac{1}{\frac{1}{m} \sum_{i=1}^{m} x^{(i)}} \\
& =\sum_{i=1}^{m} \log \lambda-\lambda x^{(i)} & & \\
& =m \log \lambda-\lambda \sum_{i=1}^{m} x^{(i)} &
\end{array}
\]

\section*{Uniform}
\[
p(x ; a, b)= \begin{cases}e^{-\lambda x}, & x \in[a, b] \\ 0, & x \notin[a, b]\end{cases}
\]

- Consider having received samples \(\left\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\right\}\)
\[
\begin{aligned}
& \log l(a, b)=\sum_{i=1}^{m} \log \left(1\left\{x^{(i)} \in[a, b]\right\} \frac{1}{b-a}\right) \\
& \rightarrow a_{\mathrm{ML}}=\min _{i} x^{(i)}, \quad b_{\mathrm{ML}}=\max _{i} x^{(i)}
\end{aligned}
\]

\section*{ML for Gaussian}
\[
p(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
\]

- Consider having received samples \(\left\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\right\}\)
\[
\begin{array}{rlr}
\log l(\mu, \sigma) & =\sum_{i=1}^{m} \log \left(\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}\right) & \\
=C+\sum_{i=1}^{m}-\log \sigma-\frac{\left(x^{(i)}-\mu\right)^{2}}{2 \sigma^{2}} & \frac{\partial}{\partial \sigma} \log l(\mu, \sigma)=\sum_{i=1}^{m} \frac{1}{\sigma}-\frac{\left(x^{(i)}-\mu\right)^{2}}{\sigma^{3}} \\
\frac{\partial}{\partial \mu} \log l(\mu, \sigma) & =\frac{1}{\sigma^{2}} \sum_{i=1}^{m}\left(x^{(i)}-\mu\right) & \rightarrow \sigma_{\mathrm{ML}}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(x^{(i)}-\mu_{\mathrm{ML}}\right)^{2} \\
\rightarrow \mu_{\mathrm{ML}} & =\frac{1}{m} \sum_{i=1}^{m} x^{(i)} &
\end{array}
\]

\section*{ML for Conditional Gaussian}
\[
y=a_{0}+a_{1} x+\epsilon \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
\]

Equivalently: \(\quad p\left(y \mid x ; a_{0}, a_{1}, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(y-\left(a_{0}+a_{1} x\right)\right)^{2}}{2 \sigma^{2}}}\)


More generally: \(\quad y=a^{\top} x+\epsilon \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)\)
\[
p\left(y \mid x ; a, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(y-a^{\top} x\right)^{2}}{2 \sigma^{2}}}
\]

\section*{ML for Conditional Gaussian}

Given samples \(\left\{\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right)\right\}\).
\[
\begin{aligned}
\log l\left(a, \sigma^{2}\right) & =\sum_{i=1}^{m} \log \left(\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(y^{(i)}-a^{\top} x^{(i)}\right)^{2}}{2 \sigma^{2}}}\right) \\
& =C-m \log \sigma-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{m}\left(y^{(i)}-a^{\top} x^{(i)}\right)^{2}
\end{aligned}
\]
\[
\begin{array}{l|l}
\nabla_{a} \log l\left(a, \sigma^{2}\right)=\frac{1}{\sigma^{2}} \sum_{i=1}^{m}\left(y^{(i)}-a^{\top} x^{(i)}\right) x^{(i)} & \frac{\partial}{\partial \sigma} \log l\left(a, \sigma^{2}\right)=-m \frac{1}{\sigma}-\frac{1}{\sigma^{3}} \sum_{i=1}^{m}\left(y^{(i)}-a^{\top} x^{(i)}\right)^{2}
\end{array}
\]
\[
=\sum_{i=1}^{m} y^{(i)} x^{(i)}-\left(\sum_{i=1}^{m} x^{(i)} x^{(i) \top}\right) a
\]
\[
\rightarrow \sigma_{\mathrm{ML}}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(y^{(i)}-a_{\mathrm{ML}}^{\top} x^{(i)}\right)^{2}
\]
\[
\rightarrow a_{\mathrm{ML}}=\left(\sum_{i=1}^{m} x^{(i)} x^{(i) \top}\right)^{-1}\left(\sum_{i=1}^{m} y^{(i)} x^{(i)}\right)
\]
\[
=\left(X^{\top} X\right)^{-1} X^{\top} y
\]
\[
X=\left[\begin{array}{c}
x^{(1) \top} \\
x^{(2) \top} \\
\ldots \\
x^{(m) \top}
\end{array}\right] \quad y=\left[\begin{array}{c}
y^{(1)} \\
y^{(2)} \\
\ldots \\
y^{(m)}
\end{array}\right]
\]

