Machine Learning, 22, 59-94 (1996)
& 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Feature-Based Methods
for Large Scale Dynamic Programming

JOHN N. TSITSIKTLIS AND BENTAMIN VAN ROY nt@mit edu, bve@mitedy

Laboratory for informaiion and Decision Systems
Massachuserts Institute of Techrnology, Cambridge, MA 02139

Editor: Leslie Pack Kaelbling

Abstract. We develop a methodological framework and present a few different ways in which dynamic
programming and compact representations can he comhined o solve large srale stochastic control problems
In particular, we dcv‘elop algorithms that employ two types of feature-based compact representations; that is,
representations that invelve feature extraction and a relatively simple approximation architecture. We prove
the convergence of these algorithms and provide bounds on the approximation error. As an example, one of
these algorithms is used to gencrate a stratcgy for the game of Tetris. Furthcrmore, we provide a countor-
example illustrating the difficulties of integrating compact representations with dynamic programming, which
exemplifies the shontcomings of cenain simple approaches.

Keywords: Compact representation. curse of dimensionality, dynamic programming, features, fonction ap-
proximation, neuro-dynamic programming, reinforcement learning,

1. Introduction

Problems of sequential decision making under uncertainty (stochastic control) have been
studied extensively in the operanens research and contrel theory literature for a long
time, using the methodology of dynamic programming (Bertsekas, 1993). The “planning
problems” studied by the artificial intelligence community are of a related nature although,
until recently, this was mostly done in a deterministic setting leading to search or shortest
path problems in eraphs (Korf, 1987}, In either context, realistic problems have usually
proved to be very difficult mostly due to the large size of the underlying state space
or of the graph to be searched. In artificial intelligence, this issue 1s usually addressed
by using heuristic position evaluation functions; chess playing programs are a prime
example {(Korf, 1987). Such functions provide a rough evaluation of the quality of a
given state (or board configuration in the context of chess) and are used in order to rank
alternative actions.

In the context of dynamic programming and stochastic control, the most important
object is the cost—ro—go function, which evaluates the expected future cost to be incurred,
as a function of the current state. Similarly with the artificial intelligence context, cost—
to—go functions arc used to assess the consequences of any given action at any particular
state. Dynamic programming provides a variety of methods for computing cost-10-go
functions, Due w the curse of dimensionality, however, the practical applications of
dynamic programming are somewhat limited; they nvolve certain problems 1 which

60 JNUTSITSIKLIS AND B, VAN ROY

the cost-to—go function has a simple analytical form (c.g., controlling a linear system
subject to a quadratic cost} or to problems with a manageably small state space.

I wost of the stochastic control problems thal aise i practice (controb of nonlinear
systems, queueing and scheduling, logistics, etc.) the state space is huge. For example,
every possible configuration of a queueing system is a different state, and the number of
stares incredses exponentially with the number ol queues involved. For this reason, it is
cssentially unpossible to compute {or even store) the value of the cost—to—go function at
every possible state. The most sensible way of dealing with this difficulty 1s to generate
4 Compact parameiric represeniation (compact representation, for brevity), such as an
artificial neural network, that approximates the cost—to—go function and can guide future
actions, much the same as the position cvaluators are used in chess. Since a compact
Tepresentation with a relatively small number of paramelers may approximate a cosi-to-
go function, we are required to compute only a few parameter values rather than as many
values as there are states.

‘There are two mmportant preconditions for the development of an effective approxima-
tion. First, we need to choosc a compact representation that can closcly approximate
the desired cost-to-go function. In this respect, the choice of a suitable compact repre-
sentation requires some practical experience or theoretical analysis that provides some
rough information on the shape of the function to be approximated. Second, we need
effective algorithms for tuning the parameters ot the compact representation. These two
objectives are often conflicting. Having a compact representation that can approximate
a rich set of functions usually means that there is a large number of parameters 1o be
tuned and/or that the dependence on the parameters 1s nonbinear, and in either case, there
Is an lncrease n the computational complexity involved.

It 1 important to note that methods of selecting switable parameters for standard func-
tion approximation arc inadequate for approximation of cost-to-go functions. In function
approximation, we are given traming data pairs {{zy. y1). .., {2k, yx)} and must con-
struct a function y — f{x) that “explains” these data pairs. In dynamic programming,
we are interested 1n approximating a cost-to-go function ¥ — V(x) mapping states to
optimal expected future costs. An ideat set of waining data would consist of pairs
flzy,), (2, yx)}, where each z, is a state and each y; 1s a sample of the future
cost incurred starting at state x; when the system is optimally controlled. However,
since we do not know how to control the system at the outset (in fact, our objective is to
figure out how to control the system), we have no way of obtaining such data puairs. An
alternative way of making the same point is to note that the desirability of a particular
state depends on how the system 15 controlled, so observing a poorly controtled system
does not help us tell how desirable a state wall be when the system 1s well controlied.
To approximate a cost-to-ge function, we necd variations of the algorithms ol dynamic
programming that work with compact representations.

The concept of approximating cost-to-go functions with compact representations 1s
not new. Bellman and Dreyius (1939) explored the use of polynomials as compact
representations for accelerating dynamic programming. Whitt (1978) and Reetz (1977
analyzed approaches of reducing state space sizes, which lead to compact representa-
fions Schwertzer and Sejdmann (10R5) developed several rechniques for approximaning

FRATURF-BASED METHODS 61

cosl-to-go functions using lincar combinations of fixed sets ot basis functions. More
recently, reinforcement learning researchers have developed a number of approaches, in-
cluding temporal-difference learning (Sutten, 1988) and Q-lcarning (Watkins and Dayan,
1992), which have been used for dynamic programming with many types of compact
representation, cspecially artificial neural networks.

Aside from the work of Whitt (1988 and Reetz (1977), the techniques that have
been developed largely rely on heuristics. In particular. there is a lack of formal proofs
guaranteeing sound results. As one might expect from this, the methods have generated
a mixture of success stories and failures. Nevertheless, the success stories — most notably
the world-class backgammaon player of Tesauro (1992) - inspire great expectations in the
potential of compact representations and dynamic programming,

The main aim of this paper is to provide a methodological foundation and a rigorous
asscssment of a few different ways that dynamic programming and compact represen-
tations can be combined to {orm the basic of a rational approach w difficult stochastic
control problems. Although heuristics have to be involved at some point, especially in
the selection of a particular compact representation, it is desirable to retain as much
as possible of the non-heuristic agpects of the dynamic programming methodology. A
related objective s o provide results that can help us assess the efficacy of alternative
compact representations,

Cost-lo-go tunctions are generally nonhinear, but often demonstrate regulantics similar
to those found in the problems tackled by traditional function approximation. There
are several types of compact representations that ong can use 1o approximate a cost—
to—go function. (a) Artihicial neural networks {¢.g., mult-fayer percepirons) present one
possibility. This approach has led 10 some successes, such as Tesauro’s backgammon
player which was mentioned carlier. Unfortunately, it is very hard to quantify or analyze
the performance ot ncural-netwaork-based techmques. {b) A sccond form of compact
representation is based on the use ol (cature extraction to map the set of stalcs onto a
much smaller set of feature vectors. By storing a value of the cost—to—go function for
cach possible feature vector, the number ot values that need to be computed and stored
can be drastically reduced and, if meaningful features are chosen, there is a chance of
obtaining a good approximation of the wrue cost-to-go function. (¢) A third approach is
to choose a paramcetric Torm that maps the feature space 10 cosl-to--go values and then
ry 10 compule suitable values for the parameters, [f the chosen parametric representation
is simple and structured, this approach may be amenable to mathematical analysis. One
such approach, employing hinear approximauons, will be studied here.

In this paper, we focus on dynamic programming methods that employ the latter two
types of compact representations, 1o, the featnre-hased compact representations. We
provide a general framework within which one can reason about such methods. We also
suggest vartants of the value iteratton algorithm of dynamic programming thai can be
used in conjunanion with the representationg we propase. We prove convergence results
for our algorithms and then proceed w derive bounds on the difference between optimal
performance and the performance obtained using cur methods. As an example, one of
the techniques presented 15 used to generate a strategy for Tetns, the arcade game.

62 JN. TSITSIKLIS AND B, VAN ROY

This paper is organized as follows. In Section 2, we introduce the Markov decision
problem (MDP), which provides a mathematical setting for stochastic control problems,
and we also summarize the value iteration algorithm and its properties. In Section 3,
we propose a conceptual framework according to which different approximation method-
ologies can be studied. To illustrate some of the difficulties involved with employing
compact representations for dynamic programming, in Section 4, we describe a “natural™
approach for dynamic programming with compact representations and then present a
counter-example demonstrating the shortcomings of such an approach. In Section 5, we
propose a vanant of the value iteration algorithm that employs a look-up table in feature
space rather than in state space. We also discuss a theorem that ensures its convergence
and provides bounds on the accuracy of resulting approximations. Section 6 discusses
an application ot the algorithm from Section 5 to the game of Tetris. In Section 7, we
present our second approximation methodology, which employs feature extraction and
linear approximations. Again, we provide a convergence theorem as well as bounds on
the performance it delivers. This general methodology encompasses many types of com-
pact representations, and in Scctions 8 and 9 we provide two subclasses: interpolative
representations and localized basis function architectures. Two technical results that are
central to our convergence theorems are presented in the Appendices A and B. In partic-
ular, Appendix A proves a theorem involving ransformations that preserve contraction
properties of an operator, and Appendix B reviews a result on stochastic approximation
algorithms involving maximum norm contracticns. Appendices C and D provide proofs
of the convergence theorems of Sections 5 and 7, respectively.

2. Markov Decision Problems

In this section, we introduce Markov decision problems, which provide a model for
scquential decision making problems under uncertainty (Bertsekas, 1995).

We consider infinite horizon, discounted Markov decision problems defined on a finite
state spacc 5. Throughout the paper. we let » denote the cardinality of S and, for
simplicity, assume that 5 = {1, ..., n}. For every state ¢ € 5, there is a finite set Ui}
of possible control actions and a set of nonnegative scalars py,;{u), w & V(7). 7 € &,
such that » .- gpiy{u) = 1 forall w € U7{i). The scalar p;(u) is interpreted as the
probahility of a wansition to staie j, given that the current state is ¢ and the control «
1s applicd. Furthermore, for every state @ and control u, there ts a random variable ¢,
which represents the one-stage cost if actior w s applied af state 1. We assume that the
variance of ¢, s finite for every ¢ £ S and uw © {{1). In this paper, we reat only Markov
decision problems for which transition probabilities p,, (w) and expectled immediate costs
E|eg,) are known. However, the ideas presented generalize to the context of algorithms
such as (-learning, which assume no knowledge of transition probabilities and costs.

