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n Often the state of the robot and of its environment are unknown 
and only noisy sensors are available
n Probability provides a framework to fuse sensory information

à Result: probability distribution over possible states of robot and environment

n Dynamics is often stochastic, hence can’t optimize for a particular 
outcome, but only optimize to obtain a good distribution over 
outcomes  
n Probability provides a framework to reason in this setting

à Ability to find good control policies for stochastic dynamics and environments

Why probability in robotics?



n State: position, orientation, velocity, angular rate

n Sensors: 

n GPS : noisy estimate of position (sometimes also velocity)

n Inertial sensing unit: noisy measurements from 
(i) 3-axis gyro [=angular rate sensor], 
(ii) 3-axis accelerometer [measures acceleration + gravity; e.g., measures 

(0,0,0) in free-fall],
(iii) 3-axis magnetometer

n Dynamics:

n Noise from: wind, unmodeled dynamics in engine, servos, blades

Example 1: Helicopter



n State: position and heading

n Sensors:

n Odometry (=sensing motion of actuators): e.g., wheel encoders 

n Laser range finder: 
n Measures time of flight of a laser beam between departure and return 
n Return is typically happening when hitting a surface that reflects the beam 

back to where it came from

n Dynamics:
n Noise from: wheel slippage, unmodeled variation in floor

Example 2: Mobile robot inside building
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Axioms of Probability Theory

1)Pr(0 ££ A

Pr(Ω) =1

Pr(A∪B) = Pr(A)+Pr(B)−Pr(A∩B)

Pr(φ) = 0

Pr(A) denotes probability that the outcome ω is an element of 
the set of possible outcomes A. A is often called an event.  
Same for B.

Ω is the set of all possible outcomes.
ϕ is the empty set.



Using the Axioms

Pr(A∪ (Ω \ A)) = Pr(A)+Pr(Ω \ A)−Pr(A∩ (Ω \ A))
Pr(Ω) = Pr(A)+Pr(Ω \ A)−Pr(φ)
1 = Pr(A)+Pr(Ω \ A)− 0

Pr(Ω \ A) = 1−Pr(A)



Discrete Random Variables

n X denotes a random variable.

n X can take on a countable number of values in {x1, x2, …, xn}.

n P(X=xi), or P(xi), is the probability that the random variable X takes 
on value xi. 

n P(.) is called probability mass function.

n E.g., X models the outcome of a coin flip, x1 = head, x2 = tail, P( x1 ) 
= 0.5 , P( x2 ) = 0.5 

x1

Ω x2

x4
x3



Continuous Random Variables
n X takes on values in the continuum.

n p(X=x), or p(x), is a probability density function.

n E.g.
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Joint and Conditional Probability
n P(X=x and Y=y) = P(x,y)

n X and Y are independent iff
P(x,y) = P(x) P(y)

n P(x | y) is the probability of x given y
P(x | y) = P(x,y) / P(y)
P(x,y)   = P(x | y) P(y)

n If X and Y are independent then
P(x | y) = P(x)

n Same for probability densities, just P à p



Law of Total Probability, Marginals
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Bayes Rule

evidence
prior likelihood
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Normalization
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Conditioning
n Law of total probability:
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Bayes Rule with Background Knowledge
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Conditional Independence
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Simple Example of State Estimation

n Suppose a robot obtains measurement z

n What is P(open|z)?



Causal vs. Diagnostic Reasoning
n P(open|z) is diagnostic.

n P(z|open) is causal.

n Often causal knowledge is easier to obtain.

n Bayes rule allows us to use causal knowledge:
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Example
n P(z|open) = 0.6 P(z|¬open) = 0.3

n P(open) = P(¬open) = 0.5
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• z raises the probability that the door is open.

P(open | z) = P(z | open)P(open)
P(z)



Combining Evidence
n Suppose our robot obtains another observation z2.

n How can we integrate this new information?

n More generally, how can we estimate
P(x| z1...zn )?



Recursive Bayesian Updating
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Markov assumption: zn is independent of z1,...,zn-1 if we know x.

P(x | z1,…, zn) = P(zn | x) P(x | z1,…, zn − 1)
P(zn | z1,…, zn − 1)

=η P(zn | x) P(x | z1,…, zn − 1)
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Example: Second Measurement 

n P(z2|open) = 0.5 P(z2|¬open) = 0.6

n P(open|z1)=2/3
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• z2 lowers the probability that the door is open.



A Typical Pitfall
n Two possible locations 

x1 and x2

n P(x1)=0.99 

n P(z|x2)=0.09 
P(z|x1)=0.07 0
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Number of integrations

p(x2 | d)
p(x1 | d)

If measurements are not independent but are treated as independent
à can quickly end up overconfident 
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Actions

n Often the world is dynamic since

n actions carried out by the robot,

n actions carried out by other agents,

n or just the time passing by

change the world.

n How can we incorporate such actions?



Typical Actions
n The robot turns its wheels to move

n The robot uses its manipulator to grasp an object

n Plants grow over time…

n Actions are never carried out with absolute certainty.

n In contrast to measurements, actions generally increase the 
uncertainty. 



Modeling Actions
n To incorporate the outcome of an action u into the 

current “belief”, we use the conditional pdf

P(x’|u,x)

n This term specifies the pdf that executing u changes 
the state from x to x’.