\section*{ML for Conditional Multivariate Gaussian}
\[
\begin{aligned}
& y=C x+\epsilon, \quad \epsilon \sim \mathcal{N}(0, \Sigma) \\
& p(y \mid x ; C, \Sigma)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{-1 / 2}} e^{-\frac{1}{2}(y-C x)^{\top} \Sigma^{-1}(y-C x)} \\
& \log l(C, \Sigma)=-m \frac{n}{2} \log (2 \pi)+\frac{m}{2} \log \left|\Sigma^{-1}\right|-\frac{1}{2} \sum_{i=1}^{m}\left(y^{(i)}-C x^{(i)}\right)^{\top} \Sigma^{-1}\left(y^{(i)}-C x^{(i)}\right) \\
& \nabla_{\Sigma^{-1}} \log l(C, \Sigma)=-\frac{m}{2} \Sigma-\frac{1}{2} \sum_{i=1}^{m}\left(y^{(i)}-C^{\top} x^{(i)}\right)\left(y^{(i)}-C^{\top} x^{(i)}\right)^{\top} \\
& \rightarrow \quad \Sigma_{\mathrm{ML}}=\frac{1}{m} \sum_{i=1}^{m}\left(y^{(i)}-C^{\top} x^{(i)}\right)\left(y^{(i)}-C^{\top} x^{(i)}\right)^{\top}=\frac{1}{m}\left(Y^{\top}-C X^{\top}\right)\left(Y^{\top}-C X^{\top}\right)^{\top} \\
& \nabla_{C} \log l(C, \Sigma)=-\frac{1}{2} \sum_{i=1}^{m} \Sigma^{-1} C x^{(i)} x^{(i) \top}+x^{(i)} x^{(i) \top} C^{\top} \Sigma^{-1}-x^{(i)} y^{(i) \top} \Sigma^{-1}-\Sigma^{-1} y^{(i)} x^{(i) \top} \\
& \begin{aligned}
= & -\frac{1}{2}\left(\Sigma^{-1} C X^{\top} X+X^{\top} X C^{\top} \Sigma^{-1}-X^{\top} Y \Sigma^{-1}-\Sigma^{-1} Y^{\top} X\right) \\
& C=Y^{\top} X\left(X^{\top} X\right)^{-1}
\end{aligned} \\
& X=\left[\begin{array}{l}
x^{(1) T} \\
x^{(2) T} \\
x^{(m) T}
\end{array}\right] \quad y=\left[\begin{array}{l}
y^{(1) T} \\
y^{(2) T} \\
y^{(m) T}
\end{array}\right]
\end{aligned}
\]

\section*{Aside: Key Identities for Derivation on Previous Slide}
\[
\begin{gather*}
\operatorname{Trace}(A)=\sum_{i=1}^{n} A_{i i}  \tag{1}\\
\operatorname{Trace}(A B C)=\operatorname{Trace}(B C A)=\operatorname{Trace}(C A B)  \tag{2}\\
\nabla_{A} \operatorname{Trace}(A B)=B^{\top}  \tag{3}\\
\nabla_{A} \log |A|=A^{-1} \tag{4}
\end{gather*}
\]

Special case of (2), for \(x \in \mathbb{R}^{n}\) :
\[
\begin{equation*}
x^{\top} \Gamma x=\operatorname{Trace}\left(x^{\top} \Gamma x\right)=\operatorname{Trace}\left(\Gamma x x^{\top}\right) \tag{5}
\end{equation*}
\]