A stationary policy 1s a Tunction = defined on 5 such that 7{4) € U{4) forall : € 5.
Given a stationary policy, we oblam a discrete-time Markov chain s7(#) with transition
probabilitics

Dr(s™(r + 1) — G |57 (1) = i) — piy(n (D))

FEATURE-BASED METHODS 63

Let 3 € [0,1) be a discount factor. For any stationary policy 7 and initial state i, the
cost-to-go V™ 1s defined by

yr - E{i;ﬁtc(t) S0y =1,
¢=0

where o(f) = Cyn (1),m(s7(¢))- 10 much ot the dynamic programming literature, the map-
ping from states to cost-to-go values is referred to as the cost-to-go function. However,
since the state spaces we consider in this paper are finite, we choose to think of the
mapping in terms of a cost-to-go vector whose components are the cost-to-go valoes of
various states. Hence, given the cost-to-go vector V'™ of policy wr, the cost-to-go value
of policy o at ciate i i¢ the ith component of V¥, The optimal cost-to-go vector V* is
defined by
Vo= min V)", e 5

[t is well known that the optimal cost-to-go vector ¥* is the unique selution to Bellman’s
equation:

. . P s e @
V. ur{n{n{lﬂ (E[Cm} + 8 Zﬂpw (u)lfJ), Vi 5. (1)
VIS
This equation simply states that the optimal cost—te—go starting from a state ¢ is cqual to
the minimum, over all actions w that can be taken, of the immediate cxpocted cost Fley, |
plus the suitably discounted expected cost—o -go V" from the next state 7, assuming that
an optimal policy will be followed in the tuture.
The Markov decision problem is to find a policy 7* such that
AR VA Wi e S,

i

'This 18 usually done by computing V;*, and then choosing 7~ as a function which satistics

w"(4) — arg min (Himu} b Z}),’r,(u'ﬂ/’r)\ Vi S

wE Uiy By
If we can not compute V¥ but can cbtain an approximation Voo V¥, we miglt gencrale
a reasonable control policy my satislyving

v (8) = arg 1([;11(1 (E_r;w\ + 3 ZP‘J‘ (:’u,:}'i/:,): Vioe S

(AR e
Intuittvely, this policy considers actual immediale costs and wses V' oto judge {uture
consequences of control actions. Such a policy is sometimes called a greedy policy wilh
respect to the cost-to-go vector 1V and as V' approaches V7, the performance of a greedy
policy my- approaches that of an optimal policy 7%,

There are several algorithms for computing V'* but we only discuss the value iteration

algorithm which lforms the basis of the algorithms o be considered later on. We start
with some notation. We define 1, - R™ « » R by

64 JNDTSITSIKLIS AND B VAN ROY
TV} = min (E[c.,;uj + 3 Zp,-J('u)Vj). Vi S 2)
wt i (2) jes
We then define the dvnamic programming operator T R™ — R™ by
TV =(TiV)., T.V))

In terms of this notation, Bellman’s equation simply asserts that V'* = 7(17*} and V'* is
the enigue fixed point of T The value iteration algorithm is described by

Vit + 1) =T(Vit),

where 17(0} is an arbitrary vector in R™ used o initialize the algorithm. Intuitively, cach
V(t) is an estimate (though not necessarily a good one) of the true cost—o—go function
V=, which gets replaced hy the hopefully better estimate 1'(V ().

Lel ! - i]5 be the maximum norm defined for every vector T —= (... .. Ly) ¢ R™ by
ol s = max; x;)- It is well known (Bertsckas, 1995Y and casy o check that T is a

contraction with respect to the maximum nerm, that is, for all ¥, V' & R

IV = 2V Yoo < SV = V|

For this reason, the sequence V' (#) produced by the value iteration algorithm converges
to V", atthe rate of a geomerric progression. Unfortunately, this algorithm requires that
we maintain and update a veclor V' oof dimension n and this is essentially impossible
when nos extremely large.
For notational convemence, it 1s useful to define for cach policy = the operator 177
R R:
LF(V) = Blemyi+ 3y p, (7)Y,

JEE

for cach 7 € 5. The operator 1™ 1s defined by

It 1s well known that 7™ 15 also a contraction of the maximum norm and that V'™ s its

WL

unique fixed point (Bertsekas, 1995). Note that, for any vector V' & " we have
TIVY = T7 (1),

since the cost-minimizing control action in Equation {2) is given by the greedy policy.

3. Compact Representations and Features

As mentioned in the itroduction, the stze of state spaces typreally grows cxponentially
with the nurnber of varnables involved. Because of this. 1t is often nmpractical to compute
and store every component of a cost-to-go vector. We set out to overcome this lnmitation
by using compact represcntations to approximate cost-to-go vectors. In this scction, we

FEATURFE-BASRED METHODS 63

develop a formal framework for reasoning about compact representations and leatures
as groundwork for subsequent sections, where we will discuss ways of using compact
representations tor dynamic programmung. The setting is in many respocts similar to that
In {Schweitzer and Scidman, 1983).

A compact representation can be thought of as a scheme for recording a high-
dimensional cost-to-go vector V7 ¢ R
W ¢ R™ (m < n). Such a scheme can be described by a mapping V : R — R”
which to any given paramcter vector W € R™ associales a cost—to—vector V{W). In
particular, cacli culponent '\;Q(L"V) ol the mapping is the ih component of a cosi-L0-go
vector represented by the parameter vector W. Note that, although we may wish to
represent an arhitrary vector Vo R™, such a scheme allows for exact representation
only of those vectors Vowhich bappen w lie in the range of V.

Let us define a feature [as a function from the state space S into a finite set
of feature values. For example, if the state ¢ represents the number of custorners in a
gqueusing system, a possible and oltcn interesting feature f is delined by (0} — 0 and
Fiy = Laf 2 = 0. Such a feature {focuses on whether a queue is cmpty or not.

Given a Markov decision problem, one may wish (o use several features f,, .., fx.
cach one being a function fiom the state space 5w a (iniw scl Qg, £ = 1. .., K. Then,
to each state ¢ < S, we associate the feature vector F'(z) — (fi(2). ..., fx(1)). Such a
feature vector is meant to represent the most salient properties ol a given state. Note
that the resulting set of all pussible fealwe vecwors iy the Carwesian product of the sets
)y and ns cardinality increases exponentiaily with the number of features.

In a feature--based compact representation, cach component Vi of the mapping V is a
function of the corresponding feature vector £'(¢) and the paraieter vector W (but not an

using a lower—=limensional paraineler veclor

explicit function of the state value 1). Hence, for some tunction g - (Hi\ (Gl xR

R,
V(W) - g{F (). W). (3)

If each featurc takes on real values, we have (Jy ¢ % for all & in which case it may he
natural to define the function g over all possible real feature values, g : R x B — R,
even though ¢ will only ever be computed over a finite domain, Figure | itlustrates the
structure of a feature-hased compacr representation

In most problems ot interest, V.* 1s a highly compheated function of 4. A representation
like the cne in Equation (3) attempts to break the complexity of V™ into less complicated
mappings g and ' There 1s usually a trade-off berween the complexity of g and /' and
ditferent choices lead 10 drastically different structures. As a gencral principle, the feature
extractien functton /7 is usually hand crafted and relics on whatever human cxperience
or mtetligence woavaitable. The function g represents the choice of an architecture used
for approximation and the vector W are the free parameters (or weights) ol the chosen
architeccture. When a compact representation is used for static function approximation,
the vatues for the parameters I are chosen using some optimization algorithm, which
could range from imecur regresston to backpropagation in neural networks. In this pa-
per, however, we wili develop parameter selection techniques for dynamic programming
{rather than function approximation). Let us first discuss some alternative architectures.

66 JUND TSITSIKLIS AND B vAN ROY

Parameter
Vector
Feature
Vector
State = F g tmt COSt-TO-GO
Feature Approximation
Cxtraction Archileclure

Figure 1. Block structure of a feature-based compact representation.

Look-Up Tables

One possible compact representation can be obtained by employing a look-up table in
feature space, that is, by assigning one valae to each point in the feature space. In this
case, the parameter vector W contains one component for each possible feature vector.
The function ¢ acts as a hashing function, selecting the component of W corresponding
to a given feature vector. In one extreme case, each feature vector corresponds to a single
state, there are as many parameters as states, and V' becomes the identity function. On
the cother hand, effective feature extraction may associate many states with cach feature
vector so that the optimal cost-to-go values of stales associated to any particular feature
vector are close. In this scenario, the feature space may be much smaller that the state
space, reducing the number of required parameters. Note, however, that the number of
possible feature vectors increases exponentially with the number of features. For this
reason, look-up tables arc only practical when there are very few features.

Using a look-up table in feature space is equivalent to partitioning the state space
and then using a common value for the cost-to-go from all the stales in any given
partition. In this context. the set of states which map to a particular feature vector
forms one partition. By identifving one such partition per possible teature vector, the
feawure extraction mapping F' defines a partitioning of the state space. The function g
assigns each component ot the parameter vector to a partition. For conceptual purposes,
we choose 10 view this type of representation in terms of state ageregation. rather than
feature-based look-up tables. As we will see 1n our formulation for Tetns, however, the
feature-based look-up table interpretation is often more natural in applications.

We now develop a mathematical description of state aggregation. Suppose that the srate
space & — {1,n} has been partitioned into m. disjoint subsets Sy, .. ., S, where m
is the same as the dimension of the parameter vector W, The compact representations
we consider take on the following form:

Vi(W) - W,

for any 7 € 5.

FEATURE-BASED METHODS 67

There are no inherent limitations to the representational capability of such an archi-
tecture. Whatever limitations this approach may have are actually connected with the
availability of uscful featurcs. To amplify this point, lct us fix some ¢ > 0 and lct us
define, for all 7,

Sy ={ilje< V7 < (4 Deb

Using this particular partition, the function V'* can be approximated with an accuracy of
€. The catch 1s of course that since V™ i1s unknown, we are unable to form the sets 5.
A different way of making the same point is o noic that the most useful feawre of a
state is its optimal cost—to—go but, unfortunately, this is what we arc trying to compute
in the first place.

