# CS 287 Advanced Robotics (Fall 2019) Lecture 9: Motion Planning

Lecture by: Huazhe (Harry) Xu Slides by: Pieter Abbeel UC Berkeley EECS

# **Motion Planning**

#### Problem

- Given start state X<sub>S</sub>, goal state X<sub>G</sub>
- Asked for: a sequence of control inputs that leads from start to goal
- Why tricky?
  - Need to avoid obstacles
  - For systems with underactuated dynamics: can't simply move along any coordinate at will
    - E.g., car, helicopter, airplane, but also robot manipulator hitting joint limits



Helicopter path planning



Cartpole swing-up



Acrobot













### Motion Planning: Outline

- Configuration Space
- Optimization-based Motion Planning
- Sampling-based Motion Planning
  - Probabilistic Roadmap
  - Rapidly-exploring Random Trees (RRTs)
  - Smoothing

### Motion Planning: Outline

- Configuration Space
- Optimization-based Motion Planning
- Sampling-based Motion Planning
  - Probabilistic Roadmap
  - Rapidly-exploring Random Trees (RRTs)
  - Smoothing

# Motion planning





# Configuration Space (C-Space)

- $= \{ x \mid x \text{ is a pose of the robot} \}$
- obstacles → configuration space obstacles



### Motion Planning: Outline

- Configuration Space
- Optimization-based Motion Planning
- Sampling-based Motion Planning
  - Probabilistic Roadmap
  - Rapidly-exploring Random Trees (RRTs)
  - Smoothing

# Optimization-based Motion Planning

- Reactive control
  - Potential-based methods (Khatib '86)
- Optimize over entire trajectory
  - Elastic bands (Quinlan and Khatib '93)
  - CHOMP (Ratliff et al. '09) and variants (STOMP, ITOMP)
  - Trajopt (Schulman, et al 2013)

### Solve by Nonlinear Optimization for Control?

Could try by, for example, following formulation:

$$\min_{u,x} \quad (x_T - x_G)^{\top} (x_T - x_G)$$
 s.t.  $x_{t+1} = f(x_t, u_t) \quad \forall t$   $u_t \in \mathcal{U}_t$   $x_t \in \mathcal{X}_t$   $\mathcal{X}_t$  can encode obstacles  $x_0 = x_S$ 

Or, with constraints, (which would require using an infeasible method):

```
\min_{u,x} \quad ||u||
s.t. x_{t+1} = f(x_t, u_t) \quad \forall t
u_t \in \mathcal{U}_t
x_t \in \mathcal{X}_t
x_0 = x_S
X_T = x_G
```

# **Trajectory Optimization**

$$\min_{\theta_{1:T}} \quad \sum_{t} \|\theta_{t+1} - \theta_{t}\|^{2} + \text{other costs}$$

$$heta_{1:T}$$
  $extstyle heta_t$   $heta_{1:T}$  subject to  $heta_0$  = start state,  $heta_T$  in goal set

joint limits

for all robot parts, for all obstacles:

#### **Collision Constraints**



$$sd_{AB}(\theta) \approx \hat{n} \cdot (p_B - p_A(\theta))$$
$$\approx sd_{AB}(\theta_0) - \hat{n}^{\mathsf{T}} J_{P_A}(\theta_0)(\theta - \theta_0)$$

[SD from: Gilbert-Johnson-Keerthi (GJK) algorithm and Expanding Polytope Algorithm (EPA)]

### Penalty for Collision Constraints



$$sd_{AB}(\theta) \approx \hat{n} \cdot (p_B - p_A(\theta))$$
  
 $\approx sd_{AB}(\theta_0) - \hat{n}^{\top} J_{P_A}(\theta_0)(\theta - \theta_0)$ 

# Collision Constraint as L1 Penalty



# Collision Constraint as L1 Penalty



# **Continuous-Time Safety**



Collision check against swept-out volume

- Allows coarsely sampling trajectory
  - Overall faster
- Finds better local optima

#### Collision-free Path for Dubin's Car



# **Experiments: Industrial Box Picking**



# **Experiments: DRC Robot**



#### Benchmark

7 DOF (one arm) 198 problems



18 DOF (two arms + base + torso)
96 problems



example scene (taken from Movelt collection)

example scene (imported from Trimble 3d Warehouse / Google Sketchup)

