
CS 287 Advanced Robotics (Fall 2019)
Lecture 13: Kalman Smoother, Maximum A Posteriori,

Maximum Likelihood, Expectation Maximization

Pieter Abbeel
UC Berkeley EECS

n Kalman smoothing

n Maximum a posteriori sequence

n Maximum likelihood

n Maximum a posteriori parameters

n Expectation maximization

Outline

n Kalman smoothing

n Maximum a posteriori sequence

n Maximum likelihood

n Maximum a posteriori parameters

n Expectation maximization

Outline

n Filtering:

n Smoothing:

n Note: by now it should be clear that the “u” variables don’t really change anything
conceptually, and going to leave them out to have less symbols appear in our equations.

Overview
Xt-

1
XtX0

zt-1 ztz0

Xt-
1

Xt
Xt+

1
XTX0

zt-1 zt
zt+

1
zTz0

n Generally, recursively compute:

Filtering

n Generally, recursively compute:

n Forward: (same as filter)

Smoothing

n Backward:

n Combine:

n Forward pass (= filter):

n Backward pass:

n Combine:

Complete Smoother Algorithm

Note 1: for all times t in one
forward+backward pass
Note 2: find P(xt | z0, …, zT)
by renormalizing

n Find

n Recall:

n So we can readily compute

Pairwise Posterior

(Law of total probability)

(Markov assumptions)

(definitions a, b)

at(xt) = P (xt, z0, . . . , zt)

bt(xt) = P (zt+1, . . . , zT | xt)

P (xt, xt+1, z0, . . . , zT)

= P (xt, z0, . . . , zt)P (xt+1 | xt, z0, . . . , zt)P (zt+1 | xt+1, xt, z0, . . . , zt)P (zt+2, . . . , zT | xt+1, xt, z0, . . . , zt+1)

= P (xt, z0, . . . , zt)P (xt+1 | xt)P (zt+1 | xt+1)P (zt+2, . . . , zT | xt+1)

= at(xt)P (xt+1 | xt)P (zt+1 | xt+1)bt+1(xt+1)

n Find

Exercise

n = the smoother algorithm just covered for particular case
when P(xt+1 | xt) and P(zt | xt) are linear Gaussians

n We already know how to compute the forward pass
(=Kalman filtering)

n Backward pass:

n Combination:

Kalman Smoother

n Exercise: work out integral for bt

Kalman Smoother Backward Pass

n A = [0.99 0.0074; -0.0136 0.99]; C = [1 1 ; -1 +1];

n x(:,1) = [-3;2];

n Sigma_w = diag([.3 .7]); Sigma_v = [2 .05; .05 1.5];

n w = randn(2,T); w = sqrtm(Sigma_w)*w; v = randn(2,T); v = sqrtm(Sigma_v)*v;

n for t=1:T-1

x(:,t+1) = A * x(:,t) + w(:,t);

z(:,t) = C*x(:,t) + v(:,t);

end

n % now recover the state from the measurements

n P_0 = diag([100 100]); x0 =[0; 0];

n % run Kalman filter and smoother here

n % + plot

Matlab Code Data Generation Example

Kalman Filter/Smoother Example

n Kalman smoothing

n Maximum a posteriori sequence

n Maximum likelihood

n Maximum a posteriori parameters

n Expectation maximization

Outline

n Filtering:

n Smoothing:

n MAP:

Overview
Xt-

1
XtX0

zt-1 ztz0

Xt-
1

Xt
Xt+

1
XTX0

zt-1 zt
zt+

1
zTz0

Xt-
1

Xt
Xt+

1
XTX0

zt-1 zt
zt+

1
zTz0

n Generally:

MAP Sequence
Naively solving by enumerating all possible

combinations of x_0,…,x_T is exponential in T

MAP --- Complete Algorithm

n O(T n2)

n Summations à integrals

n But: can’t enumerate over all instantiations

n However, we can still find solution efficiently:

n the joint conditional P(x0:T | z0:T) is a multivariate Gaussian

n for a multivariate Gaussian the most likely instantiation equals the mean

à we just need to find the mean of P(x0:T | z0:T)
n the marginal conditionals P(xt | z0:T) are Gaussians with mean equal to the mean of xt under the

joint conditional, so it suffices to find all marginal conditionals
n We already know how to do so: marginal conditionals can be computed by running the Kalman

smoother.