Linear Architectures

With a look-up table, we need to store one paramcter for every possible value of
the feature vector F'({), and, as already noted, the number of possible values increases
exponentially with the number of features. As more features are deemed important,
look-up tables must be abandoned at some point and a different kind of paramectric
representation s now called for. For instance, a representation of the following form can
be used:

K
VW) = > Wi fiuli). (4)

k=1

This representation approximates a cost-to-go function using a linear combination of
features. This simplicity makes it amenable to rigorous analysis, and we will develop an
algorithm for dynamic programrming with such a representation. INote that the number
of parameters only grows linearly with the number of featurcs. Hence, unlike the case
of look-up tables, the number of features need not he small. However, 1t 1s important to
choose features that facilitate the linear approximation.

Many popular function approximation architectures fall in the class captured by Equa-
tion (4). Among these are radial basis functions, wavelet networks, polynomials, and
more generally all approximation methods that involve a fixed set of basis functions. In
this paper, we will discuss two types of these compact representations that are compatible
with our algorithm — a method based on linear interpolation and tocalized basis functions.

Nonlinear Architectures

The architecinre, as deseribed by g, contld he a nonlinear mapping such as a feedfor-
ward neural network (multi-iayer perceptron) with parameters W. The feature extraction
mapping I could be either entirely absent or it could be included to facilitate the job
of the neural network. Roth of these options were used in the backgammon player of
Tesauro and, as expected, the inclusion of features led to mmproved performance. Un-
fortunately, as was mentioned in the introduction, there 1s not much that can be said
analytically in this context,

68 JONDTSITSIKLIS AND B VAN ROY

4. Least-Squares Value Iteration: A Counter-Example

Given a set of & samples {(4,. V"), (12, V]). ... (ix, V35,)} of an oplimal cost-to-go

vector V', we could approximate the vector with a compact representation V' by choosing
parameters W o minimize an error function such as

S (v vy

E=1

Le., by finding the “least-squares fit.” Such an approximation conforms to the spirit of
traditional function approximation. However, as discussed in the intreduction, we do
not have access Lo such samples of the optimal cost-lo-go vector. To approximate an
optimal cost-to-go vector, we must adapt dynamic programming algorithms such as the
value iteration algorithm so that they manipulate parameters of compact representations.

For mstlance, we could start with a parameter vector H{0} corresponding to an initial
cost-to-go vector V(W (0)), and then generate a sequence {W ()|t — 1.2, ..} of param-
eter veclors such that VW (¢t + 1)) approximates 7 (V{W{#)}). Hence. each iteration
approximates a traditional value iteration. The hope is that, by approximating individual
value tlerations in such a way, the sequence of approximations converges 1o an accurale
approximation of the optimal cost-to-go vector, which is what value iteration converges
to.

It may seem as though any reasonable approximation scheme could be used wo gencerale
cach approximate value iteration. For instance, the “least-squarcs i 13 an obvious
candidate. This mvolves selecting W{t + 1) by sciting

2

Wit + 1) =arg rr&{}p; (V[W‘) — .1’"(1/"([4-"(2‘.)'))) . (5)

However, in this section we will identify subtletics that make the choice of eriterion for
parameter selection crucial. Furthermore, an approximanon method that 1s compatible
with one type of compact representation may generate poor results when a ditferent
compact representation 1s employed.

We will now develop a counter-example that illustrates the shortcomings of such a
combination of value iteration and least-squares approximation. This analysis is par-
ticularly interesting, since the algorithm is closely related to Q-learming (Watkins and
Dayan, 1992} and temporal-difference learning (TD(A)) (Sutton, 1988), with A set 1o
(0. The counter-example discussed demonstrates the short-comings of some {hut not all)
variants of (3 learning and temporal difference learning that are empleyed in practice. !

Bertsekas (1994} described a counter-examptle to methods like the one defined by
Equation (5). His counter-example involves a Markov deciston problem and a compact
representation that could gencrate a close appreximation (in terms of Euclidean distance)
of the optimal cost-to-go vector, but fails (o do so when algorithms like the one we
have described are vsed. In particular, the parameter vector does converge to some
W o R but, unfortunately, this parameter vector gencrates a poor estimate of the

FEATURE-BASED METHODS 69

Figure 2. A counter-example.

optimal cost-to-go vector (in terms of Euclidean distance), that s,

| V(W) v

2 min V(W) - V¥,
Wenn

where |- |1 denotes the Fuclidean norm. With our upcoming counter-example, we show
that much worse behavior 1s possible: even when the compact representation can generale
a perfect approximation of the optimal cost-to-go function (1e., miny [V -V
0}, the algorithm may diverge.

Consider the simple Markov decision problem depicted in Figure 2. The state space
consists of two states, = and 2., and at state x| a transition is always made to 7, which
is an absorbing state. There are no control decisions involved. All transitions incur

cost. Hence, the optimal cost lo-go function assigns O to both states.
Suppese a featute [s delined over the state space so that (o) Land fe) — 2.
and a compact representation of the form

Vilw) — wf{d), e {ryas)

is cmployved, where w 1s scalar, When we set « 0 0, we get Vi) ~ V7 soa perfect
representation of the eptimal cost-10-go vector is possible.

Let us investgate the behavior of the feast-squares value iteration algorihm with the
Markov decision problem and compact representation we have described. The parameter
w evolves as lollows:

7-3’ EFaurd e ; ~ 2
wit - 1 are 111%1 L (I-g(\-m) =1 L-u,:(f))))

ary, migl {0 = 32w(t)? 4 (2w — .ii'w-'\f‘j)')’).
Wity ’

and we obtain
. 3 .
wit L . felty. (6}

]

Hence, o 7 2 and «(0) /0, the sequence diverges. Counter-cxamples mmvolvine
G L, £ g

Markov decision problems that allow several control actions at cach stae can also he

70 JN. TSITSIKLIS AND B. VAN ROY

produced. In that case, the least-squares approach to valuc iteration can generate poor
control strategies even when the optimal cost-to-go vector can be represented.

The shortecomings ol straightforward procedures such as least-squares value iteration
characterize the challenges involved with combining compact representations and dy-
namic programming. The remainder of this paper is dedicated to the development of
approaches that guarantee more graceful behavior,

5. Value Iteration with Look-ETp Tables

As a starting point, let us consider what is perhaps the simplest possibie type of compact
representation. This is the feature-based look-up table representation described in Section
3. In this section, we discuss a variant of the value iteration algorithm that has sound
convergence propertics when used in conjunction with such representations. We provide
a convergence theorem, which we formally prove in Appendix O We also point out
relationships between the presented algorithm and previous work in the ficlds of dynamic
programming and reinforcement learning.

5.1. Algorithmic Model

As mentioned earlier, the use of a look-up table in feature space is equivalent to state
aggregation. We choose this latter viewpoint in our analysis. We consider a partition
of the staw space 5 = {1,.... n} into subsets S, S5, .., Sy,; in particular, 5 = S; U
Sol - LS, and S50 8 =0 i g Let Vo R - R7, the function which maps a
paramcter vector Woto a cost-to-go vector V), be defined by:

V(W) W, Vie S,

Let A" be the set of nonnegative integers. We employ a discrete variable ¢, taking on
values in A7, which is used to index successive updates of the parameter vector W, Let
W {t} bc the paramcter vector at time t. Let TV be an infinite subset of N mdicating
the sct of tmes at which an update of the jth component of the parameter vector 1s
performed. For each set S;. 4 = 1, ...m. let p/(-) be a probability distribution over
the set S, In particular, for every 4 € 5, pf(z) 1s the probability that a random sample
from) is cqual to ¢. Natarally, we have p?(i) > 0 and Zief{, i) =L

At each time ¢, let X (#) be an rn—dimensional vector whose jth component is a random
representative of the set 5, sampled according o the probability distribution p/ (). We
assume that cach such sample is generated independently from everything else that takes
place in the course of the algorithm.?

The vaiue iteration algorithm applied at state X;(f) would update the value Vi .y,
which is represented by W, by setting it equal to Tx (,,(V). Given the compact rep-
resentation that we are using and given the current parameter vector W (¢, we actually
need to set W 1o 'TX?.(”(V(W(?E)}). However, tn order to reduce the sensitivity of
the algorithm o the randomness caused by the random sampling, W, 15 updaled in that
dircction with a small stepsize. We theretore end up with the followiﬁg update formula:

FEATURE-BASED METHODS 71

Wit +1) = (1 — oy (t))W;(t) + aj(t)TXj(t)(V(W’(t})), tel?, (7

Wi+ 1) = W;(t) tg T (8)

Here, a;(t) is a stepsize parameter between 0 and 1. In order to bring Equations {7} and
(8) into a common format, it is convenient to assume that o, (¢} is defined for cvery j
and t, but that o, (t) =0 for t ¢ [V

In a simpler version of this algorithm, we could define a single probability distribution

p{-} over the entire state space S such that for cach subset 85, we have 2 s, PX (i) »> 0.

Then, defining (¢} as a state sampled according to the p{-), updates of the form

Wit +1) = (1 - ap{()Will) + o, (T (VW (), ifz(t)e S, 9

Wilt+ 1) = Wylt), if =(t) ¢ S5, (10)

can be used. The simplicity of this version — primarily the fact that samples are taken
from only one distribution rather than many — makes it attractive for implementation.
This version has a potential shortcoming, though. It does not involve any adaptive
exploration of the feature space; that is, the choice of the subsel 55 10 be sampled does
not depend on past ohservations. This rules out the possibility of adapting the distribution
1o concentrate on a region of the feature space that appears increasingly significant as
approximation of the cost-1o—go function ensues. Regardless, this simple version is the
one chosen for application to the Tetris playing problem which is reported in Section 5.

We view all of the variables introduced so far, namely, o, (), X;(t), and W(t), as
random variables defined on a common probability space. The reason for i, {(t) being a
random vanable 15 that the decision whether W, will be updated at time ¢ (and, hence,
whether «v; () will be zero or not) may depend on past observations. Let F{t) be the set
of all random variables that have been realized up 10 and including the point at which
the stepsize (1) is (ixed but just before X;{t) is generated.