\section*{ML Estimation in Fully Observed Linear Gaussian Bayes Filter Setting}
- Consider the Linear Gaussian setting:
\[
\begin{aligned}
X_{t+1} & =A X_{t}+B u_{t}+w_{t} & w_{t} & \sim \mathcal{N}(0, Q) \\
Z_{t+1} & =C X_{t}+d+v_{t} & v_{t} & \sim \mathcal{N}(0, R)
\end{aligned}
\]
- Fully observed, i.e., given \(x_{0}, u_{0}, z_{0}, x_{1}, u_{1}, z_{1}, \ldots, x_{T}, u_{T}, z_{t}\)
- \(\rightarrow\) Two separate ML estimation problems for conditional multivariate Gaussian:
- 1 :
\[
\left[A_{\mathrm{ML}} B_{\mathrm{ML}}\right]=Y^{\top} X\left(X^{\top} X\right)^{-1}
\]
\[
X=\left[\begin{array}{c}
x_{0}^{\top} u_{0}^{\top} \\
x_{1}^{\top} u_{1}^{\top} \\
\cdots \\
x_{T-1}^{\top} u_{T-1}^{\top}
\end{array}\right] \quad y=\left[\begin{array}{c}
x_{1}^{\top} \\
x_{2}^{\top} \\
\cdots \\
x_{T}^{\top}
\end{array}\right] \quad Q_{\mathrm{ML}} B_{\mathrm{ML}}=Y^{\top} X\left(X^{\top} X\right)^{-1} \frac{1}{T} \sum_{t=0}^{T-1}\left(x_{t+1}-\left(A x_{t}+B u_{t}\right)\right)\left(x_{t+1}-\left(A x_{t}+B u_{t}\right)^{\top}\right.
\]
- 2 :
\[
X=\left[\begin{array}{c}
x_{0}^{\top} \\
x_{1}^{\top} \\
\cdots \\
x_{T}^{\top}
\end{array}\right] \quad y=\left[\begin{array}{l}
z_{0}^{\top} \\
z_{1}^{\top} \\
\cdots \\
\cdots \\
z_{T}^{\top}
\end{array}\right]
\]
\[
\begin{gathered}
{\left[C_{\mathrm{ML}} d_{\mathrm{ML}}\right]=Y^{\top} X\left(X^{\top} X\right)^{-1}} \\
R_{\mathrm{ML}}=\frac{1}{T} \sum_{t=0}^{T}\left(z_{t}-\left(C x_{t}+d\right)\right)\left(z_{t}-\left(C x_{t}+d\right)^{\top}\right.
\end{gathered}
\]

\section*{Outline}
- Kalman smoothing
- Maximum a posteriori sequence
- Maximum likelihood
- Maximum a posteriori parameters
- Expectation maximization

\section*{Priors --- Thumbtack}
- Let \(\theta=P(u p), 1-\theta=P(\) down \()\)
- How to determine \(\theta\) ?
- ML estimate: 5 up, 0 down \(\rightarrow \theta_{\mathrm{ML}}=\frac{5}{5+0}=1\)
- Laplace estimate: add a fake count of 1 for each outcome
\[
\theta_{\text {Laplace }}=\frac{5+1}{5+1+0+1}=\frac{6}{7}
\]

\section*{Priors --- Thumbtack}
- Alternatively, consider \(\theta\) to be random variable
- Prior \(\mathrm{P}(\theta)=\mathrm{C} \theta(1-\theta)\)
- Measurements: \(P(x \mid \theta)\)

- Posterior: \(\quad P\left(\theta \mid x^{(1)}, \ldots, x^{(5)}\right) \propto P\left(\theta, x^{(1)}, \ldots, x^{(5)}\right)\)
\[
\begin{aligned}
& =P(\theta) P\left(x^{(1)} \mid \theta\right) \ldots P\left(x^{(5)} \mid \theta\right) \\
& =\theta(1-\theta) \theta \theta \theta \theta \theta \\
& =\theta^{6}(1-\theta)
\end{aligned}
\]
- Maximum A Posterior (MAP) estimation
- = find \(\theta\) that maximizes the posterior
\[
\rightarrow \quad \theta_{\mathrm{MAP}}=\frac{6}{7}
\]

\section*{Priors --- Beta Distribution}
\[
P(\theta ; \alpha, \beta)=\theta^{\alpha-1}(1-\theta)^{\beta-1} \quad \theta_{\mathrm{MAP}}=\frac{\alpha-1+n_{1}}{\alpha-1+n_{1}+\beta-1+n_{0}}
\]


\section*{Priors --- Dirichlet Distribution}
\[
\begin{gathered}
P\left(\theta ; \alpha_{1}, \ldots, \alpha_{K}\right)=\prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1} \\
\theta_{k}^{\mathrm{MAP}}=\frac{n_{k}+\alpha_{k}-1}{\sum_{j=1}^{K}\left(n_{j}+\alpha_{j}-1\right)}
\end{gathered}
\]
- Generalizes Beta distribution
- MAP estimate corresponds to adding fake counts \(\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{K}}\)