#### **Benchmark Results**

| Arm planning (7 DOF) 10s limit |         |           |       |  |
|--------------------------------|---------|-----------|-------|--|
|                                | Trajopt | BiRRT (*) | CHOMP |  |
| success                        | 99%     | 97%       | 85%   |  |
| time (s)                       | 0.32    | 1.2       | 6.0   |  |
| path length                    | 1.2     | 1.6       | 2.6   |  |

| Full body (18 DOF) 30s limit |         |           |            |  |
|------------------------------|---------|-----------|------------|--|
|                              | Trajopt | BiRRT (*) | CHOMP (**) |  |
| success                      | 84%     | 53%       | N/A        |  |
| time (s)                     | 7.6     | 18        | N/A        |  |
| path length                  | 1.1     | 1.6       | N/A        |  |

(\*) Top-performing algorithm from Movelt/OMPL (\*\*) Not supported in available implementation

[RSS 2013]

### **Experiments: PR2**



#### Steerable Needle



Steerable needles inside phantom tissue



Steerable needles navigate around sensitive structures (simulated)

#### Steerable Needle



Bevel-tip



Highly flexible

[Webster, Okamura, Cowan, Chirikjian, Goldberg, Alterovitz United States Patent 7,822,458. 2010]



# Steerable Needle: Opt Formulation



### Steerable Needle: Plans





(a) Smaller clearance from obstacles (Cowper's glands) with  $\alpha_{\mathcal{O}}=1$ .



(b) Larger clearance from obstacles with  $\alpha_{\mathcal{O}} = 10$ .

#### Steerable Needle: Results

|             | RRT             | collocation $\alpha_{\mathcal{O}} = 1$ | shooting $\alpha_{\mathcal{O}} = 1$ | collocation $\alpha_{\mathcal{O}} = 10$ | shooting $\alpha_{\mathcal{O}} = 10$ |
|-------------|-----------------|----------------------------------------|-------------------------------------|-----------------------------------------|--------------------------------------|
| solved%     | 67.3%           | 76.0%                                  | 80.3%                               | 79.0%                                   | 89.5%                                |
| time (s)    | $9.8 \pm 8.1$   | $1.8 \pm 1.2$                          | $1.6\pm1.7$                         | $1.9\pm1.3$                             | $1.8 \pm 1.7$                        |
| path length | $11.1\pm1.5$    | $11.3\pm1.4$                           | $11.6\pm1.7$                        | $11.9 \pm 1.7$                          | $13.1 \pm 2.3$                       |
| twist cost  | $34.9 \pm 10.0$ | $1.4 \pm 1.4$                          | $1.0\pm1.0$                         | $1.6 \pm 1.6$                           | $1.0 \pm 1.0$                        |
| clearance   | $0.5 \pm 0.4$   | $0.7 \pm 0.5$                          | $0.5 \pm 0.3$                       | $1.3 \pm 0.4$                           | $1.2 \pm 0.5$                        |

Performance of our approach on the single needle planning case.

Why is minimizing twist important?



# Channel Layout (Brachytherapy Implants)





# **Channel Layout: Opt Formulation**

$$\min_{\bar{\mathcal{X}},\mathcal{U}} \alpha_{\Delta} \text{Cost}_{\Delta} + \alpha_{\phi} \text{Cost}_{\phi} + \alpha_{\mathcal{O}} \text{Cost}_{\mathcal{O}},$$

s.t. 
$$\log((X_t \cdot \exp(\mathbf{w}_t^{\wedge}) \cdot \exp(\mathbf{v}_t^{\wedge}))^{-1} \cdot X_{t+1})^{\vee} = \mathbf{0}_6,$$

$$\operatorname{sd}(X_t, X_{t+1}, \mathcal{O}_i) \ge d_{\operatorname{safe}} + d_{\operatorname{arc}},$$

$$X_0 \in Q_{\mathrm{entry}}, \ X_T \in Q_{\mathrm{target}},$$

$$-\pi \leq \phi_t \leq \pi$$
,

$$0 \le \kappa_t \le \kappa_{\max}$$

$$\Delta \sum_{t=0}^{T-1} \kappa_t \le c_{\max}$$
 for channel planning,



# Channel Layout: Results

|             | RRT             | backward shooting |
|-------------|-----------------|-------------------|
| solved%     | 74.0%           | 98.0%             |
| time (s)    | $30.8 \pm 17.9$ | $27.7 \pm 9.8$    |
| path length | $41.3 \pm 0.3$  | $38.9 \pm 0.1$    |
| twist cost  | $65.5 \pm 8.4$  | $4.1 \pm 1.1$     |