5.2. Convergence Theorem

Refore stating anr convergence theorem, we most introdnee the following standard as-
sumplion concerning the stepsize sequence:
Assumption 1) For all i, the siepsize sequence satisfies

[

an(fj - =a, w.p.l. (I

t=0
b} There exists some (dererministic) constant C such thar

X

Z(t%({,} = w.p.l. (12}

t=0)

Following is the convergence theorem:

72 JN. TSITSIKLIS AND B, VAN ROY

THEOREM | Let Assumption | hold.
fa) With probability 1, the sequence Wt} converges to W*, the unigue vector whose
components solve the following sysiem of equations.

W S Y@L W, v (3

Define V'™ ay the optimal cost-io-go vector and ¢ < R™

by

€ — max
g4 S,

v

) Vic {1, ...,m}.

Recall that T (e denotes a greedy policy with respect to cost-to-go vector V[Wy,
ie.,

Ty (8} = arg min (E[(sm] + 4 Zpij(lt)l%(Ifl”*)).

w4 oy

The following hold:

(b) |
HV(LL!K) V*! s S |lrt!‘0;~
“ 3| el
i 23| el
N v i - v .u o LX‘:)
| e T—57

(d) there exiviy an example for which the bounds in (D) and (c) both hold with equality.

A proot of Theorem 1 is provided in Appendix C. We prove the theorem by showing
that the algorithin cotresponds 1o a stochastic approximation involving a maximum norm
contraction, and then appeal o a theorem concerning asynchronous swochastic approxi-
mation duc to Tsitsiklis {1994} (sce also (Jaakoela, Jordan, and Singh. 1994)), which is
discussed in Appendix Bl oand a theorem concerning multi-representation contractions
presented and proven in Appendix AL

53 The Quality of Approximations

Theorem | establishes that the quality of approximations is determined by the guality of
the chosen (eatures. It the true cost—to—go function ¥'* can be aceurately represented in
the torm Vi, then the cornputed parameter values deliver near optimal performance,
This 15 a desimable property.

The distressimg aspect of Theorem 1 1s the wide margin allowed by the worst-case
bound. As the discount factor approaches unity, the ﬁ term explodes. Since discount
factors close (o one are most common in practice, this is a severe weakness. However,
achieving or nearly achieving rhe worst case bound in real world applications may be a
rare event. These weak bounds are to be viewed as the mmnimum desired properties lor
a method (0 be sound. As we have scen in Sceoon 4, ¢ven this 18 nol guaranteed by

some other methods in current practice.

FEATURE-BASEL METHODS 73

5.4. Role of the Sampling Distributions

The worst-case bounds provided by Thecrem 1 arc satisficd for any set of siale—sampling
distributions. The distribution ot probability among states within a particular partition
may be artatrary. Sampling only a single state per partition constitutes a special case
which satisfics the requirement. For this special case, a decaying stepsize is unnecessary.
If a constant stepsize of one 1s used in such a setting, the algorithm becomes an asyn-
chronous version of the standard value iteration algorithin applied to a reduced Markov
decision problem that has one state per partition of the original stale space; the con-
vergence of such an algorichm s well known (Bertsekas, 1982; Bertsekas and Tsitsiklis,
1989). Such a state space reduchon i1s analogous to that brought about by state space dis-
cretization, which is commonly applicd o problems with continuous state spaces. Whitt
(1978) considered this method of discretization and derived the bounds of Theorem 1,
for the case where a single state 18 sampled in each partition. Our result can be viewed
as a generalization of Whitt's, allowing the use of arbitrary sampling distribulions.

When the state aggregation is perfect in that the (rue optimal cost-to-go values for all
states in any particular partition are equal, the choice of sampling function is insignificant.
This 18 because, mdependent of the distnibution, the crror bound 15 zero when there s
no fluctuation of optimal cost-to-go values within any partition. In contrast, when V*
fluctuates within partitions, the crror achicved by a feature-based approximation can
depend on the sampling distribution. Theugh the dernved bound himits the errer achieved
using any sct of state distributions, the choice of distributions may play an important
role in attaining errots significantly lower than this worst case bound. It ollen appears
desirable o distribule the probability among many representative states in each partition.
If only a few states are sampled, the error can be magnified if these states do not happen
o be representative of the whole partition. On the other hand, if many states are chosen,
and their cost-to-go values are 1 some sense averaged. a cost-lo-go value representative
of the entire parithon may be gencrated. It is possible to develop heuristics to aid in
choosing suitable distributions, but the relationship between sampling distributions and
approximat:on erior 15 not yet clearly understood or quantitied.

3.5, Kelated Work

As was mentioned earlier, Theorem | ¢an be viewed as an extension o the work of
Whitt (1978), However, our philosophy is much different. Whitt was concerned with
diseretizing a continuous state space. Our concern here 1s to explott human intution
concerning usclul features and heuristic state sampling distriburions to drastically reduce
the dimensionality of a dynamic programming problem.

Several other researchers have considered ways of ageregating states to facilitate dy -
namic programming. Berlsckas and Castafion {1989 developed an adaptive ageregalion
scheme for use with the policy iteration algorithin, Rather than relying on feature ox
traction, this approach automatcally and adaptively ageregates states during the course
ol an algorithm based on probability transition matrices under greedy policies.

74 JUNCO TSITSIKLIS AND B, VAN ROY

The algonthm we have presented in this section is closely related to Q-learning and
temporal-difference learning (TD(A)) in the case where A is set to 0. In fact, Theorem 1
can casily be cxtended so that it applics to TD(O) or Q-lcarning when used in conjunction
with feature-based look-up tables. Since the convergence and efficacy of TD{0) and Q-
learning in this sciting have not been theoretically cstablished in the past, our thcorem
sheds new light on these algorithms.

In considering what happens when applying the Q-learning algorithm to partially ob-
servable Markov deciston problems, Jaakola, Singh and Jordan (1995) prove a conver-
genee theorem similar to part (a) of Theorem 1. Their analysis involves a scenanio where
the state aggregation is inherent because of incomplete state information - i.e., a policy
must choose the same action within a group of states because there is no way a controller
can distinguish betwecn different states within the group — and is nut geared lowards
accelerating dynamic programming in general.

6. Example: Playing Tetris

As an example, we used the algorithm from the previous scction to generate a strategy
for the game of Tetris. In this section we discuss the process of formulating Tetris as a
Markov decision problem, choosing features, and finally, generating and assessing a gamce
strategy. The objective of this exercise was to verify that feature-based value iteration
can deliver reasonable performance for a rather complicated problem. Our objective was
not o construct the best possible Tetris player, and for this reason, ne effort was made
to constract and use sophisticated features.

6.1. Problem Formulation

We formulated the game of Tetris as a Markov decision problem, much in the same spirit
as the Tetris playing programs of Lippman. Kukolich and Singer (1993). Each state of
the Markov decision problem is recorded using a two-hundred—dimensional binary vector
(the wall vector) which represents the configuration of the current wall of bricks and a
seven—dimensional binary vector which identifics the current falling piece ® The letris
screen 1s fwenty squarcs high and ten squares wide, and each square 13 associated with
a component of the wall vector. The component corresponding 1o a particular square is
assigned 1 if the square is occupied by a brick and O otherwise. All components of the
seven—dimensional vector arc assigned 0 except for the onc associated with the piece
which is currently falling (there are seven types of pieces),

At any ume, the set of possible decisions includes the locations and orientations at
which we can place the falling piece on the current wall of bricks. The subsequent state
is determined by the resulting wall configuration and the next random piece that appears.
Since the resuiting wall configuration is deterministic and there are seven possible pieces,
there arc scven potential subsequent states for any action, each ot which occurs with
equal probability. An exception 1s when the wall is higher than sixteen rows. In this
cireamstance, the game ends. and the state 15 absorbing.

FEATURE-BASED METHGDS 75

Each time an entire row of squares is filled with bricks, the row vanishes, and the
portion of the wall previously supported falks by one row. The goal in our version of
Tetris is to maximize the expected number of rows eliminated during the course of a
game. Though we generally formulate Markov decision problems in terms of mimimizing
costs, we can think of Telris as a problem of maximizing rewards, where rewards are
negative costs. The reward of a transition is the immediate number of rows eliminated.
To ensure that the optimal cost—to—go from each state is finite, we chose a discount factor
of 3 = 0.99499.

In the vast majonity of states, there is no scoring opportunity. In other words, given
a random wall configuration and picee, chances are that no decision will fead to an 1m-
mediate reward. When a human being plays Tetris, it is crucial that she makes decisions
in anticipation of long—term rewards. Becausc of this, simple policies that play Tetris
such as those that make random decisions or even those that make greedy decisions (ic,
decisions that maximize immediate rewards with no concern for the futurc) rarely score
any points in the course of a game. Decisions that deliver reasonable performance reflect
a degree of “forestghl.”

6.2. Some Simple Features

Since each combination of wall configuration and current piece constitute a separate stale,
the state space of Tetris is huge. As a result, classical dynamic programming algorithms
are mapphcable. Feature-based value iteration, on the other hand, can be used. In order
1o demonstrate this, we chose some simple features and applied the algorithm.

The two featurcs cmployed in our experiments were the height of the current wall and
the number of holes {empty squares with bricks both above and below) in the wall. Let
us denote the set of possible heights by H — {0, ..., 20}, and the set of possible numbers
of holes by L = {0, ..., 200}. We can then think of the feature extraction process as the
application of a function . S — H x L.

Note that the chosen features do not take into account the shape of the current falling
piece. This may initially seemn odd, since the decision of where to place a picce relies
on knowledge of its shape. However, the cost-to- go function actually only needs to
cnable the assessment of alternative decisions. This would entail assigning a value to
cach possible placement of the current piece on the current wall. The cost—to-go function
thus needs only to evaluate the desirability of each resulting wall configuration. Hence,
features that capture salient charactenistics of a wall configuration are sufficient.

6.3. A Heuristic Evaluation Function

As a baseline Tetns—playing program, we produced a simple Tetris player that hases
stale assessments on the two features. The player consists of a quadratic function ¢ -
H x L » R which incorporates some heuristics developed by the authors. Then, although
the composition of feature extraction and the rule based system’s evaluation function,

76 JNOTSITSIKLIS AND B VAN ROY

g o £, is not nceessarily an estimate of the optimal cost-to-go vector, the cxpert player
follows a greedy policy bascd on the composite Tunction.

The average score of this ‘letris player on a hundred games was 31 (rows eliminated).
This may seem low since arcade versions of Tetris drastically inflate scores. To gain
perspective, though, we should take into account the fact that an expericnced human
Tetris player would take about three minutes to eliminate thirty rows.

