
CS 287 Advanced Robotics (Fall 2019)
Lecture 9: Motion Planning

Lecture by: Huazhe (Harry) Xu
Slides by: Pieter Abbeel

UC Berkeley EECS

Many images from Lavalle, Planning Algorithms

n Problem

n Given start state xS, goal state xG

n Asked for: a sequence of control inputs that leads from start to goal

n Why tricky?
n Need to avoid obstacles

n For systems with underactuated dynamics: can’t simply move along
any coordinate at will

n E.g., car, helicopter, airplane, but also robot manipulator hitting joint limits

Motion Planning

Examples

Helicopter path
planning

Cartpole swing-up Acrobot

Examples

Examples

Examples

n Configuration Space

n Optimization-based Motion Planning

n Sampling-based Motion Planning

n Probabilistic Roadmap

n Rapidly-exploring Random Trees (RRTs)

n Smoothing

Motion Planning: Outline

n Configuration Space

n Optimization-based Motion Planning

n Sampling-based Motion Planning

n Probabilistic Roadmap

n Rapidly-exploring Random Trees (RRTs)

n Smoothing

Motion Planning: Outline

Motion planning

= { x | x is a pose of the robot}

n obstacles à configuration space obstacles

Configuration Space (C-Space)

Workspace Configuration Space

(2 DOF: translation only, no rotation)

free space
obstacles

n Configuration Space

n Optimization-based Motion Planning

n Sampling-based Motion Planning

n Probabilistic Roadmap

n Rapidly-exploring Random Trees (RRTs)

n Smoothing

Motion Planning: Outline

n Reactive control

n Potential-based methods (Khatib ‘86)

n Optimize over entire trajectory
n Elastic bands (Quinlan and Khatib ‘93)

n CHOMP (Ratliff et al. ‘09) and variants (STOMP, ITOMP)

n Trajopt (Schulman, et al 2013)

Optimization-based Motion Planning

n Could try by, for example, following formulation:

n Or, with constraints, (which would require using an infeasible method):

Solve by Nonlinear Optimization for Control?

can encode obstacles

= start state, in goal set

joint limits

for all robot parts, for all obstacles:
no collision

Trajectory Optimization

non-convex

Solution method: sequential convex optimization

min
�1:T

X

t

k✓t+1 � ✓tk2 + other costs

subject to ✓0 ✓T

Collision Constraints

[SD from: Gilbert-Johnson-Keerthi (GJK) algorithm and Expanding Polytope Algorithm (EPA)]

A

B

A
BT

pA

pB

T
pA

pB

sd > 0 sd < 0

Tuesday, January 29, 13

sdAB(�) ⇥ n̂ · (pB � pA(�))

⇥ sdAB(�0)� n̂>JPA(�0)(� � �0)

Penalty for Collision Constraints

sdAB(�) ⇥ n̂ · (pB � pA(�))

⇥ sdAB(�0)� n̂>JPA(�0)(� � �0)

penalty

dcheckdsafe0
sd

Saturday, February 2, 13

Collision Constraint as L1 Penalty

Collision Constraint as L1 Penalty

Collision check against swept-out volume

n Allows coarsely sampling trajectory
n Overall faster

n Finds better local optima

Continuous-Time Safety

Collision-free Path for Dubin’s Car

Experiments: Industrial Box Picking

Experiments: DRC Robot

Benchmark

Benchmark Results

[RSS 2013]

Experiments: PR2

Steerable Needle

Steerable Needle

Steerable Needle: Opt Formulation

Steerable Needle: Plans

Steerable Needle: Results

Channel Layout (Brachytherapy Implants)

Channel Layout: Opt Formulation

Channel Layout: Results

n Code and docs: rll.berkeley.edu/trajopt

n Benchmark: github.com/joschu/planning_benchmark

Try It Yourself

Experiments: PR2

n Configuration Space

n Optimization-based Motion Planning

n Sampling-based Motion Planning

n Probabilistic Roadmap

n Rapidly-exploring Random Trees (RRTs)

n Smoothing

Motion Planning: Outline

Probabilistic Roadmap (PRM)
Free/feasible spaceSpace Ân forbidden space

Configurations are sampled by picking coordinates at random

Probabilistic Roadmap (PRM)

Probabilistic Roadmap (PRM)
Configurations are sampled by picking coordinates at random

Sampled configurations are tested for collision

Probabilistic Roadmap (PRM)

The collision-free configurations are retained as milestones

Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its nearest neighbors

Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its nearest neighbors

Probabilistic Roadmap (PRM)

The collision-free links are retained as local paths to form the PRM

Probabilistic Roadmap (PRM)

s

g

The start and goal configurations are included as milestones

Probabilistic Roadmap (PRM)

The PRM is searched for a path from s to g

s

g

Probabilistic Roadmap (PRM)

n Initialize set of points with xS and xG

n Randomly sample points in configuration space

n Connect nearby points if they can be reached from each other

n Find path from xS to xG in the graph

n Alternatively: keep track of connected components incrementally, and
declare success when xS and xG are in same connected component

Probabilistic Roadmap

PRM Example 1

PRM Example 2

n How to sample uniformly at random from [0,1]n ?

n Sample uniformly at random from [0,1] for each coordinate

n How to sample uniformly at random from the surface of the n-
D unit sphere?

n Sample from n-D Gaussian à isotropic; then just normalize

n How to sample uniformly at random for orientations in 3-D?

