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[Drawing from Sutton and Barto, Reinforcement Learning: An Introduction, 1998] 

Markov Decision Process 

Assumption: agent gets to observe the state 
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Markov Decision Process (S, A, T, R, H) 

Given 

n  S: set of states 

n  A: set of actions 

n  T: S x A x S x {0,1,…,H} à [0,1],    Tt(s,a,s’) = P(st+1 = s’ | st = s, at =a) 

n  R:  S x A x S x {0, 1, …, H} à <    Rt(s,a,s’) = reward for (st+1 = s’, st = s, at =a) 

n  H: horizon over which the agent will act 

Goal:  

n  Find ¼  : S x {0, 1, …, H} à A  that maximizes expected sum of rewards, i.e.,  

Value Iteration 
n  Idea: 

 

n  = the expected sum of rewards accumulated when starting 
from state s and acting optimally for a horizon of i steps 

n  Algorithm: 
n  Start with        for all s. 

n  For i=1, … , H 

 for all states s 2 S:  

n  Action selection: 
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n  S = continuous set 

n  Value iteration becomes impractical as it requires to 
compute, for all states s 2 S:  

 

Continuous State Spaces 

Markov chain approximation to continuous state 
space dynamics model (“discretization”) 

n  Original MDP  (S, A, T, R, H)  

 

n  Discretized MDP  

n  Grid the state-space: the vertices are the 
discrete states. 

n  Reduce the action space to a finite set. 
n  Sometimes not needed:  

n  When Bellman back-up can be computed 
exactly over the continuous action space 

n  When we know only certain controls are 
part of the optimal policy (e.g., when we 
know the problem has a “bang-bang” 
optimal solution) 

n  Transition function: see next few slides. 
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Discretization Approach A: Deterministic Transition 
onto Nearest Vertex --- 0’th Order Approximation 

Discrete states: { »1 , …, »6 } 
 
 
 
 
Similarly define transition 
probabilities for all »i 

»1  

»5  »4  

»3  »2  

»6  

a

n  à Discrete MDP just over the states { »1 , …, »6 }, which we can solve with value 
iteration 

n  If a (state, action) pair can results in infinitely many (or very many) different next states: 
Sample next states from the next-state distribution 

0.1 

0.3 

0.4 
0.2 

Discretization Approach B: Stochastic Transition onto 
Neighboring Vertices --- 1’st Order Approximation 

Discrete states: { »1 , …, »12 } 

n  If stochastic: Repeat procedure to account for all possible transitions and 
weight accordingly 

n  Need not be triangular, but could use other ways to select neighbors that 
contribute.  “Kuhn triangulation” is particular choice that allows for efficient 
computation of the weights pA, pB, pC, also in higher dimensions               

»1  

»5  

»9  
»10  »11  »12  

»8  

»4  
»3  »2  

»6  »7  

s’  a 
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Discretization: Our Status 

n  Have seen two ways to turn a continuous state-space MDP into 
a discrete state-space MDP 

n  When we solve the discrete state-space MDP, we find: 

n  Policy and value function for the discrete states 

n  They are optimal for the discrete MDP, but typically not for 
the original MDP 

n  Remaining questions: 

n  How to act when in a state that is not in the discrete states 
set? 

n  How close to optimal are the obtained policy and value 
function? 

n  For non-discrete state s choose action based on policy in nearby states 

n  Nearest Neighbor: 

n  (Stochastic) Interpolation: 

How to Act (i): 0-step Lookahead 
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n  Use value function found for discrete MDP 

n  Nearest Neighbor: 

n  (Stochastic) Interpolation: 

How to Act (ii): 1-step Lookahead 

n  Think about how you could do this for n-step lookahead 

n  Why might large n not be practical in most cases? 

How to Act (iii): n-step Lookahead 
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n  Dynamics: 

n  Cost function:  

Example: Double integrator---quadratic cost 

g(q, q̇, u) = q2 + u2

0’th Order Interpolation, 1 Step Lookahead 
for Action Selection --- Trajectories 

optimal Nearest neighbor, h = 1 

Nearest neighbor, h = 0.02 Nearest neighbor, h = 0.1 

dt=0.1 
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0’th Order Interpolation, 1 Step Lookahead 
for Action Selection --- Resulting Cost 

1st Order Interpolation, 1-Step Lookahead 
for Action Selection --- Trajectories  

optimal Kuhn triang., h = 1 

Kuhn triang., h = 0.02 Kuhn triang., h = 0.1 
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1st Order Interpolation, 1-Step Lookahead 

for Action Selection --- Resulting Cost  

n  Typical guarantees: 

n  Assume: smoothness of cost function, transition model 

n  For  h à 0, the discretized value function will approach the 
true value function 

n  To obtain guarantee about resulting policy, combine above 
with a general result about MDP’s: 

n  One-step lookahead policy based on value function V which 
is close to V* is a policy that attains value close to V* 

Discretization Quality Guarantees 
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n  Chow and Tsitsiklis, 1991: 
n  Show that one discretized back-up is close to one “complete” back-

up  + then show sequence of back-ups is also close 

n  Kushner and Dupuis, 2001: 

n  Show that sample paths in discrete stochastic MDP approach sample 
paths in continuous (deterministic) MDP   [also proofs for stochastic 
continuous, bit more complex] 

n  Function approximation based proof (see later slides for 
what is meant with “function approximation”) 

n  Great descriptions: Gordon, 1995; Tsitsiklis and Van Roy, 1996 

Quality of Value Function Obtained 
from Discrete MDP: Proof Techniques 

Example result (Chow and Tsitsiklis,1991) 
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Value Iteration with Function Approximation 

Provides alternative derivation and interpretation of the 
discretization methods we have covered in this set of slides: 

n  Start with        for all s. 
n  For i=1, … , H 

 for all states          , where      is the discrete state set 

 

 

   where  

  

0’th Order Function Approximation 1st Order Function Approximation 

n  0’th order function approximation  

builds piecewise constant approximation of value function 

 

n  1st order function approximatin 

builds piecewise (over “triangles”) linear approximation of 
value function 

Discretization as function approximation 
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n  Allows efficient computation of the vertices participating in a 
point’s barycentric coordinate system and of the convex 
interpolation weights (aka the barycentric coordinates) 

n  See Munos and Moore, 2001 for further details. 

Kuhn triangulation 

Kuhn triangulation (from Munos and Moore) 
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n  One might want to discretize time in a variable way such that one 
discrete time transition roughly corresponds to a transition into 
neighboring grid points/regions 

n  Discounting:  

 ±t depends on the state and action 

 

See, e.g., Munos and Moore, 2001 for details. 

Note: Numerical methods research refers to this connection between time 
and space as the CFL (Courant Friedrichs Levy) condition.  Googling for 
this term will give you more background info. 

!! 1 nearest neighbor tends to be especially sensitive to having the correct 
match [Indeed, with a mismatch between time and space 1 nearest 
neighbor might end up mapping many states to only transition to 
themselves no matter which action is taken.] 

[[Continuous time ]] 

Nearest neighbor quickly degrades when 
time and space scale are mismatched 

h = 0.02 h = 0.1 

dt= 0.1 

dt= 0.01 