\section*{MAP for Mean of Univariate Gaussian}
- Assume variance known. (Can be extended to also find MAP for variance.)
- Prior: \(\quad P\left(\mu ; \mu_{0}, \sigma_{0}^{2}\right)=\mathcal{N}\left(\mu_{0}, \sigma_{0}^{2}\right)\)
\[
\begin{aligned}
& \log P\left(\mu ; \mu_{0}, \sigma_{0}^{2}\right)+\log l(\mu)=\log \left(\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(\mu-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}}\right)+\sum_{i=1}^{m} \log \left(\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(x^{(i)}-\mu\right)^{2}}{2 \sigma^{2}}}\right) \\
&=C-\frac{\left(\mu-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}-\sum_{i=1}^{m} \frac{\left(x^{(i)}-\mu\right)^{2}}{2 \sigma^{2}} \\
& \frac{\partial}{\partial \mu}\left(\log P\left(\mu ; \mu_{0}, \sigma_{0}\right)+\log l(\mu)\right)=\frac{1}{\sigma_{0}^{2}}\left(\mu_{0}-\mu\right)+\frac{1}{\sigma^{2}} \sum_{i=1}^{m}\left(x^{(i)}-\mu\right) \\
& \rightarrow \mu_{\mathrm{ML}}=\frac{\frac{\mu_{0}}{\sigma_{0}^{2}}+\frac{\sum_{i=1}^{m} x^{(i)}}{\sigma^{2}}}{\frac{1}{\sigma_{0}^{2}}+\frac{m}{\sigma^{2}}}
\end{aligned}
\]

\section*{MAP for Univariate Conditional Linear Gaussian}
- Assume variance known. (Can be extended to also find MAP for variance.)
- Prior: \(P\left(a ; \mu_{0}, \Sigma_{0}\right)=\mathcal{N}\left(\mu_{0}, \Sigma_{0}\right)\)
\[
\begin{aligned}
& \begin{aligned}
\log P\left(a ; \mu_{0}, \Sigma_{0}\right)+\log l(a) & =\log \left(\frac{1}{(2 \pi)^{n / 2}\left|\Sigma_{0}\right|^{1 / 2}} e^{-\frac{1}{2}\left(a-\mu_{0}\right)^{\top} \Sigma_{0}^{-1}\left(a-\mu_{0}\right)}\right)+\sum_{i=1}^{m} \log \left(\frac{1}{(2 \pi)^{1 / 2} \sigma} e^{-\frac{\left(a^{\top} x^{\left.(i)-y^{(i)}\right)^{2}}\right.}{2 \sigma^{2}}}\right) \\
& =C-\frac{1}{2}\left(a-\mu_{0}\right)^{\top} \Sigma_{0}^{-1}\left(a-\mu_{0}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{m}\left(a^{\top} x^{(i)}-y^{(i)}\right)^{2}
\end{aligned} \\
& \begin{aligned}
& \nabla_{a}(\cdots)=-\Sigma_{0}^{-1}\left(a-\mu_{0}\right)-\frac{1}{\sigma^{2}} \sum_{i=1}^{m}\left(a^{\top} x^{(i)}-y^{(i)}\right) x^{(i)} \\
&=-\left(\Sigma_{0}^{-1}+\frac{1}{\sigma^{2}} X^{\top} X\right) a+\Sigma_{0}^{-1} \mu_{0}+\frac{1}{\sigma^{2}} X^{\top} y \\
& \rightarrow a_{\mathrm{ML}}=\left(\Sigma_{0}^{-1}+\frac{1}{\sigma^{2}} X^{\top} X\right)^{-1}\left(\Sigma_{0}^{-1} \mu_{0}+\frac{1}{\sigma^{2}} X^{\top} y\right) \quad X=\left[\begin{array}{c}
x^{(1) \top} \\
x^{(2) \top} \\
\cdots \\
x^{(m) \top}
\end{array}\right] \quad y=\left[\begin{array}{c}
y^{(1)} \\
y^{(2)} \\
\cdots \\
y^{(m)}
\end{array}\right]
\end{aligned}
\end{aligned}
\]

\section*{MAP for Univariate Conditional Linear Gaussian: Example}
\[
\mu_{0}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \Sigma_{0}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \sigma=1
\]
for run=1:4
\(\mathrm{a}=\) randn;
\(b=\) randn;
\(x=(\operatorname{rand}(5,1)-0.5) ;\)
\(y=a * x+b+\operatorname{randn}(5,1) ;\)
\(\mathrm{X}=[\) ones \((5,1) \mathrm{x}]\);
ba_ML \(=\left(X^{*}\right.\) * \()(-1) * X^{\prime} * y\);
\(\mathrm{ba}^{-}\)MAP \(=\left(\text {eye }(2)+\mathrm{X}^{\prime} \star \mathrm{X}\right)^{\wedge}(-1)^{\star}\left(\mathrm{X}^{\prime} * \mathrm{y}\right)\);
figure; plot(x, y, '.');
hold on;
plot ( \(x\), ba_ML(1) + ba_ML(2)*x, ' \(r-')\);
plot (x, ba_MAP(1) + ba_MAP(2)*x, 'k-');
plot( \(x, b+a * x\), ' \(g-')\);
end



