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Multivariate Gaussians



Multivariate Gaussians

(integral of vector = vector 
of integrals of each entry) 

(integral of matrix = matrix 
of integrals of each entry) 



§ µ = [1; 0]
§ S = [1  0; 0  1]

§ µ = [-.5; 0]
§ S = [1  0; 0  1]

§ µ = [-1; -1.5]
§ S = [1  0; 0  1]

Multivariate Gaussians: Examples



n µ = [0; 0]

n S = [1 0 ; 0 1]
§ µ = [0; 0]
§ S = [.6 0 ; 0 .6]

§ µ = [0; 0]
§ S = [2 0 ; 0 2]

Multivariate Gaussians: Examples



§ µ = [0; 0]
§ S = [1  0; 0  1]

§ µ = [0; 0]
§ S = [1  0.5; 0.5 1]

§ µ = [0; 0]
§ S = [1  0.8; 0.8  1]

Multivariate Gaussians: Examples



§ µ = [0; 0]
§ S = [1  0; 0  1]

§ µ = [0; 0]
§ S = [1  0.5; 0.5  1]

§ µ = [0; 0]
§ S = [1  0.8; 0.8  1]

Multivariate Gaussians: Examples



§ µ = [0; 0]
§ S = [1  -0.5 ; -0.5  1]

§ µ = [0; 0]
§ S = [1  -0.8 ; -0.8  1]

§ µ = [0; 0]
§ S = [3  0.8 ; 0.8  1]

Multivariate Gaussians: Examples



Partitioned Multivariate Gaussian
n Consider a multi-variate Gaussian and partition random vector into (X, Y).



Partitioned Multivariate Gaussian: Dual Representation

n Precision matrix

n Straightforward to verify from (1) that: 

n And swapping the roles of Sigma and Gamma:

(1)



Marginalization: p(x) = ?

We integrate out over y to find the marginal:

Hence we have:

Note: if we had known beforehand that p(x) would be a Gaussian distribution, then we could have found the result 
more quickly.  We would have just needed to find                    and ,  which we had available 
through



If

Then

Marginalization Recap



Self-quiz



Conditioning: p(x | Y = y0) = ?

We have

Hence we have:

• Conditional mean moved according to correlation and variance on measurement
• Conditional covariance does not depend on y0



If

Then

Conditioning Recap
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n Kalman Filter = special case of a Bayes’ filter with dynamics and sensory models linear Gaussians:

Kalman Filter

2 -1



Time update
n Assume we have current belief for           :

n Then, after one time step passes:
Xt+1Xt



n Now we can choose to continue by either of 
n (i) mold it into a standard multivariate Gaussian format so we can read of 

the joint distribution’s mean and covariance

n (ii) observe this is a quadratic form in x_{t} and x_{t+1} in the exponent; the 
exponent is the only place they appear; hence we know this is a 
multivariate Gaussian.  We directly compute its mean and covariance.  
[usually simpler!]

Time Update: Finding the joint                          



n We follow (ii) and find the means and covariance matrices in

[Exercise: Try to prove each of these without referring to this slide!]

Time Update: Finding the joint                          



Time Update Recap
n Assume we have

n Then we have

n Marginalizing the joint, we immediately get

Xt+1Xt



Generality!
n Assume we have

n Then we have

n Marginalizing the joint, we immediately get

WV



Observation update
n Assume we have:

n Then:

n And, by conditioning on                       (see lecture slides on Gaussians) we readily get:

Zt+1

Xt+1



n At time 0: 

n For t = 1, 2, …

n Dynamics update:

n Measurement update:

n Often written as:

Complete Kalman Filtering Algorithm

(Kalman gain)
“innovation”



Kalman Filter Summary

n Highly efficient: Polynomial in measurement dimensionality k
and state dimensionality n: 

O(k2.376 + n2)

n Optimal for linear Gaussian systems!
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Nonlinear Dynamical Systems
n Most realistic robotic problems involve nonlinear functions:

n Versus linear setting:



Linearity Assumption Revisited
y

y

x

x

p(x)

p(y)



Linearity Assumption Revisited
y

y

x

x

p(x)

p(y)



Non-linear Function

“Gaussian of p(y)” has 
mean and variance of y 
under p(y) 

yy

x

x

p(x)

p(y)



EKF Linearization (1)



EKF Linearization (2) 

p(x) has HIGH variance relative to region in 
which linearization is accurate. 