Example: Closing the door



State Transitions
P(x’|u,x) for u = “close door”:

If the door is open, the action “close door” succeeds in 90% of all cases.

open closed0.1 1
0.9

0



Integrating the Outcome of Actions

P(x ' | u) = P(x ' | u, x)P(x)dx∫

P(x ' | u) = P(x ' | u, x)P(x)∑

Continuous case:

Discrete case:



Example: The Resulting Belief
P(closed | u) = P(closed | u, x)P(x)∑

= P(closed | u,open)P(open)
+P(closed | u,closed)P(closed)

=
9
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∗
5
8
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1
1
∗
3
8
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P(open | u) = P(open | u, x)P(x)∑
= P(open | u,open)P(open)
+P(open | u,closed)P(closed)

=
1
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∗
5
8
+
0
1
∗
3
8
=
1
16

=1−P(closed | u)



n Bayes rule

Measurements

P(x z) = P(z | x) P(x)
P(z)

=
likelihood ⋅prior

evidence



Bayes Filters: Framework
n Given:

n Stream of observations z and action data u:

n Sensor model P(z|x).

n Action model P(x’|u,x).

n Prior probability of the system state P(x).

n Wanted: 

n Estimate of the state X of a dynamical system.

n The posterior of the state is also called Belief: ),,,|()( 11 tttt zuzuxPxBel !=

},,,{ 11 ttt zuzud !=



Markov Assumption

Underlying Assumptions

n Static world

n Independent noise

n Perfect model, no approximation errors

p(xt | x1:t−1, z1:t−1,u1:t ) = p(xt | xt−1,ut )
p(zt | x0:t, z1:t−1,u1:t ) = p(zt | xt )
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Bayes Filters
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u = action
x = state
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1. h = 0

2. If d is a perceptual data item z then

3. For all x do

4.

5.

6. For all x do

7.

8. Else if d is an action data item u then

9. For all x do

10.

11. Return Bel’(x)

)()|()(' xBelxzPxBel =
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Bayes Filters



Summary

n Bayes rule allows us to compute probabilities that are hard to 
assess otherwise.

n Under the Markov assumption, recursive Bayesian updating can 
be used to efficiently combine evidence.

n Bayes filters are a probabilistic tool for estimating the state of 
dynamic systems.



Example: Robot Localization

t=0 10Prob

Example from 
Michael Pfeiffer

Sensor model: never more than 1 mistake

Know the heading (North, East, South or West)

Motion model: may not execute action with 
small prob.



Example: Robot Localization

t=1
10Prob

Lighter grey: was possible to get 
the reading, but less likely b/c 

required 1 mistake



Example: Robot Localization

t=2

10Prob



Example: Robot Localization

t=3

10Prob



Example: Robot Localization

t=4

10Prob



Example: Robot Localization

t=5

10Prob



Outline

n Probability Review

n Bayes Filters

n Gaussians



n Univariate Gaussian

n Multivariate Gaussian

n Law of Total Probability

n Conditioning (Bayes’ rule)

Disclaimer: lots of linear algebra in next few lectures.  See course homepage for 
pointers for brushing up your linear algebra.  

In fact, pretty much all computations with Gaussians will be reduced to linear algebra!

Gaussians -- Outline



Univariate Gaussian
n Gaussian distribution with mean µ, and standard deviation s:



n Densities integrate to one: 

n Mean:

n Variance:

Properties of Gaussians



Central limit theorem (CLT)
n Classical CLT:

n Let X1, X2, … be an infinite sequence of independent random variables 
with E Xi = µ, E(Xi - µ)2 = s2

n Define Zn =  ((X1 + … + Xn) – n µ) / (s n1/2)

n Then for the limit of n going to infinity we have that Zn is distributed 
according to N(0,1)

n Crude statement: random variables that result from the 
addition of lots of small effects are well captured by a Gaussian.



Multivariate Gaussians



Multivariate Gaussians

(integral of vector = vector 
of integrals of each entry) 

(integral of matrix = matrix 
of integrals of each entry) 



§ µ = [1; 0]
§ S = [1  0; 0  1]

§ µ = [-.5; 0]
§ S = [1  0; 0  1]

§ µ = [-1; -1.5]
§ S = [1  0; 0  1]

Multivariate Gaussians: Examples



n µ = [0; 0]

n S = [1 0 ; 0 1]
§ µ = [0; 0]
§ S = [.6 0 ; 0 .6]

§ µ = [0; 0]
§ S = [2 0 ; 0 2]

Multivariate Gaussians: Examples



§ µ = [0; 0]
§ S = [1  0; 0  1]

§ µ = [0; 0]
§ S = [1  0.5; 0.5 1]

§ µ = [0; 0]
§ S = [1  0.8; 0.8  1]

Multivariate Gaussians: Examples



§ µ = [0; 0]
§ S = [1  0; 0  1]

§ µ = [0; 0]
§ S = [1  0.5; 0.5  1]

§ µ = [0; 0]
§ S = [1  0.8; 0.8  1]

Multivariate Gaussians: Examples



§ µ = [0; 0]
§ S = [1  -0.5 ; -0.5  1]

§ µ = [0; 0]
§ S = [1  -0.8 ; -0.8  1]

§ µ = [0; 0]
§ S = [3  0.8 ; 0.8  1]

Multivariate Gaussians: Examples



Partitioned Multivariate Gaussian
n Consider a multi-variate Gaussian and partition random vector into (X, Y).



Partitioned Multivariate Gaussian: Dual Representation

n Precision matrix

n Straightforward to verify from (1) that: 

n And swapping the roles of Sigma and Gamma:

(1)



Marginalization: p(x) = ?

We integrate out over y to find the marginal:

Hence we have:

Note: if we had known beforehand that p(x) would be a Gaussian distribution, then we could have found the result 
more quickly.  We would have just needed to find                    and ,  which we had available 
through



If

Then

Marginalization Recap



Self-quiz



Conditioning: p(x | Y = y0) = ?

We have

Hence we have:

• Conditional mean moved according to correlation and variance on measurement
• Conditional covariance does not depend on y0



If

Then

Conditioning Recap