Sampling

1. Connecting neighboring points: Only easy for holonomic systems (i.e., for which
you can move each degree of freedom at will at any time). Generally requires
solving a Boundary Value Problem

2. Collision checking:

Often takes majority of time in applications (see Lavalle)

PRM: Challenges

Typically solved without collision
checking; later verified if valid by
collision checking

n Pro:

n Probabilistically complete: i.e., with probability one, if run for long
enough the graph will contain a solution path if one exists.

n Cons:
n Required to solve 2-point boundary value problem

n Build graph over entire state space, which might be unnecessarily
expensive when what’s needed is connecting specific start and goal

PRM’s Pros and Cons

n Configuration Space

n Optimization-based Motion Planning

n Sampling-based Motion Planning

n Probabilistic Roadmap

n Rapidly-exploring Random Trees (RRTs)

n Smoothing

Motion Planning: Outline

Rapidly exploring Random Tree (RRT)
Steve LaValle (98)

n Basic idea:
n Build up a tree through generating “next states” in the tree by

executing random controls

n However: not exactly above to ensure good coverage

RANDOM_STATE(): often uniformly at random over space with probability 99%, and the goal
state with probability 1%, this ensures it attempts to connect to goal semi-regularly
SELECT_INPUT(): often a few inputs are sampled, and one that results in x_new closest to
x_rand is retained; sometimes optimization is run to find the best input

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)
n Select random point, and expand nearest vertex towards it

n Biases samples towards largest Voronoi region

Rapidly exploring Random Tree (RRT)

Source: LaValle and Kuffner 01

n NEAREST_NEIGHBOR(xrand, T): need to find (approximate)
nearest neighbor efficiently
n KD Trees data structure (upto 20-D) [e.g., FLANN]

n Locality Sensitive Hashing

n SELECT_INPUT(xrand, xnear)
n Two point boundary value problem

n If too hard to solve, often just select best out of a set of control sequences.
This set could be random, or some well chosen set of primitives.

RRT Practicalities

n No obstacles, holonomic:

n With obstacles, holonomic:

n Non-holonomic: approximately solve two-point boundary value problem
(often rough approximation: pick best of a few random control sequences)

RRT Extension

Growing RRT

Demo: http://en.wikipedia.org/wiki/File:Rapidly-exploring_Random_Tree_(RRT)_500x373.gif

n Volume swept out by unidirectional RRT:

xS

Bi-directional RRT

xG xS xG

n Volume swept out by bi-directional RRT:

n Difference more and more pronounced as dimensionality increases

n Planning around obstacles or through narrow passages can
often be easier in one direction than the other

Multi-directional RRT

n Issue: nearest points chosen for expansion are
(too) often the ones stuck behind an obstacle

Resolution-Complete RRT (RC-RRT)

RC-RRT solution:

n Choose a maximum number of times, m, you are willing to try to expand each node

n For each node in the tree, keep track of its Constraint Violation Frequency (CVF)

n Initialize CVF to zero when node is added to tree

n Whenever an expansion from the node is unsuccessful (e.g., per hitting an obstacle):

n Increase CVF of that node by 1

n Increase CVF of its parent node by 1/m, its grandparent 1/m2, …

n When a node is selected for expansion, skip over it with probability CVF/m

RRT*

Source: Karaman and Frazzoli

n Asymptotically optimal

n Main idea:
n Swap new point in as parent for nearby vertices who can be reached

along shorter path through new point than through their original
(current) parent

RRT*

RRT*

Source: Karaman and Frazzoli

RRT

RRT*

RRT*

Source: Karaman and Frazzoli

RRT RRT*

n Requires 2-point boundary value problem solution for
optimality

n Li, Littlefield, Bekris 2014 proved that you can get asymptotic
optimality from random sampling control trajectories in an
RRT like fashion (Naïve Random Tree), without solving a 2-
point boundary value problem

n They also show that using pruning can make this efficient in an
algorithm called SST*

RRT* Kinodynamics

n Dobson, Moustakides, Bekris 2014

n Gave finite time bounds for the current best path In being
within a certain threshold of the optimal cost length In

* for a
fixed delta of the form:

PRM* Probabilistic Bounds

n Idea: grow a randomized tree of
stabilizing controllers to the goal

n Like RRT

n Can discard sample points in already
stabilized region

LQR-trees (Tedrake, IJRR 2010)

LQR-trees (Tedrake)
Ck: stabilized
region after
iteration k

LQR-trees (Tedrake)

n Configuration Space

n Optimization-based Motion Planning

n Sampling-based Motion Planning

n Probabilistic Roadmap

n Rapidly-exploring Random Trees (RRTs)

n Smoothing

Motion Planning: Outline

Randomized motion planners tend to find not so great paths for
execution: very jagged, often much longer than necessary.

à In practice: do smoothing before using the path

n Shortcutting:
n along the found path, pick two vertices xt1, xt2 and try to connect them

directly (skipping over all intermediate vertices)

n Nonlinear optimization for optimal control (trajopt)
n Allows to specify an objective function that includes smoothness in

state, control, small control inputs, etc.

Smoothing