Performance of our approach on the channel layout planning



# Try It Yourself

Code and docs: rll.berkeley.edu/trajopt

Benchmark: github.com/joschu/planning\_benchmark









# Experiments: PR2

### PR2 Obstacle Course

DOFs: Base, Torso, Arms

### Motion Planning: Outline

- Configuration Space
- Optimization-based Motion Planning
- Sampling-based Motion Planning
  - Probabilistic Roadmap
  - Rapidly-exploring Random Trees (RRTs)
  - Smoothing



Configurations are sampled by picking coordinates at random



Configurations are sampled by picking coordinates at random



Sampled configurations are tested for collision



The collision-free configurations are retained as milestones



Each milestone is linked by straight paths to its nearest neighbors



Each milestone is linked by straight paths to its nearest neighbors



The collision-free links are retained as local paths to form the PRM



The start and goal configurations are included as milestones



The PRM is searched for a path from s to g



### Probabilistic Roadmap

- Initialize set of points with X<sub>S</sub> and X<sub>G</sub>
- Randomly sample points in configuration space
- Connect nearby points if they can be reached from each other
- Find path from X<sub>S</sub> to X<sub>G</sub> in the graph

 Alternatively: keep track of connected components incrementally, and declare success when X<sub>S</sub> and X<sub>G</sub> are in same connected component

# PRM Example 1



# PRM Example 2



### Sampling

- How to sample uniformly at random from [0,1]<sup>n</sup>?
  - Sample uniformly at random from [0,1] for each coordinate

- How to sample uniformly at random from the surface of the n-D unit sphere?
  - Sample from n-D Gaussian → isotropic; then just normalize

How to sample uniformly at random for orientations in 3-D?

### PRM: Challenges

1. Connecting neighboring points: Only easy for holonomic systems (i.e., for which you can move each degree of freedom at will at any time). Generally requires solving a Boundary Value Problem

$$\min_{u,x} \quad ||u||$$
s.t. 
$$x_{t+1} = f(x_t, u_t) \quad \forall t$$

$$u_t \in \mathcal{U}_t$$

$$x_t \in \mathcal{X}_t$$

$$x_0 = x_S$$

$$X_T = x_G$$

Typically solved without collision checking; later verified if valid by collision checking

2. Collision checking:

Often takes majority of time in applications (see Lavalle)

### PRM's Pros and Cons

#### Pro:

 Probabilistically complete: i.e., with probability one, if run for long enough the graph will contain a solution path if one exists.

#### Cons:

- Required to solve 2-point boundary value problem
- Build graph over entire state space, which might be unnecessarily expensive when what's needed is connecting specific start and goal

### Motion Planning: Outline

- Configuration Space
- Optimization-based Motion Planning
- Sampling-based Motion Planning
  - Probabilistic Roadmap
  - Rapidly-exploring Random Trees (RRTs)
  - Smoothing

#### Steve LaValle (98)

- Basic idea:
  - Build up a tree through generating "next states" in the tree by executing random controls
  - However: not exactly above to ensure good coverage

```
GENERATE_RRT(x_{init}, K, \Delta t)
      \mathcal{T}.\mathrm{init}(x_{init});
       for k = 1 to K do
              x_{rand} \leftarrow \text{RANDOM\_STATE}();
              x_{near} \leftarrow \text{NEAREST\_NEIGHBOR}(x_{rand}, \mathcal{T});
  5
              u \leftarrow \text{SELECT\_INPUT}(x_{rand}, x_{near});
              x_{new} \leftarrow \text{NEW\_STATE}(x_{near}, u, \Delta t);
              \mathcal{T}.\mathrm{add\_vertex}(x_{new});
              \mathcal{T}.add_edge(x_{near}, x_{new}, u);
  9
        Return \mathcal{T}
```