n Alternatively: solve convex optimization problem

Kalman Filter (aka Linear Gaussian) Setting

n Kalman smoothing

n Maximum a posteriori sequence

n Maximum likelihood

n Maximum a posteriori parameters

n Expectation maximization

Outline

n Let θ = P(up), 1-θ = P(down)

n How to determine θ ?

n Empirical estimate: 8 up, 2 down à

Thumbtack

http://web.me.com/todd6ton/Site/Classroom_Blog/Entries/2009/10/7_A_Thumbtack_Experiment.html

n θ = P(up), 1-θ = P(down)

n Observe:

n Likelihood of the observation sequence depends on θ:

n Maximum likelihood finds

à extrema at θ = 0, θ = 1, θ = 0.8

à Inspection of each extremum yields θML = 0.8

Maximum Likelihood

n More generally, consider binary-valued random variable with θ = P(1), 1-θ = P(0), assume we
observe n1 ones, and n0 zeros

n Likelihood:

n Derivative:

n Hence we have for the extrema:

n n1/(n0+n1) is the maximum

n = empirical counts.

Maximum Likelihood

n The function

is a monotonically increasing function of x

n Hence for any (positive-valued) function f:

n Often more convenient to optimize log-likelihood rather than likelihood

n Example:

Log-likelihood

n Reconsider thumbtacks: 8 up, 2 down

n Likelihood

n Definition: A function f is concave if and only

n Concave functions are generally easier to maximize then non-concave
functions

Log-likelihood ßà Likelihood

n Log-likelihood

ConcaveNot Concave

f is concave if and only

“Easy” to maximize

Concavity and Convexity

x1 x2

λx2+(1-λ)x2

f is convex if and only

“Easy” to minimize

x1 x2
λ x2+(1-λ)x2

n Consider having received samples

ML for Multinomial

n Given samples

n Dynamics model:

n Observation model:

à Independent ML problems for each and each

ML for Fully Observed HMM

n Consider having received samples
n 3.1, 8.2, 1.7

ML for Exponential Distribution
Source: wikipedia

ll

n Consider having received samples

ML for Exponential Distribution
Source: wikipedia

n Consider having received samples

Uniform

n Consider having received samples

ML for Gaussian

Equivalently:

More generally:

ML for Conditional Gaussian

ML for Conditional Gaussian

ML for Conditional Multivariate Gaussian

Aside: Key Identities for Derivation on Previous Slide

n Consider the Linear Gaussian setting:

n Fully observed, i.e., given

n à Two separate ML estimation problems for conditional multivariate
Gaussian:

n 1:

n 2:

ML Estimation in Fully Observed Linear Gaussian Bayes Filter Setting

n Kalman smoothing

n Maximum a posteriori sequence

n Maximum likelihood

n Maximum a posteriori parameters

n Expectation maximization

Outline

n Let θ = P(up), 1-θ = P(down)

n How to determine θ ?

n ML estimate: 5 up, 0 down à

n Laplace estimate: add a fake count of 1 for each outcome

Priors --- Thumbtack

n Alternatively, consider θ to be random variable

n Prior P(θ) = C θ(1-θ)

n Measurements: P(x | θ)

n Posterior:

n Maximum A Posterior (MAP) estimation

n = find θ that maximizes the posterior

à

Priors --- Thumbtack

Priors --- Beta Distribution

Figure source: Wikipedia

n Generalizes Beta distribution

n MAP estimate corresponds to adding fake
counts n1, …, nK

Priors --- Dirichlet Distribution

n Assume variance known. (Can be extended to also find MAP for variance.)

n Prior:

MAP for Mean of Univariate Gaussian

n Assume variance known. (Can be extended to also find MAP for variance.)

n Prior:

MAP for Univariate Conditional Linear Gaussian

[Interpret!]