\section*{TRUE ---}

Samples.
ML ---
MAP ---



\section*{Cross Validation}
- Choice of prior will heavily influence quality of result
- Fine-tune choice of prior through cross-validation:
- 1. Split data into "training" set and "validation" set
- 2. For a range of priors,
- Train: compute \(\theta_{\text {MAP }}\) on training set
- Cross-validate: evaluate performance on validation set by evaluating the likelihood of the validation data under \(\theta_{\text {MAP }}\) just found
- 3. Choose prior with highest validation score
- For this prior, compute \(\theta_{\text {MAP }}\) on (training+validation) set
- Typical training / validation splits:
- 1-fold: 70/30, random split
- 10-fold: partition into 10 sets, average performance for each set being the validation set and the other 9 being the training set

\section*{Outline}
- Kalman smoothing
- Maximum a posteriori sequence
- Maximum likelihood
- Maximum a posteriori parameters
- Expectation maximization

\section*{Mixture of Gaussians}
- Generally:
\[
\begin{aligned}
X & \sim \text { Multinomial }(\theta) \\
Z \mid X=k & \sim \mathcal{N}\left(\mu_{k}, \Sigma_{k}\right)
\end{aligned}
\]
- Example:
\[
\begin{aligned}
& P(X=1)=\frac{1}{2}, P(X=2)=\frac{1}{2} \\
& Z \mid X=1 \sim \mathcal{N}(-1,1) \\
& Z \mid X=2 \sim \mathcal{N}(2,1) \\
& \rightarrow Z \sim \frac{1}{2} \mathcal{N}(-1,1)+\frac{1}{2} \mathcal{N}(2,1)
\end{aligned}
\]

- ML Objective: given data \(z^{(1)}, \ldots, z^{(m)}\)
\[
\max _{\theta, \mu, \Sigma} \sum_{i=1}^{m} \log \sum_{k=1}^{n} \theta_{k} \frac{1}{(2 \pi)^{d / 2}\left|\Sigma_{k}\right|} e^{-\frac{1}{2}\left(z-\mu_{k}\right)^{\top} \Sigma_{k}^{-1}\left(z-\mu_{k}\right)}
\]
- Setting derivatives w.r.t. \(\theta, \mu, \Sigma\) equal to zero does not enable to solve for their ML estimates in closed form

We can evaluate function \(\rightarrow\) we can in principle perform local optimization. In this lecture: "EM" algorithm, which is typically used to efficiently optimize the objective (locally)

\section*{Expectation Maximization (EM)}
- Example:
- Model: \(\quad P(X=1)=\frac{1}{2}, P(X=2)=\frac{1}{2}\)
\[
\begin{aligned}
& Z \mid X=1 \sim \mathcal{N}\left(\mu_{1}, 1\right) \\
& Z \mid X=2 \sim \mathcal{N}\left(\mu_{2}, 1\right)
\end{aligned}
\]
- Goal:
- Given data \(z^{(1)}, \ldots, z^{(m)}\) (but no \(x^{(i)}\) observed)
- Find maximum likelihood estimates of \(\mu_{1}, \mu_{2}\)
- EM basic idea: if \(\boldsymbol{x}^{(i)}\) were known \(\rightarrow\) two easy-to-solve separate ML problems
- EM iterates over
- E-step: For \(\mathrm{i}=\mathrm{I}, \ldots, \mathrm{m}\) fill in missing data \(\mathrm{x}^{(\mathrm{i})}\) according to what is most likely given the current model \({ }^{1}\)
- M-step: run ML for completed data, which gives new model \({ }^{1}\)

\section*{EM Derivation}
- EM solves a Maximum Likelihood problem of the form:
\[
\max _{\theta} \log \int_{x} p(x, z ; \theta) d x
\]
\(\mu\) : parameters of the probabilistic model we try to find
x : unobserved variables
z: observed variables
\[
\begin{aligned}
\max _{\theta} \log \int_{x} p(x, z ; \theta) d x & =\max _{\theta} \log \int_{x} \frac{q(x)}{q(x)} p(x, z ; \theta) d x \\
& =\max _{\theta} \log \int_{x} q(x) \frac{p(x, z ; \theta)}{q(x)} d x \\
& =\max _{\theta} \log E_{X \sim q}\left[\frac{p(X, z ; \theta)}{q(X)}\right]
\end{aligned}
\]

Jensen's Inequality
\[
\begin{aligned}
& \geq \max _{\theta} E_{X \sim q} \log \left[\frac{p(X, z ; \theta)}{q(X)}\right] \\
& =\max _{\theta} \int_{x} q(x) \log p(x, z ; \theta) d x-\int_{x} q(x) \log q(x) d x
\end{aligned}
\]

\section*{Jensen's inequality}

Suppose \(f\) is concave, then for all probability measures P we have that:
\[
f\left(\mathrm{E}_{X \sim P}\right) \geq E_{X \sim P}[f(X)]
\]
with equality holding only if \(f\) is an affine function.