RANDOM\_STATE(): often uniformly at random over space with probability 99%, and the goal state with probability 1%, this ensures it attempts to connect to goal semi-regularly SELECT\_INPUT(): often a few inputs are sampled, and one that results in  $x_n$  ew closest to  $x_n$  and is retained; sometimes optimization is run to find the best input

- Select random point, and expand nearest vertex towards it
  - Biases samples towards largest Voronoi region



Source: LaValle and Kuffner 01

### **RRT Practicalities**

- NEAREST\_NEIGHBOR(X<sub>rand</sub>, T): need to find (approximate) nearest neighbor efficiently
  - KD Trees data structure (upto 20-D) [e.g., FLANN]
  - Locality Sensitive Hashing

- SELECT\_INPUT(x<sub>rand</sub>, x<sub>near</sub>)
  - Two point boundary value problem
    - If too hard to solve, often just select best out of a set of control sequences.
       This set could be random, or some well chosen set of primitives.

#### RRT Extension

No obstacles, holonomic:



With obstacles, holonomic:



 Non-holonomic: approximately solve two-point boundary value problem (often rough approximation: pick best of a few random control sequences)

# **Growing RRT**



 $Demo: http://en.wikipedia.org/wiki/File: Rapidly-exploring\_Random\_Tree\_(RRT)\_500x373.gif$ 

### **Bi-directional RRT**

Volume swept out by unidirectional RRT:



Volume swept out by bi-directional RRT:



Difference more and more pronounced as dimensionality increases

### Multi-directional RRT

 Planning around obstacles or through narrow passages can often be easier in one direction than the other



### Resolution-Complete RRT (RC-RRT)

 Issue: nearest points chosen for expansion are (too) often the ones stuck behind an obstacle



#### **RC-RRT** solution:

- Choose a maximum number of times, m, you are willing to try to expand each node
- For each node in the tree, keep track of its Constraint Violation Frequency (CVF)
- Initialize CVF to zero when node is added to tree
- Whenever an expansion from the node is unsuccessful (e.g., per hitting an obstacle):
  - Increase CVF of that node by I
  - Increase CVF of its parent node by I/m, its grandparent I/m<sup>2</sup>, ...
- When a node is selected for expansion, skip over it with probability CVF/m

```
Algorithm 6: RRT*
 1 V \leftarrow \{x_{\text{init}}\}; E \leftarrow \emptyset;
  2 for i = 1, ..., n do
            x_{\text{rand}} \leftarrow \text{SampleFree}_i;
         x_{\text{nearest}} \leftarrow \texttt{Nearest}(G = (V, E), x_{\text{rand}});
         x_{\text{new}} \leftarrow \text{Steer}(x_{\text{nearest}}, x_{\text{rand}});
            if ObtacleFree(x_{\text{nearest}}, x_{\text{new}}) then
                   X_{\text{near}} \leftarrow \text{Near}(G = (V, E), x_{\text{new}}, \min\{\gamma_{\text{RRT}^*}(\log(\text{card}(V)) / \text{card}(V))^{1/d}, \eta\});
                  V \leftarrow V \cup \{x_{\text{new}}\};
                   x_{\min} \leftarrow x_{\text{nearest}}; c_{\min} \leftarrow \texttt{Cost}(x_{\text{nearest}}) + c(\texttt{Line}(x_{\text{nearest}}, x_{\text{new}}));
                                                                      // Connect along a minimum-cost path
                   for each x_{\text{near}} \in X_{\text{near}} do
10
                         if CollisionFree(x_{\text{near}}, x_{\text{new}}) \land \text{Cost}(x_{\text{near}}) + c(\text{Line}(x_{\text{near}}, x_{\text{new}})) < c_{\text{min}} then
11
                                x_{\min} \leftarrow x_{\text{near}}; c_{\min} \leftarrow \texttt{Cost}(x_{\text{near}}) + c(\texttt{Line}(x_{\text{near}}, x_{\text{new}}))
12
                   E \leftarrow E \cup \{(x_{\min}, x_{\text{new}})\}:
13
                   foreach x_{\text{near}} \in X_{\text{near}} do
                                                                                                                                                  // Rewire the tree
14
                          \textbf{if CollisionFree}(x_{\text{new}}, x_{\text{near}}) \land \texttt{Cost}(x_{\text{new}}) + c(\texttt{Line}(x_{\text{new}}, x_{\text{near}})) < \texttt{Cost}(x_{\text{near}})
15
                         then x_{\text{parent}} \leftarrow \text{Parent}(x_{\text{near}});
                         E \leftarrow (E \setminus \{(x_{\text{parent}}, x_{\text{near}})\}) \cup \{(x_{\text{new}}, x_{\text{near}})\}
16
|17 return G = (V, E):
```