MAP for Univariate Conditional Linear Gaussian: Example

TRUE ---
Samples .
ML ---
MAP ---

n Choice of prior will heavily influence quality of result

n Fine-tune choice of prior through cross-validation:

n 1. Split data into “training” set and “validation” set

n 2. For a range of priors,
n Train: compute θMAP on training set
n Cross-validate: evaluate performance on validation set by evaluating the likelihood of the

validation data under θMAP just found

n 3. Choose prior with highest validation score
n For this prior, compute θMAP on (training+validation) set

n Typical training / validation splits:

n 1-fold: 70/30, random split

n 10-fold: partition into 10 sets, average performance for each set being the validation set and the other 9 being the training set

Cross Validation

n Kalman smoothing

n Maximum a posteriori sequence

n Maximum likelihood

n Maximum a posteriori parameters

n Expectation maximization

Outline

n Generally:

n Example:

n ML Objective: given data z(1), …, z(m)

n Setting derivatives w.r.t. θ, µ, Σ equal to zero does not enable to solve for their ML estimates in closed form

We can evaluate function àwe can in principle perform local optimization. In this lecture: “EM” algorithm, which is typically used to efficiently optimize
the objective (locally)

Mixture of Gaussians

n Example:

n Model:

n Goal:
n Given data z(1), …, z(m) (but no x(i) observed)
n Find maximum likelihood estimates of μ1, μ2

n EM basic idea: if x(i) were known à two easy-to-solve separate ML problems

n EM iterates over
n E-step: For i=1,…,m fill in missing data x(i) according to what is most likely given the

current model ¹
n M-step: run ML for completed data, which gives new model ¹

Expectation Maximization (EM)

n EM solves a Maximum Likelihood problem of the form:

µ: parameters of the probabilistic model we try to find
x: unobserved variables
z: observed variables

EM Derivation

Jensen’s Inequality

Jensen’s inequality

x1 x2
E[X] = λx1+(1-λ)x2

Illustration:
P(X=x1) = 1-λ,
P(X=x2) = λ

EM Algorithm: Iterate

1. E-step: Compute

2. M-step: Compute

EM Derivation (ctd)

Jensen’s Inequality: equality holds when is a constant.

This is achieved for

M-step optimization can be done efficiently in most cases
E-step is usually the more expensive step
It does not fill in the missing data x with hard values, but finds a distribution q(x)

n M-step objective is
upper-bounded by
true objective

n M-step objective is
equal to true objective
at current parameter
estimate

EM Derivation (ctd)

n à Improvement in true objective is at least as large as
improvement in M-step objective

n Estimate 1-d mixture of two Gaussians with unit variance:

n

n one parameter μ; μ1 = μ - 7.5, μ2 = μ + 7.5

EM 1-D Example --- 2 iterations

n X ~ Multinomial Distribution, P(X=k ; θ) = θk

n Z ~ N(μk, Σk)

n Observed: z(1), z(2), …, z(m)

EM for Mixture of Gaussians

n E-step:

n M-step:

EM for Mixture of Gaussians

n Given samples

n Dynamics model:

n Observation model:

n ML objective:

à No simple decomposition into independent ML problems for each and each

à No closed form solution found by setting derivatives equal to zero

ML Objective HMM

à θ and γ computed from “soft” counts

EM for HMM --- M-step

n No need to find conditional full joint

n Run smoother to find:

EM for HMM --- E-step

n Linear Gaussian setting:

n Given

n ML objective:

n EM-derivation: same as HMM

ML Objective for Linear Gaussians

n Forward:

n Backward:

EM for Linear Gaussians --- E-Step

EM for Linear Gaussians --- M-step

n When running EM, it can be good to keep track of the log-
likelihood score --- it is supposed to increase every iteration

EM for Linear Gaussians --- The Log-likelihood

n As the linearization is only an approximation, when performing
the updates, we might end up with parameters that result in a
lower (rather than higher) log-likelihood score

n à Solution: instead of updating the parameters to the newly
estimated ones, interpolate between the previous parameters
and the newly estimated ones. Perform a “line-search” to find
the setting that achieves the highest log-likelihood score

EM for Extended Kalman Filter Setting

n Kalman smoothing

n Maximum a posteriori sequence

n Maximum likelihood

n Maximum a posteriori parameters

n Expectation maximization

Summary