6.4, Value Iteration with a eature-Based Look-Up Table

We synthesized two Tetris playing programs by applying the feature-based value iteration
algorithm. These two players diltered i that each relied on different statc—sampling
distributions.

The first Tetris player used the states visited by the heuristic player as sample states
for value ilerations. After convergence, the average score of this player on a hundred
games was 32, The fact that this player does not do nuch better than the heuristic player
18 not surprising given the simplicity of the features on which both players base position
cvaluations. This example reassures us, nevertheless, that feature-bascd value iteration
converges to a reasonable solution.

We may consider the way in which the first player was constructed enrealislic, since
it tefred o a pre-existing heurtstic player for state sampling. The second Tetris player
climinates this requircment by uscs an ad hoc stale sampling algorithm. [n sampling
a state, the sampling algorithm beging by sampling a maximum height for the wall of
bricks fronn o unifuim distribution. "Then, for each square below this heighl, a brick is
placed in the square with probability —z Each unsupported row of bricks is then allowad
to fall until every row 1s supporied. ‘The player based on this sampling funciion gave an
average scote ol 11 (equivalent 1o a human game lasting about one and a hall minutes).

The experiments performed with Tetris provide some assurance that feature-based value
Heration produces reasonable control policies. In some sense, Tetrls is a worst-casc sce-
nario for the evaluation of automatic control algorithms, since humans excel al letrts.
The goal ol algorithms that approximate dynamic programming is to pencrate reason-
able control policies for large scale stwchastic control problems that we have no other
reasonable way ol addressing, Such problems would net be natural 1 humans, and uny
reasonable policy generated by fearure-based value weration would be valuable. Further-
more, the teatures chosen for this siudy were very crude; perhaps with the introdaction
ol more sophisncated features, feature-based value neration would excel in Totris, Az a
parting note, an additional lesson can be drawn from the fact that 1wo strategics generated
by feature—hascd value itcration were of such disparate quality. This is that the sampling
distribution plays an important rote,

7. Valuc Itcration with Lincar Architectures

We have discussed the use of leature-hased look up tables with vabue iteration. and {ound
that their use can siynilicautly accelerate dynamic programming. However, employing w

FEATURE-BASED METHODS 77

look-up table with onc entry per feature vector is viable only when the number of [eature
veetors is reasonably small. Unfortunately, the number of possible feature vectors grows
exponennally with the dimension of the feawre space. When the number of features
is fairly large, alternative compact representations, requiring fower parameters, must be
used. In this section, we explore one possibility which involves a lincar approximation
archilecture. More formally, we consider compact representalions of the [orm

K
V(W) = Z Wi fe () — W), Vi b (14)

&1

where W e RF iy the parameter vector, F3) (FLis), o Fre(8)) € WA s the feature
vector associated with state 4, and the superscript 1° denotes transposc. This type of
compact representation s very attractive since the number of paramelers is equal to the
number ol dimensiong of, rather than the number ot elements in, the feature gpace.

We will desertbe a variant of the value iteration algorithon that, under certain assump-
tions on the feature mapping, is compatible with compact representations of this form,
and we will provide a convergence result and bounds on the quality of approximations.

Formal proofs are presented in Appendix D.

7.1. Alporithmic Model

The iterative algorithm we propose is an extension to the standard value iteration al
gorithm. Al the outset, K representative states 7, ... ix are chosen, where K is the
dimension of the parameter vector. Each iteration generates an improved parameter vec-
tor W (#--1) from a parameter vector W (£} by evaluating Z3{V (W (£)}) at states 4y, ., i
and then computing W (¢ ; 1} so that V(W (| 1)) — Ift-(‘i"/(l-{f'(f))) forie (i, tx)
In other words, the new cost-to-go estimate 1 constructed by fitting the compact repre-
sentation to I'{17), where V' is the previous cost to go estimate, by fixing the compact
representation at 2. ...,t5. If suitable features and representative states are chosen,
V(W ({t}) may converge to a reasonable approximation of the optimal cost-to-go vec-
tor V*. Such an algorithm has been considered in the literature (Bellman (1958), Reetx
(1977, Morin {1979}y, Of these references, only (Reetz (1977)), establishes convergence
and crror bounds. However, Reet's analysis is very different from what we will present
and is limited to problems with one dimensional state spaces.

[f we apply an algorithm of this type to the counter-example of Section 4, with K .- |
and ¢, — xy, we obtain w{# + 1) - 23w(r), and if F = J} the algorithm diverges. Thus,
an algorithm of this type is only guaranteed to converge for a subclass of the compact
representations descnbed by Equation (14). To characterize this subelass, we mtroduce
the following assumption which restricts the types of features that may be employed:

Assumption 2 Let i), ...t € 5 be the pre-selected states used by the algorithm.
(a) The vectors F(iy), ..., Flig) are linearly independent.
{(b) There exists a value 3 ¢ [5.1) sach that for any state { € 5 there exist 0002}, ...,

78 JN OTSITSIKLIS AND B. VAN ROY
Orli} € R with

P OIEST

k=1

and
K

P& = 53 80 Fin)

k=1

In order to understand the meaning of this condition, it is useful to think about the fea-
ture space defined by {F'(¢}|¢ ¢ S} and its convex hull. In the special case where § = &
and under the additional restrictions 34, 8¢(4) = 1 for all 4, and 8 (1) > 0, the feature
space is contained in the (K — 1)-dimensional simplex with vertices F{i,),. ., F'(i).
Allowing 7' to be strictly greater than 3 introduces some slack and allows the fea-
ture space to extend a bit beyond that simplex. Finally, if we only have the condition
Zf::l |8 (#)] < 1, the feature space is contained in the convex hull of the veetors
LB R AL F (), .+ Flix).

The significance of the geometric interpretation lics in the fact that the extrema of a
linear function within a convex polyhedron musi be tocated at the corners. Formally,
Assumption 2 ensures that

(514

; B ax i
VW llee < 75 max Vi, (W)

The upcoming convergence proof capitalizes on this property.
To formally define our algorithm, we need to define a few preliminary notions. First,
the representation described by Equation (14) can be rewritten as

V(W) =MW, (13)

where M € R"*“F s a matrix with the ith row equal to (1)’ . Let I ¢ RE*¥ b a
matrix with the kth row being F'(i;)". Since the rows of L are linearly independent,
there exists a unique matrix inverse L 1 ¢ RS*X We define M1 ¢ RE>*" as foliows.
For k ¢ {1,..., K}, the ixth column is the same as the kth column of L% all other
eniries are zero. Assuming, without loss of generality, that 4, == 1, . 4, — K, we have

L

Pag —ir -1
MM =L 0 [G

]LLiL_L

where 7 ¢ REXK is the identity matrix and G ropresonts the remaining rows of M.
Hence, M is a left inverse of Af.

Our algorithm proceeds as follows. We start by sclecting a set of K states, iy, ., 1,
and an initial parameter veotor W(0). Then, defining 77 as Af% u 0o M, successive
paramecter vectors are generated using the following update rule:

Wt + 1) = T (W (1)) (16)

FEATURE-BASED METHODS 79

7.2. Computational Considerations

We will prove shortly that the operatien 7 apptied during each iteration of our algorithm
15 a contraction 1n the parameter space. Thus, the difference between an intermediate
parameter vector W({t) and the limit W* decays cxponentially with the time index ¢.
Hence, in practice, the number of iterations required should be reasonable.!

The reason for using a compact representation is to alleviate the computational time and
space requirements of dynamic programming, which traditionally employs an exhaustive
look-up table, storing one value per state. Even when the parameter vector 15 small and
the approximate value iteration algorithm requires few iterations, the algorithm would
he impractical if the computation of 7’ required time or memory proportional to the
number of states. Let us determine the conditions under which 1™ can be computed 1n
time polynomial in the number of parameters A rather than the number of states n.

The operator 1" is defined by

TWY = MYT(MW).

Since MT only has K nonzero columns, only K components of T{AMW) must be
computed: we only need to compute L3(M W) for ¢ — &y, ..., 4. Bach iteration of our
algorithm thus takes time O(K ?t7) where tr is the time taken to compute T3{ MW for
a given state 2. For any state 7, T;(MW takes on the form

T{MW) = Ielgr}) (E i) + 3 pi ()W F(_é,)) :
12 1§ s

The amount of time required to compute 3. ¢ piy ()W F (i) is O(N K, where Ny is
the maximum number of possible successor states under any control action (t.c., stales 7
such that p;;(u) > 0). By considering afl possible actions w < I7(¢) in order to perform
the required minimization, T; (MW} can be computed in time O(N, N, K where N,, is
maximum number of control actions allowed at any state. The computation of 7Y thus
takes time O(N, N, K*?).

Note that for many control problems of practical interesl. the number of control actions
allowed at a state and the number of possible successor states grow exponentially with
the number of state variables. For problems in which the number of possible successor
states grows exponentially. methods involving Monte-Carlo simulations may be coupled
with our algorithm to reduce the computational complexity to a manageable level, We
do not discuss such methods in this paper since we choose to concentrate on the ssue
of compact representations. For problems in which the number of control actions grows
exponentially, on the other hand, there 18 no satisfactory solution, except to limit choices
to a small subset of allowed actions (perhaps by disregarding actions that seem “bad” a
prioriy In sommary, our algortthm i suitahle for problerms with large state spaces and
can be modificd to handle cases where an action taken at a state can potentially lead
to any of a large numbecer of successor states, but the algorithm is not geared to solve
problems where an extremely large numnber of control actions is allowed.

20 LN TSITSIKLIS AND B, VAN ROY

7.3. Convergence Theorem

Let us now proceed with our convergence result for value iteration with linear architectures.®

TuroresM 2 Let Assumprion 2 hold.
{a) There exists a vector W* C RE such thar W (:{) converges ro VW
(bi 1" is a contraction, with contraction coefficient ', with respect to a norm || - | on
RE defined by

(W — |4

G

Let V' be the optimal cost-10-p0 vector, and define ¢ by lettin
' g ! g

‘= inf |V — VW,
" wenn | (ol

where V'™ s the optimal cosi-to-go vecror. Recall that Ty -y denotes a greedy policy
) A

with respect to cost-to-go vecior V(VV*‘), Le.,

e liy = argmin (Ele 53 pVw).

wi i)

JjES
The following hold:
el
I g
TV/* L,v T/'” - ,,,;_’___‘ i
VT
(el

T
T TR

(e) tirere exists an example for which the bounds of (¢) and (d) hold wirh equaliry.