Illustration:
\(P\left(X=x_{1}\right)=1-\lambda\), \(P\left(X=x_{2}\right)=\lambda\)


\section*{EM Derivation (ctd)}
\[
\max _{\theta} \log \int_{x} p(x, z ; \theta) d x \geq \max _{\theta} \int_{x} q(x) \log p(x, z ; \theta) d x-\int_{x} q(x) \log q(x) d x
\]

Jensen's Inequality: equality holds when
\[
f(x)=\log \frac{p(x, z ; \theta)}{q(x)} \quad \text { is a constant. }
\]

This is achieved for
\[
q(x)=p(x \mid z ; \theta) \propto p(x, z ; \theta)
\]

\section*{EM Algorithm: Iterate}
1. E-step: Compute \(\quad q(x)=p(x \mid z ; \theta)\)
2. M-step: Compute \(\quad \theta=\arg \max _{\theta} \int_{x} q(x) \log p(x, z ; \theta) d x\)

M-step optimization can be done efficiently in most cases
E -step is usually the more expensive step

\section*{EM Derivation (ctd)}
- M-step objective is upper-bounded by true objective
- M-step objective is equal to true objective at current parameter estimate

- \(\rightarrow\) Improvement in true objective is at least as large as improvement in M-step objective

\section*{EM 1-D Example --- 2 iterations}
- Estimate 1-d mixture of two Gaussians with unit variance:
\[
\text { - } p(x ; \mu)=\frac{1}{2} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left(x-\mu_{1}\right)^{2}}+\frac{1}{2} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left(x-\mu_{2}\right)^{2}}
\]

- one parameter \(\mu ; \mu_{1}=\mu-7.5, \mu_{2}=\mu+7.5\)

\section*{EM for Mixture of Gaussians}
- \(X \sim\) Multinomial Distribution, \(P(X=k ; \theta)=\theta_{k}\)
- \(Z^{\sim} N\left(\mu_{k}, \Sigma_{k}\right)\)
- Observed: \(z^{(1)}, z^{(2)}, \ldots, z^{(m)}\)
\[
\begin{gathered}
p(x=k, z ; \theta, \mu, \Sigma)=\theta_{k} \frac{1}{(2 \pi)^{n / 2}\left|\Sigma_{k}\right|^{1 / 2}} e^{-\frac{1}{2}\left(z-\mu_{k}\right)^{\top} \Sigma_{k}^{-1}\left(z-\mu_{k}\right)} \\
p(z ; \theta, \mu, \Sigma)=\sum_{k=1}^{K} \theta_{k} \frac{1}{(2 \pi)^{n / 2}\left|\Sigma_{k}\right|^{1 / 2}} e^{-\frac{1}{2}\left(z-\mu_{k}\right)^{\top} \Sigma_{k}^{-1}\left(z-\mu_{k}\right)}
\end{gathered}
\]

\section*{EM for Mixture of Gaussians}
- E-step: \(\quad q(x)=p(x \mid z ; \theta, \mu, \Sigma)=\prod_{i=1}^{m} p\left(x^{(i)} \mid z^{(i)} ; \theta, \mu, \Sigma\right)\)
\[
\begin{aligned}
\rightarrow q\left(x^{(i)}=k\right) & =p\left(x^{(i)}=k \mid z^{(i)} ; \theta, \mu, \Sigma\right) \\
& \propto p\left(x^{(i)}=k, z^{(i)} ; \theta, \mu, \Sigma\right) \\
& =\theta_{k} \mathcal{N}\left(z^{(i)} ; \mu_{k}, \Sigma_{k}\right)
\end{aligned}
\]
- M-step: \(\max _{\theta, \mu, \Sigma} \sum_{i=1}^{m} \sum_{k=1}^{k} q\left(x^{(i)}=k\right) \log \left(\theta_{k} \mathcal{N}\left(z^{(i)} ; \mu_{k}, \Sigma_{k}\right)\right)\)
\(\rightarrow \theta_{k}=\frac{1}{m} \sum_{i=1}^{m} q\left(x^{(i)}=k\right) \quad \rightarrow \mu_{k}=\frac{1}{\sum_{i=1}^{m} q\left(x^{(i)}=k\right)} q\left(x^{(i)}=k\right) z^{(i)}\)
\(\rightarrow \Sigma_{k}=\frac{1}{\sum_{i=1}^{m} q\left(x^{(i)}=k\right)} q\left(x^{(i)}=k\right)\left(z^{(i)}-\mu_{k}\right)\left(z^{(i)}-\mu_{k}\right)^{\top}\)