EKF Linearization (3)

p(x) has LOW variance relative to region in 
which linearization is accurate. 



n Dynamics model: for xt “close to” μt we have:

n Measurement model: for xt “close to” μt we have:

EKF Linearization: First Order Taylor Series Expansion



n At time 0: 

n For t = 1, 2, …

n Dynamics update:

n Measurement update:

EKF Algorithm



EKF Summary

n Highly efficient: Polynomial in measurement 
dimensionality k and state dimensionality n: 

O(k2.376 + n2)

n Not optimal!
n Can diverge if nonlinearities are large!
n Works surprisingly well even when all assumptions are 

violated!
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Linearization via Unscented Transform

EKF UKF



UKF Sigma-Point Estimate (2)

EKF UKF



UKF Sigma-Point Estimate (3)

EKF UKF



UKF Sigma-Point Estimate (4)



n Assume we know the distribution over X and it has a mean \bar{x}

n Y = f(X)

n EKF approximates f to first order and ignores higher-order terms

n UKF uses f exactly, but approximates p(x). 

UKF intuition why it can perform better
[Julier and Uhlmann, 1997]



n Picks a minimal set of sample points that match 1st, 2nd and 3rd moments of a Gaussian:

n \bar{x} = mean, Pxx = covariance, i à i’th column, x in Rn

n κ : extra degree of freedom to fine-tune the higher order moments of the approximation; when x is 
Gaussian, n+κ = 3 is a suggested heuristic

n L = \sqrt{P_{xx}} can be chosen to be any matrix satisfying:

n L LT = Pxx

Original Unscented Transform

[Julier and Uhlmann, 1997]



n Dynamics update:

n Can simply use unscented transform and estimate the mean and 
variance at the next time from the sample points

n Observation update:
n Use sigma-points from unscented transform to compute the covariance 

matrix between xt and zt.  Then can do the standard update.

Unscented Kalman filter



[Table 3.4 in Probabilistic Robotics]



UKF Summary

n Highly efficient: Same complexity as EKF, with a 
constant factor slower in typical practical applications 

n Better linearization than EKF: Accurate in first two 
terms of Taylor expansion (EKF only first term) + 
capturing more aspects of the higher order terms

n Derivative-free: No Jacobians needed

n Still not optimal!



n How to estimate At, Bt, Ct, Qt, Rt from data (z0:T, u0:T)

n EM algorithm

n How to compute (= smoothing) (note the capital “T”)

Forthcoming



n Square-root Kalman filter --- keeps track of square root of covariance matrices --- equally 
fast, numerically more stable (bit more complicated conceptually)

n Very large systems with sparsity structure

n Sparse Information Filter

n Very large systems with low-rank structure  

n Ensemble Kalman Filter

n Kalman filtering over SE(3)

n How to estimate At, Bt, Ct, Qt, Rt from data (z0:T, u0:T)

n EM algorithm

n How to compute (= smoothing) (note the capital “T”)

Things to be aware of (but we won’t cover)



n If At = A, Qt = Q, Ct = C, Rt = R  

n If system is “observable” then covariances and Kalman gain will converge to steady-state values for t -> 1
n Can take advantage of this: pre-compute them, only track the mean, which is done by multiplying Kalman gain with 

“innovation”

n System is observable if and only if the following holds true:  if there were zero noise you could determine 
the initial state after a finite number of time steps

n Observable if and only if:  rank( [ C ; CA ; CA2 ; CA3 ; … ; CAn-1]) = n

n Typically if a system is not observable you will want to add a sensor to make it observable

n Kalman filter can also be derived as the (recursively computed) least-squares solutions to a (growing) set of 
linear equations

Things to be aware of (but we won’t cover)



n If system is observable (=dual of controllable!) then Kalman filter will converge to the true state.

n System is observable if and only if:

O = [C ; CA ; CA2 ; … ; CAn-1]   is full column rank               (1)

Intuition: if no noise, we observe y0, y1, … and we have that the unknown initial state x0 satisfies:

y0 = C x0

y1 = CA x0

...

yK = CAK x0

This system of equations has a unique solution x0 iff the matrix [C; CA; … CAK] has full column rank.  B/c any power of 
a matrix higher than n can be written in terms of lower powers of the same matrix, condition (1) is sufficient to 
check (i.e., the column rank will not grow anymore after having reached K=n-1).

Kalman filter property