“ Vv Y i

This result 1s analogous to Theorem 1. The algorithm 1s guaranteed o converge and,
when the compact representation can perfectly represent the optimal cost-lo-go vector,
the algorithm converges to it Furthermore, the accuracy of approximations generated
by the algorithm decays gracetully as the propriety of the compact representation dimin-
ishes. ‘I'he proot ot this Theorem mvolves a straightterward application of Theorem 3
concerning multi-representation contractions, which is presented in Appendix D.

Theorem 2 provides some assurance of reasonable behavior when feature-based hnear
architectures are used for dynamic programming. However, the theorem requires that the
chosen representation satisfies Assumplion 2, which seems very restrictive. In the next
two scctions, we discuss two types of compact representations that satisty Assumption 2
and may be of practical use.

8. Example: Interpolative Representations

One possible compact representation can be produced by specitying values of K states
in the state space, and taking weighted averages of these /O valucs W0 obtlain values ol

FEATURE BASED METHODS 81

other states. This approach is most natural when the stale space 1s a grid of poinis in
a Buclidean space. Then, 1if cost-lo-go values al states sparsely distributed in the grid
arc computed, valucs at other points can b generaled via interpolation. Odher than the
case where the states occupy a Euclidean space, interpolation-based representations may
be used in settings where there seems to be a small number of “prototypical” states that
capture koy features, Then, if cust-tu-go values ate computed (01 these Stales, cost-10-go
values at other states can be generated as weighted averages of cost-to-go values at the
“prototypical” siates.

For a mere fonmal presentation of inerpolation-based represenuations, let § — {1... ., n}
be the states in the original state space and let 3y, .., ix € S be the states for which
values are specificd. The kth component of the parameter vector W ¢ RY stores the
cust-to-go value of state 4. We are then dealing with the representation

e W, ifi¢g {ih.,,,‘tj{}:
Vi(w) = { Ir’(r”TF(:i)j otherwise. (a7

where F(i) ¢ R¥ is a vector used to interpolate at state +. For any ¢ ¢ S, the vector
F'(#) is fixed: it is a part of the mlerpolation architecture, as opposed to the parameters
W which are (o be adjusted by an algorithm. The choice of the components [{z) of
F{i} ts generally based on problem-specific considerations. For the representations we
consider in this section, we require that cach component fx(2) of £'(z} be nonncgative
and Z:?:r Ffele) — 1 for any state 7.

In relation to feature—based methods, we could view the vector F(4) as the feature
veoton associated witlhe state ¢ To bring Equation (17) into a uniform {ermat, ler us
detine vectors {F'(4)), ..., F{ig)} as the usual basis vectors of R so thal we have

V(W)= WTEGL), vied

To apply the algorithm frem Section 6, we should show that Assumption 2 of Theorem
2 s satisfied. Assumption 2(a) is satisfied by the fact that £7(é,), ..., (i) are the basis
veetors of B This fact also unplics that F(z) - szl Oy (o} F (i) Tor 8,(2) = fu(2).
Since the components of F(i) sum to one, Assumpiion 2(b) is satislied with 3 - 4.
Henee, this interpolative representation 1s compatibte with the algorithm of Scection 6.

9. Example: Localized Basis Functions

Compact representations consisting of linear combinations of locafized basis functions
have attracted considerable interest as general architectures for funclion approximation.
Two examples are radial basis function (Poggio and Girosi. 1990) and wavelet networks
{Bakshr and Stephanopoulos, 1993). With these representations, states are typically
contained in 2 Buchdean space R {(typreally forming a finite grid). Let us continue
lo view the siae space as S — {1, .. n} Each stale index is associated with a point
r* & R With a localized basis function architeciure, the cost-to-go value of state « < 5
takes on the following form:

82 J.N. TSITSIKLIS AND B, VAN ROY

K
Vi) =" Wie(a', e on), (18)

=1

where W ¢ 07 is the parameter vector, and the function ¢ : R4 x R* x R — R is the
chosen basis function. In the case of radial basis functions, for instance, ¢ is a Gaussian,
and the second and third arguments, pg € R and oy ¢ R, specity the center and dilation,
respectively. Morc formally,

de—wlll
Oz, p, o) —ae” 2T Vepe R e R,

where ||-|» denotes the Euclidean norm and a ¢ 1 1s a normalization factor. Without loss
of generality, we assume that the height at the center of each basis function is normalized
to one. In the case of radial basis functions, this means o = 1. For convenience, we will
assume that g, =zt for ke {1,. .., K}, where iy. ..., 14 are preselected states in 5.
In other words, cach basis function is centered at a point that corresponds (0 seinme state.

Architecwures employing localized basis functions are set apart from other compact
representattons by the tendency for individual basis functions o capture only local char-
acteristics of the function to be approximated. This is a consequence of the fact that
@(x, ju. o) generates a significant value only when w is close to . Otherwise, é(z, 1, 7)
1s extremely small. Intuitively, each basis funchon caplures a feature that s local in
Fuchdean space. More formally, we use locality to imply thatl a basis function, ¢, has
maximum magnitude at the center, s0 ¢, it o) — 1 while @l p, o) < | for x £ u.
Furthermore. |@(x, iu. 7 }| generally decreases as || - 1|3 increases, and the difation pa-
rameter contrals the rate of this decrease. Hence, as the ditation paramceler 15 decrcased,
io{x, o, o3| becomes increasingly localized, and formatly, for all x £ . we have

limn ¢(x, g, o) - O
o +0

In general, when a localized basis function architecture is used for function approxima-
tton. the centers and dilations are determined via some heuristic method which employs
data and any understanding about the problem at hand. Then, the parameter veotor 1
is determimed, usually via solving a least-squarcs problem. In this scclion, we explore
the use of lTocalized basis functions to solve dynamic programming, rather than fune-
tion approximation, problems. In particular, we show that, under cettain assumptions,
the algonthm of Section 6 may be used to generate parameters for approximanoen of a
cost-to-g0 function.

To bring localized basis functions into our {eature-based representation framework, we
can view an mdividual basis function, with speciticd center and dilation paramcter, as
a feature. Then, given a basis function architeeture which hnearly combines K basis

functions, we can define
Felt) — (@' e a), VA CS,

and a featurc mapping F(v) — (fi{4),. .. fw()). The architecture bacomes a special
case o the famibiar feature-based representation Hom Section 6.

FEATURE-BASED METHODS 83

K
V(W) = g(FGLWY = Wifuli), Vie S, (19)
kol

We now move on to show how the algorithm introduced in Section 6 may be applied
in conjunction with localized basis function architectures. To do this, we will provide
conditions on the architecture that arc sufficient to ensure satisfaction ot Assumption 2.
The following formal assumption summarizes the sufficient condition we present.

Assumption 3 (a} Forall k< {1,... K},

fk‘,("ik) -1
(b Forali j < {1.... K},
RSS!
Loty

{c) With & defined by
5 = a (i
jc{lfldxx} };j 1alig)

there exists a 3 C |3, 1) such that, for all i ¢ S,

K 4
PINFAGIESY W
koL :

[ntuitevely, 4 15 a bound on the influence of other basis functions on the cost-to-go
value at the center of a particular basis function. By decreasing the dilation parameters
ot the basis_;/ functions, we can make & arbitrarily small. Combined with the fact that
MaXe g Zi‘, F'{1) approaches unity as the dilation parameter dimmishes, this implies
that we can ensure satisfaction of Assumption 3 by choosing sufficiently small dilation
parameters. In practice, a reasonable size dilation paramcter may be desirable, and
Assumption 3 may often be overly restrictive.

We will show that Assumption 3 guarantees satislaction of Assumption 2 of Theorem 2.
This will imply that, under the given restrictions, localized basis function architectures are
compatibsle with the algorithm of Section 6. We start by choosing the stales {i, iy}
1o be those corresponding to node centers. Hence, we have ' = pyg for all k.

Define B« R *® as a matnix whose kth column is the feature vector £{i) Define
Fo] RE = R oas the 1y norm oon RY. Suppose we choose a vector 8 © RE with

L6, = 1. Using Assumptions 3(a) and 3(b), we obtain
_}(
B8, - ‘ g P
158, !L&;F(EJ) 1
oL
LK
- 9:/ ff\ {s J)
N E |

R4 JN TSTISIKLIS AND B, VAN ROY

p
=3 (1l YA
fres= 1 oLk
p J
= 1= 181D)]
gl K
y
BN I AT
j=1
1
> 0

Hence, B is nonsingular. 1t follows that the columns of 5, which are the vectors
Fi)), ..., 1), are Hnearly independent. Thus, Assumption 2(a) is satisfied.
We now place an upper bound on ||B 1!y, the {1—induced notm on 57!

By
|z ' — max | — L.
cens |lzi],
-min HQH]
serx || BE|),
1
16

Let us define §(:) = B 1F(f£) 50 that

%
F(L) — Z O (O F (1)
k=1

For any 7, we can put a bound on [|@({)

[1 as follows:

iy B EE
< BN EFW L
LEG)
1—6
7
= 7

Hence, Assumption 2(h) is sausfied. 1t follows thar the algorithm of Section 6 may be
applied to locahized basis funcnon architectures that satisty Assumption 3.

10. Conclusion

We have proved convergence and derived error hounds for two algorithms that employ
feature based COMPECT Tepresentations tw approximuaie cost—to—-go lunctions. The use of

FEATURE-BASED METHODS 85

compact representations can potentially lead to the solution of many stochastic control
problems that arc computationally intractable to classical dynamic prograroming.

The algorithms described in this paper rely on the use of features that summarize the
most salient charactenistics of a state. These features are typically hand-crafted using
available expertence and intuttion about the underlying Markov decision problem. I
appropriate features are chosen, the algorithms lead to good solutions. When it 1s not
clear what features arc appropniate, several choices may be tried in order to arrive at a set
of features that enables satisfactory performance. However, there 18 always a possibility
that a far superior choice of features exists but has not been considered.

The approximation architectures we have considercd are particularly simple. Morc
complex architectures such as polynomials or artificial neural networks may lead to
better approximations. Unfortunatcly, the algorithms discussed are not compatible with
such architectures. The development of algorithms that guarantee sound behavior when
used with more complex architectures is an area of open research.