- Asymptotically optimal
- Main idea:
  - Swap new point in as parent for nearby vertices who can be reached along shorter path through new point than through their original (current) parent



Source: Karaman and Frazzoli



### RRT\* Kinodynamics

- Requires 2-point boundary value problem solution for optimality
- Li, Littlefield, Bekris 2014 proved that you can get asymptotic optimality from random sampling control trajectories in an RRT like fashion (Naïve Random Tree), without solving a 2point boundary value problem
- They also show that using pruning can make this efficient in an algorithm called SST\*

### PRM\* Probabilistic Bounds

- Dobson, Moustakides, Bekris 2014
- Gave finite time bounds for the current best path I<sub>n</sub> being within a certain threshold of the optimal cost length I<sub>n</sub>\* for a fixed delta of the form:

$$\mathbb{P}(|I_n - I_{\epsilon_n}^{\star}| \leq \delta \cdot I_{\epsilon_n}^{\star}) \leq \mathbb{P}_{success}$$

## LQR-trees (Tedrake, IJRR 2010)

 Idea: grow a randomized tree of stabilizing controllers to the goal

Like RRT

 Can discard sample points in already stabilized region



### LQR-trees (Tedrake)

#### Algorithm 1 LQR-tree $(\mathbf{f}, \mathbf{x}_G, \mathbf{u}_G, \mathbf{Q}, \mathbf{R})$ 1: $[\mathbf{A}, \mathbf{B}] \Leftarrow \text{linearization of } \mathbf{f}(\mathbf{x}, \mathbf{u}) \text{ around } (\mathbf{x}_G, \mathbf{u}_G)$ 2: $[K, S] \Leftarrow LQR(A, B, Q, R)$ 3: $\rho_c \Leftarrow$ level set computed as described in §3.1.1 4: T.init( $\{\mathbf{x}_g, \mathbf{u}_g, \mathbf{S}, \mathbf{K}, \rho_c, \text{NULL}\}$ ) 5: **for** k = 1 to K **do** $\mathbf{x}_{\text{rand}} \Leftarrow \text{random sample}$ if $\mathbf{x}_{\text{rand}} \in \mathcal{C}_k$ then continue end if 9: $[t, \mathbf{x}_0(t), \mathbf{u}_0(t)]$ from trajectory optimization with a "final tree constraint" if $\mathbf{x}_0(t_f) \notin \mathcal{T}_k$ then 11: continue 12: end if 13: 14: $[\mathbf{K}(t), \mathbf{S}(t)]$ from time-varying LQR $\rho_c \Leftarrow$ level set computed as in §3.1.1 $i \Leftarrow \text{pointer to branch in } T \text{ containing } \mathbf{x}_0(t_f)$ 16: T.add-branch( $\mathbf{x}_0(t)$ , $\mathbf{u}_0(t)$ , $\mathbf{S}(t)$ , $\mathbf{K}(t)$ , $\rho_c$ , i) 17:

18: **end for** 

Ck: stabilized region after iteration k

## LQR-trees (Tedrake)



### Motion Planning: Outline

- Configuration Space
- Optimization-based Motion Planning
- Sampling-based Motion Planning
  - Probabilistic Roadmap
  - Rapidly-exploring Random Trees (RRTs)
  - Smoothing

### Smoothing

Randomized motion planners tend to find not so great paths for execution: very jagged, often much longer than necessary.

→ In practice: do smoothing before using the path

#### Shortcutting:

along the found path, pick two vertices X<sub>t1</sub>, X<sub>t2</sub> and try to connect them directly (skipping over all intermediate vertices)

#### Nonlinear optimization for optimal control (trajopt)

 Allows to specify an objective function that includes smoothness in state, control, small control inputs, etc.