\section*{ML Objective HMM}
- Given samples
\[
\left\{z_{0}, z_{1}, z_{2}, \ldots, z_{T}\right\}, x_{t} \in\{1,2, \ldots, I\}, z_{t} \in\{1,2, \ldots, K\}
\]
- Dynamics model: \(P\left(x_{t+1}=i \mid x_{t}=j\right)=\theta_{i \mid j}\)
- Observation model: \(P\left(z_{t}=k \mid z_{t}=l\right)=\gamma_{k \mid l}\)
- ML objective:
\[
\begin{aligned}
\log l(\theta, \gamma) & =\log \left(\sum_{x_{0}, x_{1}, \ldots, x_{T}} P\left(x_{0}\right) \prod_{t=1}^{T} P\left(x_{t} \mid x_{t-1} ; \theta\right) P\left(z_{t} \mid x_{t} ; \gamma\right)\right) \\
& =\log \left(\sum_{x_{0}, x_{1}, \ldots, x_{T}} P\left(x_{0}\right) \prod_{t=1}^{T} \theta_{x_{t} \mid x_{t-1}} \prod_{t=1}^{T} \gamma_{z_{t} \mid x_{t}}\right)
\end{aligned}
\]
\(\rightarrow\) No simple decomposition into independent ML problems for each \(\theta_{\cdot \mid j}\) and each \(\gamma_{\cdot \mid l}\)
\(\rightarrow\) No closed form solution found by setting derivatives equal to zero

\section*{EM for HMM --- M-step}
\[
\begin{aligned}
& \max _{\theta, \gamma} \sum_{x_{0: T}} q\left(x_{0: T}\right) \log p\left(x_{0: T}, z_{0: T} ; \theta, \gamma\right) \\
= & \max _{\theta, \gamma} \sum_{x_{0: T}} q\left(x_{0: T}\right)\left(\sum_{t=0}^{T-1} \log p\left(x_{t+1} \mid x_{t} ; \theta\right)+\sum_{t=0}^{T} \log p\left(z_{t} \mid x_{t} ; \gamma\right)\right) \\
= & \max _{\theta, \gamma} \sum_{t=0}^{T-1} \sum_{x_{t}, x_{t+1}} q\left(x_{t}, x_{t+1}\right) \log p\left(x_{t+1} \mid x_{t} ; \theta\right)+\sum_{t=0}^{T} \sum_{x_{t}} q\left(x_{t}\right) \log p\left(z_{t} \mid x_{t} ; \gamma\right)
\end{aligned}
\]
\(\rightarrow \theta\) and \(\gamma\) computed from "soft" counts
\[
\theta_{i \mid j}=\frac{n_{(i, j)}}{\sum_{i^{\prime}=1}^{I} n_{\left(i^{\prime}, j\right)}} \quad \gamma_{k \mid l}=\frac{m_{(k, l)}}{\sum_{k^{\prime}=1}^{K} m_{\left(k^{\prime}, l\right)}}
\]
\[
\begin{aligned}
n_{(i, j)} & =\sum_{t=0}^{T-1} q\left(x_{t+1}=i, x_{t}=j\right) \\
m_{(k, l)} & =\sum_{t=0}^{T} q\left(z_{t}=k, x_{t}=l\right)
\end{aligned}
\]

\section*{EM for HMM --- E-step}
- No need to find conditional full joint
\[
q\left(x_{0: T}\right)=p\left(x_{0: T} \mid z_{0: T} ; \theta, \gamma\right)
\]
- Run smoother to find:
\[
\begin{aligned}
q\left(x_{t}, x_{t+1}\right) & =p\left(x_{t}, x_{t+1} \mid z_{0: T} ; \theta, \gamma\right) \\
q\left(x_{t}\right) & =p\left(x_{t} \mid z_{0: T} ; \theta ; \gamma\right)
\end{aligned}
\]

\section*{ML Objective for Linear Gaussians}
- Linear Gaussian setting:
\[
\begin{aligned}
X_{t+1} & =A X_{t}+B u_{t}+w_{t} & w_{t} & \sim \mathcal{N}(0, Q) \\
Z_{t+1} & =C X_{t}+d+v_{t} & v_{t} & \sim \mathcal{N}(0, R)
\end{aligned}
\]

■ Given \(u_{0}, z_{0}, u_{1}, z_{1}, \ldots, u_{T}, z_{t}\)
- ML objective:
\[
\max _{Q, R, A, B, C, d} \log \int_{x_{0: T}} p\left(x_{0: T}, z_{0: T} ; Q, R, A, B, C, d\right)
\]
- EM-derivation: same as HMM