Acknowledgments

The use of feature extraction to aggregate states for dynamic programming was in-
spired by Dnmiutnt Bertsekas. We thank Rich Sutton for clarifying the relationship of
the counter-example of Section 4 with TDX{(0). The choice of Tetris as a test-bed was
motivated by carlier developments of Tetris learning algorithms by Richard Lippman and
Linda Kukolich at Lincoln Laberatories. Early versions of this paper benefited from the
proofreading of Michacl Branicky and Peter Marbach. This research was supported by
the NSF under grant ECS 9216531 and by EPRI under contract 8030-10.

Appendix A

Mutti-Representation Contractions

Many problems requirning numerical computation can be cast in the abstract framework
of fixed point computation. Such computation aims at finding a fixed point V> & R
of a mappmg 7 - R" — R™, that 15, solving the cquation V' — T{V). One typical
approach mvoelves generating a sequence {V{#)[¢ = 0.1,2,...} using the update rule
Vit 1 1) = 1{V(t)) with the hope that the sequence will converge to V'*. In the context
of dynamic programuning, the function 77 could be the value iteration operator, and the
fixed point is the optimal cost-to-go vector.

In this appendix, we deal with a simple scenario where the function 7' is a contraction
mapping — that is, for some vector norm || - i, we have |T(V) - (VY| < 3|V - V.
for all V.17 ¢ R and some 3 ¢ |0, [} Under this assumption, the fixed point of 1" is
unigue, and a proof of convergence for the ilerative method is trivial.

When the number of components 7. 18 extremely large {n often grows exponentially with
the number of variables involved in a problem), the computation of 77 1s inherently slow.
One potential way 1o accelerate the computation s to map the problem onte a smaller
space B (<€ 1), which can he thonght of as a parameter space This can be done by

86 J.N.TSITSIKLIS AND B. VAN ROY

defining a mapping ViR™ s R and a pseudo-inverse ViR — R The mapping
V can be thought of as a compact representation. A solution can be approximated by
finding the fixed point of a mapping 77 : R™ +— R™ defined by 77 — Vi o T o V. The
hope is that V(E'V*) 1s close to a fixed point of T 1if W™ is a fixed point of T7. Ideally, if
the compact representation can exactly represent a fixed point V* € R™ of T" —that is, if
there exists a W € R such thal V(W) = V* — then W should be a fixed point of T".
Furthermore, 1f the compact representation cannot exactly, but can closcly, represent the
fixed pornt V* < R™ of T then W should be close to V*. Clearly, choosing a mapping
V for which ﬁ'(W} may closely approximate fixed points of 1° requires some infuition
about where fixed points should generally be found in R™.

A.l. Formal Framework

Though the thcorem we will prove generalizes 1o arbitrary metric spaces, to promote
readability, we only treat normed vector spaces. We are given the mappings T : R —
R,V - R™ — R and VI - R* — R™. We employ a vector norm on R and a
veotar norm on 7 denoting both by || - ||, We have e < n, so the norm being used 1n
a particular expression can be determined by the dimension of the argument. Define a
mapping 77 - R™ — R by 17 - Ve T o V. We make two sets of assumptions. The
first concerns the mapping 7.

Assumption 4 The mapping T is a contraction with contraction coefficient 3 < [0, 1)
Hence, for all V, V' ¢ R,

with respect (o | - .

LTV TV < 4

V-V

Our second assumption defines the relationships between V oand VT

Assumption 5 1he following hold for the mappings V and V.
fa) For all W e R,
W = Vi(V(W"))_

(b} There exists a 3" ¢ |3, 1) such that, for all W, W' < R™,

24
VO = VW< e v
(c) Forall V.V ¢ R™,
Wiy - 1;T(T/’)| <V - V7

Intuitively, part (a) ensures that V7 is a pscudo-inverse of V. Part {b) forces points that
™, and part (¢) ensures the converse,
nearby points in R”7 must project onto peints e 17 thae are closc,

are close m R o map o ponts that are close in

FEATURE-BASED METHODS 87

A.2. Theorem and Proof
Since ' is a contraction mapping, it has a unique fixed point V*. Let

¢ = inf |V -V (W)

WeR™

THEOREM 3 Lef Assumptions 4 and 5 hold.
{a}) We have
IT"(W) = T (W) = 5'|W — W7,

for all W, W' « R'™
(b If W* s the fixed point of T, then

~ . 8+ 4
Ve VW) € o——¢.

WV < g
This theorem basically shows that 77 is a contraction mapping, and if V™ can be closcly

approximatcd by 1he compact representation then W provides a close tepresentation uf

1/’*

Proof of Theorem 3 (a) Take arbatrary W, W' & R™. Then,

W =TV VW) VI W)
< VW) TV R))
< W(m Vv
< W - W

Hence, T is a contraction mapping with contraction coefficient (3.
{b)let e’ e+4 for some & > 0. Choose Wop € R™ such that [V V(W)| < ¢’
Then,

(W = T/ (Wopdll = VIV (Weape)) — VIV (Wop)|
< I ViWeape) TV (Wop |
<V Wope) — VI 4 TV (Weped) = VY|
< ¢ 4 e
— (1B

Now we can place a bound on W™ — W .|

“ H/’* . I’;[’vn'pf- |} ;{ HVV) 'I" (H«"gpﬁ) H -+ || '["(H”n;nf) - Vi’fopf. ‘
< Jr i| I'VK [/Voyﬂ, | + (1 - }’)(_’

and it follows that

1+ 4
T : . Ty
“‘L I’L '-’PfH <. T‘) H"C .

88 LN, TSITSIKLIS AND B, VAN ROY

Next, a bound can be put on [|[V* — V(W*)|]:

Ve — V(W < |

V= V(W] + IV (Wep) — VW)

54
< ¢+ f”w’;pt - W7

L F L8
< ¢ Gl

av8
— e
il — 39

Since & can be arbitrarily smatl, the proof is complete. [

Appendix B

Asynchronous Stochastic Approximation

Consider an algorithm that performs noisy updates of a vector V' € R", for the purpose
of solving a system of equanons of the form 7(V) = V. Herc 1" is a mapping from R”
into itself. Let T4, 1, - R™ — R be the corresponding component mappings; that 1s,
TVY = (T(V), ..., (V) for all V' < ™

Let A be the set of nonnegative integers, let V() be the value of the vector Voat time
t, and let V(t) denote its 7th component. Let T'¥ be an infinite subsct of A indicating
the set of times at which an update of V; is performed. We assume that

Vit 1) = Vile), Lo T (B.1)
and

Vit 1) Vil + @ (L) - i), e (B.2)

Here, (1) is a stepsize parameter between 0 and 1, and 7;(£) is a noise erm. In order
to bring Equations (B.1} and (B.2) into a unified form, it 1s convement to assume that
o, {£) and 1, (1} are defined for every 4 and £, but that o (t) = Dfow t g T

Lot F(t) be the set of all random variables that have been realized up to and including
the point at which the stepsives a;(¢) for the fth iteration arc selected, but just betore
the noisc term 7,(¢) is generaled. As in Section 2, || - [|o, denotes the maximum norm.
The following assumption concerns the statistics of the noise.

Assamption 6 (a) For every + and 1, we have Fln.(t) | F(t)] = 0.
(b) There exist (deterministic) constants A and 13 such that

Ein?lt)y | FIOl < A+ BIIV(HIZ., Vit

We then have the following result {Tsitsiklis, 1994) (related resolts arc obtained 1n
(Jaakola, Jordan, and Siugl, 1994)).

FEATURE-BASED METHODS 89

ToeorEM 4 Let Assumption 6 and Assumption 1 of Section 5 on the stepsizes o)
hold and suppose that the mapping T is a contraction with respect to the maximum norm.
Then, V{t) converges to the unigue fived point V* of T, with probabilicy 1.

Appendix C

Proof of Theorem 1

{a) To prove this result, we will bring the aggregated state value iteration algorithm into
a torm to which Theorems 3 and 4 (from the Appendices A and B} can be applicd and
we will then verify that the assumptions of these theorems are satisfied.

Let us begin by defining a function 77 : R™ +— R™, which in some sensc is a noisc-
free version of our update procedure on W (t). In particular, the jth component 17 of
T is defined by

T(W) ~ BT, (V)| = > P10 (W), ©n

408
The update equations (7} and {8} can be then rewrnitten as
Wit e 1) — (1 =y (U)W (0 + oy (DLW — 15 (L))- (C.2)

where the random variable n;(t) is defined by

538 = Ty (o VAW () = B[L, (VWD)

Given that each 'XJ' (t) .[g a ran(lOH'l SO0 p]e fr(_)m g_’] oy IiStribu io ip ind d ‘f
f(i) we Ub[ili.n c d fion 1% epe“
[“J(I) ‘ (t)] - 1[’?}(6)] — 0‘

Our proof consists of two parts. First, we use Theorem 3 to establish that 77 15 a
maximum norm contraction. Once this is done, the desired convergence result follows
from Theorem 4.

Let us verify the assumptions required by Theorem 3. First, let us define a function
VR — R as

Vi)=Y v

105y

This function is a pscudo-inverse of V since, for any W ¢ R,

VIV = 3 P VW) = W

€5,

We can express T/ as 77~ V7 o T oV, to bring it into the form of Theorem 3. In this
context, the vector norm we have in mind for both 1 and ™ is the maximum norm,

i
[l 1

90 J.N. TSITSIKLIS AND B. VAN ROY

Assumption 4 is satisfied since T 1s a contraction mapping. We will now show that vt
v, and T, satisfy Assumption 5. Assumption 5(a} is satistied since VT is a pseudo-inverse
of V. Assumption 5(b) is satisficd with & — J since

VWY = V(WY e — max Vi(W) — Vi(W")
e D
e, W W
W W
Assumption 5(c} 1s satisfied because

V) IVl e |3 PV - V)
PES;

JE{L,...,m}

M

max max |V, V|
G {1, o} tES;

= [V VH’X

Hence, Theorem 3 applics, and 7 must be a maximum norm confraction with contraction
coefficient 3.

Since 77 15 a maximum norm contraction, Theorem 4 now applics as long as 1s
assumptions hold. We have already shown that

Elny{t) | F(O] =

so Assuniplion 0(a) is satisficd. As for Assumnption 6(1x) on the vartance of 1, (1), the
conditional variance of our noise term satisfics

Rl | Fn — E[(T TV @) - By, (o) |

4(11?;5{ 1,(V(W(t)))) ’
Smax(Ele,)? + 8|W ()2

()

A

rA,

Henee, Theorem 4 applies and our proof is complete.

{b} If the maximum fluctuation of V* within a particular partition is ¢, then the mini-
mum error that can be attained wsing a single constant Lo approximate the cost-to-go of
every state within the partition i & This implies that miny, V(W) V.., the min-

i I|

imum error that can be attained by an aggregated state representation, 18 . Hence,

by substituting ¢ with ||€.|J|”“-, and recalling that we have 37 = 3, the result f()]l()w.s tfrom
Theorem 3(b}. i

(c) Now that we have a bound on the maximum norm between the optimal cost-to-go
estimate and the frue optimal cost-to-go vector, we can place a bound on the maximum
norm between the cost of a greedy policy with respect 1o V{W*) and (he opumal policy
as follows:

VT VT T [+ DV (W)

FEATURE BASED METHODS 91

Figure C./. An example for which the bound holds with equality.

Swice (V) - 47V (V) for ali V' ¢ R, we have

[Vviws =V [V 1T (W 4 [TV W) = Vo
< BV VW e L IV W) =V

< BV V(1 BV = VI oo
It follows that
) 23 - .
[[VFriws= — V7| < 1 : i|l W Ve
. 25 ‘
(1 3}2 1

(d) Consider the four—state Markov decision problem shown in Figure C.1. The states
are Xy, Iy, r3, and x4, and we form two partitions, the first consisting of z; and s,
and the second containing the remaining two states. All transaition probabilities are one.
No control decistons are made al stales @y, €9, Or Z,. State x1 18 a zero-cost absorbing
state. In state - a transition to state x; is inevitable, and, likewise, when in statc x4,
a transition to stale xx always occurs. In state 24 two actions are allowed: move and
stay. The transition cost for cach state—action pair 15 determinsstic, and the arc labels in
Figure C.1 represent the values. Let ¢ be an arbitrary positive constant and, let 6, the

cost of staying wm state 4. be delined as b = -2’?:-)6 . with ¢ < 23¢. Clearly, the optimal
cost-lo-go values at i, oo, g, and ry are 0, ¢, 0, - ¢, respectively, and ||e]] = c.

Now, let us define sampling disiributions, within cach partition, that will be used with
the algorithm. In the first partition, we always sample x, and in the second parntion, we

G2 JNDTSITSIKLIS AND B, VAN ROY

always sample z4. Consequently, the algorithm will converge to partition valucs wy
and w3 4 satistying the following equations:
wis = o+ Juwl,
?1)14 = —c+ fuwj .
It is not hard to see that the unigue solution is
¢
P

Wy, —

wh, = — =
3,4 -

The bound of part (b) is therefore satisfied with eguality.
Consider the greedy policy with respect to 2. For & > 0, the stay action is chosen
at state 3, and the total discounted cost incurred starting at state s 1s 28¢—% When

a g2
& = 0, both actions, stay and move, are legitimate choices. If stay is chosen, the bound
of part (¢) holds with equality. O
Appendix D

Proof of Theorem 2

(a) By defining e (VY = MV, we have 77 — Vo7 oV, which fits into the framework
of multi-representation contractions. Qur proof consists of a straightforward applica-
tion of Theorem 3 from Appendix A (on multi-representation contractions). We must
show that the technical assumptions of Theorem 3 are satisfied. To complete the muld-
representation contraction framework, we must define a norm in our space ol cost-to-go
vectors and a norm in the parameter space. In this context, as a metric for parameter
vectors, let us define a norm |- || by

o]

54

Wl =

MW

Since M has full column rank, || - || has the standard propertics of a vector norm. Por
cost-to-go vecters, we employ the maximum norm in R™ as our metrc.

We know that 7" 18 a maximum norm contraction, so Assumption 4 is satisfied. As-
sumption 5(a) is satisfied since, for all W < RE,

VIT(w = Maw

- W
Assumption 5{b) tollows from our definition of | - | and the fact that 3" = [3,1):
I3 .
W= W= MW = M|

| 3

FEATURE-BASED METHODS 93

Showing that Assumption 2 implies Assumption 5{c) is the hearl of this proof. To do
this, we must show that, for arbitrary cost-to-go vectors Voand V7,

IV = Vi = VIV VIV (D.1)

Define D = %U((VY - VI{V')}. Then, for arbitrary 7 € S we have
e [i "
Dy — 37|F1 VIV - VIVIL

Under Assumplmn there exist positive constants 8y (¢}, .. 0 (i) ¢ R, with

Zk |8k} < 1, such that F(z) — JT :f‘:] B (1) F (ig). 1t follows that, for such
01(3),,_.\ K L E e,

] .Ai’ T ‘ . . ’T r),r I

Dy < \(—5 Ok (e)(VTVY VYY)

< mgxm (m(V*(V‘) Vv

3

= |,
= Vi Vi
<Y - Vi

Inequality (D.1) lollows. Hence, Theorem 3 applics. implying parts (a), (b), and (¢). of
Theorem 2.
Part (d) can be proven using the same argument as in the proof of Theorem 1(c). bor
part (¢), we can use the same example as that used 10 prove part (d) of Theerem 1.
O

Notes

I To those familiar with Q-learning or texnporal-ditference learning: the counler-example applics © cases
where temporal-difference or Q-leaming updates are performed at siates thai are sampled onilormiy from
the entire state space. Olten tmes. however, woporal-difference methods assume that sample stares arc
generited by tollowang 4 randomly produced complete trajectory. [n our example, this would correspond
1o slarting al state ;. moving to sitate 2. and then doing an infiniie number of sell-trnsitions from st
2g o iself. I this mechanism is used. our example 18 no longer divergent, in agreement with results of
Dayan {1992},

We take the point of view that cach of these samples is independently generated from the same probability
distribution. 1f the samples were generatcd by a simulation cxperiment, as Monte-Carlo simulation under
some fixed policy. independence would fail to hold, This would complicale somewhar the convergence
analysie, but can be handled as in (Jaakola, Siegh and Jordan, 1095,

2=

3. The way in which «luwe is recorded i inconsequential. so we have made no elfort o minimize the number
of vecter components required.

4. To really ensare 2 reasonable order of growth for the number of required tterations, we would have (o
characterize a probubility distribution for ihe difference between the mitial parameter vecior W {0} and the
goal W as well as how close to the goal W the parameter vecior W {¢) must be in order tor the error
bounds to hold.

5 Relarewt results have been oblained indepzndeantly by Gordona {1005

94 JONCTSITSTKLIS AND B, VAN ROY

References

Bakshi, B R_ & Stephanopoulos G . {19933 "Wave-Net: A Multiresolution, Hicrarchical Neural Network with
Lecalized Learning,” AIChE Journal, vol. 39, no. L, pp. 57-81.

Barto, A G, Bradtke, S. I, & Singh, 5. P, (1995). “Real time Learming and Control Using Asynchronous
Dynamic Programming,” Aritificial Intelligence, vol. 72, pp. 81-138.

Bellman, R, E- & Dreyfus, $ E . (1959) “Functional Approximation and Dynamic Programming,” Math. Tables
and Other Aids Comp., Vol. 13, pp. 247-231.

Bertsekas, [). P, (1995).Dynamic Programming and Opiimal Conirol, Athena Scientific, Bellment, MA.

Bertsekas, [, P, (1994) A Counter-Lxample to Temporal Differences Learning,” Neural Computation, vol. 7,
pp. 270-279.

Bertsekas D) P & Castafion, D. A, (1989). “Adaptive Aggregation for Infinite Horizon Dynamic Program
ming.” [EEE Transactions on Automatic Control, Vol. 34, No. 6, pp. 589 598,

Bertsekas, [P & Tsisiklis, J. N, (1989). Parallel and Disributed Computation: Numerical Methods,
Prentice tall, Englewood Cliffs, NI

Dayan, P D (1992). “The Convergence of TEXA) for General A" Machine Learning, vol. &, pp. 341-362.

Gordon, G. J.. (1995}, ~S1able Funcrian Approximation in Dynamic Programming,” Technieal Report (MU=
CS-95.103, Camegic Mellon University.

Jaakola, T., Jordan M. 1., & Singh. &. P {1994).°0n the Convergence ol Stochastic [terative Dynamic Pro
gramming Algorithms.” Neural Computation, Vol 6, No_ 6

Juukola T, Singh, 3. P, & Judan, M. L, (1993). “Reinlucement Learaing Algorithms for Partially Obscrevable
Markovian Decision Processes” in Advances n Newral Information Processing Svsrems 7, 1. D, Cowan, G.
Tesauro, and I3, Tourctzky, cditors. Morgan Kaufmann.

Korf, R.E. (1987). “Planning as Scarch: A Quantitative Approach,” Artificial Intelligence, vol. 33, pp. 65-85.

Lippman, K. % Kukohch, L. & Snger, B, (1993). "LONKnet: Neurad Network, Machme-Learning. and
Statistical Software for Pattern Classification.” The Lincola Laboratory Journal, vol. 6, no. 2, pp. 249-268.

Morin, T. I.., (19873 “Computational Advances in Dynaruc Programming,” in Dynamic Programming and s
Applicarions. cdited by Paterman, ML pp. 53-90.

Poggio, T & Girosi, B, (1990). “Networks for Approximation and Learming,” Proceedings of the TEEE, vol,
T8, no. 9, pp. 1481 1497,

Reerz, 0., (1977). “Approximate Solutiens of a Discounied Markovian Decision Process.” Bonner Mathemi-
tische Schritten. vol. 98 Dynamische Oponuerung, pp. 7792

Schweitzer, P) & Seidmann, A, (1985). “Generalized Polynomual Approxnmations in Markovian Decision
Processes,” Journal of Mathematical Anabysis and Applicanons, vol. FH), pp. 508-382.

Sutton, RS (1988) “Learning (o Predict by the Method of Temporal Milerences,” Machine Learning, vol.
ILpp Va4

Tesauro, G, (1992). “Practical Issues i Temporal Difference Leamning,” Machine Learning, vol. 8, pp. 257
277,

Tsitsiklis, J. ™. (19943 “Asynchronous Stochastic Approximation and Q-Learning,” Machine Learning, vol
16, pp. 185-707.

Walkins, C). O H. Dayan, P, (1992) “Q-learning,” Machine Leaming, vol. 8, pp. 279292,

Whitt, W, (1978). Approximations of Dynamic Programs [Mearhematics of Operarions Researchovol. 3, pp
231-243.

Received Decmeber 2, 1994
Accepted March 29, 1995
Final Manuscripy October 13, 1695