\section*{EM for Linear Gaussians --- E-Step}
- Forward: \(\quad \mu_{t+1 \mid 0: t}=A_{t} \mu_{t \mid 0: t}+B_{t} u_{t}\)
\[
\Sigma_{t+1 \mid 0: t}=A_{t} \Sigma_{t \mid 0: t} A_{t}^{\top}+Q_{t}
\]
\[
K_{t+1}=\Sigma_{t+1 \mid 0: t} C_{t+1}^{\top}\left(C_{t+1} \Sigma_{t+1 \mid 0: t} C_{t+1}^{\top}+R_{t+1}\right)^{-1}
\]
\[
\mu_{t+1 \mid 0: t+1}=\mu_{t+1 \mid 0: t}+K_{t+1}\left(z_{t+1}-\left(C_{t+1} \mu_{t+1 \mid 0: t}+d\right)\right)
\]
\[
\Sigma_{t+1 \mid 0: t+1}=\left(I-K_{t+1} C_{t+1}\right) \Sigma_{t+1 \mid 0: t}
\]
- Backward: \(\mu_{t \mid 0: T}=\mu_{t \mid 0: t}+L_{t}\left(\mu_{t+1 \mid 0: T}-\mu_{t+1 \mid 0: t}\right)\)
\[
\begin{aligned}
\Sigma_{t \mid 0: T} & =\Sigma_{t \mid 0: t}+L_{t}\left(\Sigma_{t+1 \mid 0: T}-\Sigma_{t+1 \mid 0: t}\right) L_{t}^{\top} \\
L_{t} & =\Sigma_{t \mid 0: t} A_{t}^{\top} \Sigma_{t+1 \mid 0: t}^{-1}
\end{aligned}
\]

\section*{EM for Linear Gaussians --- M-step}
\[
\begin{aligned}
Q= & \frac{1}{T} \sum_{t=0}^{T-1}\left(\mu_{t+1 \mid 0: T}-A_{t} \mu_{t \mid 0: T}-B_{t} u_{t}\right)\left(\mu_{t+1 \mid 0: T}-A_{t} \mu_{t \mid 0: T}-B_{t} u_{t}\right)^{\top} \\
& +A_{t} \Sigma_{t \mid 0: T} A_{t}^{\top}+\Sigma_{t+1 \mid 0: T}-\Sigma_{t+1 \mid 0: T} L_{t}^{\top} A_{t}^{\top}-A_{t} L_{t} \Sigma_{t+1 \mid 0: T} \\
R= & \frac{1}{T+1} \sum_{t=0}^{T}\left(z_{t}-C_{t} \mu_{t \mid 0: T}-d_{t}\right)\left(z_{t}-C_{t} \mu_{t \mid 0: T}-d_{t}\right)^{\top}+C_{t} \Sigma_{t \mid 0: T} C_{t}^{\top}
\end{aligned}
\]

\section*{EM for Linear Gaussians --- The Log-likelihood}
- When running EM, it can be good to keep track of the loglikelihood score --- it is supposed to increase every iteration
\[
\begin{aligned}
& \begin{aligned}
& \log \prod_{t=1}^{T} p\left(z_{0: T}\right)=\log \left(p\left(z_{0}\right) \prod_{t=1}^{T} p\left(z_{t} \mid z_{0: t-1}\right)\right) \\
&=\log p\left(z_{0}\right)+\sum_{t=1}^{T} \log p\left(z_{t} \mid z_{0: t-1}\right) \\
& Z_{t} \mid z_{0: t-1} \sim \mathcal{N}\left(\bar{\mu}_{t}, \bar{\Sigma}_{t}\right) \\
& \bar{\mu}_{t}=C_{t} \mu_{t \mid 0: t-1}+d_{t} \\
& \bar{\Sigma}_{t}=C_{t} \Sigma_{t \mid 0: t-1} C_{t}^{\top}+R_{t}
\end{aligned} .
\end{aligned}
\]

\section*{EM for Extended Kalman Filter Setting}
- As the linearization is only an approximation, when performing the updates, we might end up with parameters that result in a lower (rather than higher) log-likelihood score
- \(\rightarrow\) Solution: instead of updating the parameters to the newly estimated ones, interpolate between the previous parameters and the newly estimated ones. Perform a "line-search" to find the setting that achieves the highest log-likelihood score

\section*{Summary}
- Kalman smoothing
- Maximum a posteriori sequence
- Maximum likelihood
- Maximum a posteriori parameters
- Expectation maximization```

