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n  From an analytical point of view == Kalman filter 

n  Difference: keep track of the inverse covariance rather than the covariance 
matrix  [matter of some linear algebra manipulations to get into this form] 

n  Why interesting? 

n  Inverse covariance matrix = 0  is easier to work with than covariance 
matrix = infinity  (case of complete uncertainty) 

n  Inverse covariance matrix is often sparser than the covariance matrix  --- 
for the “insiders”: inverse covariance matrix entry (i,j) = 0  if  xi is 
conditionally independent of xj given some set {xk, xl, …} 

n  Downside: when extended to non-linear setting, need to solve a linear 
system to find the mean (around which one can then linearize) 

n  See Probabilistic Robotics pp. 78-79 for more in-depth pros/cons and 
Probabilistic Robotics Chapter 12 for its relevance to SLAM (then often 
referred to as the “sparse extended information filter (SEIF)”)   

 

 

 

 

Information Filter 
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n  Represent the Gaussian distribution by samples 

n  Empirically: even 40 samples can track the atmospheric 
state with high accuracy with enKF 

n  <-> UKF: 2 * n sigma-points, n = 106 + then still forms 
covariance matrices for updates 

n  The intellectual innovation: 

n  Transforming the Kalman filter updates into updates 
which can be computed based upon samples and which 
produce samples while never explicitly representing the 
covariance matrix 

Ensemble Kalman filter (enKF) 

  

 Prediction: 

       

   
 

 Correction: 
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Can update the ensemble 
by simply propagating 
through the dynamics 
model + adding sampled 
noise 

KF enKF 
Keep track of µ, § Keep track of ensemble [x1, …, xN] 

? 
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n  KF: 

n  Current ensemble X = [x1, …, xN] 

n  Build observations matrix Z = [zt+v1 … zt+vN]  where vi are sampled 
according to the observation noise model 

n  Then the columns of 

 X + Kt(Z – Ct X) 

 form a set of random samples from the posterior 

Note: when computing Kt, leave §t in the format  

 §t = [x1-µt … xN-µt] [x1-µt … xN-µt]T  

enKF correction step 
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n  Indeed, would be expensive to build up C. 

n  However: careful inspection shows that C only appears as in: 

n  C X 

n  C § CT = C X XT CT 

n  à can simply compute h(x) for all columns x of X and 
compute the empirical covariance matrices required 

n  [details left as exercise] 

How about C?  
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n  Mandel, 2007 “A brief tutorial on the Ensemble Kalman 
Filter”   

n  Evensen, 2009, “The ensemble Kalman filter for combined 
state and parameter estimation” 

References for enKF 
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n  Kalman filter exact under linear Gaussian assumptions 

n  Extension to non-linear setting: 

n  Extended Kalman filter 

n  Unscented Kalman filter 

n  Extension to extremely large scale settings: 

n  Ensemble Kalman filter 

n  Sparse Information filter 

n  Main limitation: restricted to unimodal / Gaussian looking distributions 

n  Can alleviate by running multiple XKFs + keeping track of the likelihood; 
but this is still limited in terms of representational power unless we allow a 
very large number of them 

KF Summary 

EKF/UKF SLAM 

 

n  State: (nR, eR, θR, nA, eA, nB, eB, nC, eC, nD, eD, nE, eE, nF, eF, nG, 
eG, nH, eH) 

n  Now map = location of landmarks (vs. gridmaps) 

n  Transition model:  

n  Robot motion model; Landmarks stay in place 
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Simultaneous Localization and Mapping (SLAM) 

n  In practice: robot is not aware of all landmarks from the 
beginning 

n  Moreover: no use in keeping track of landmarks the robot 
has not received any measurements about 

à Incrementally grow the state when new landmarks get 
encountered. 

Simultaneous Localization and Mapping (SLAM) 

n  Landmark measurement model: robot measures [ xk; yk ], the 
position of landmark k expressed in coordinate frame attached 
to the robot: 

n   h(nR, eR, θR, nk, ek) = [xk; yk] = R(θ) ( [nk; ek] - [nR; eR] ) 

n  Often also some odometry measurements  

n  E.g., wheel encoders 

n  As they measure the control input being applied, they are 
often incorporated directly as control inputs (why?) 
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Victoria Park Data Set 

[courtesy by E. Nebot] 

Victoria Park Data Set Vehicle 

[courtesy by E. Nebot] 
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Data Acquisition 

[courtesy by E. Nebot] 

18 

Estimated Trajectory 

[courtesy by E. Nebot] 
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19 

EKF SLAM Application 

[courtesy by J. Leonard] 

20 

EKF SLAM Application 

odometry estimated trajectory 

[courtesy by John Leonard] 
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21 

Landmark-based Localization 

EKF-SLAM: practical challenges 

n  Defining landmarks 
n  Laser range finder: Distinct geometric features (e.g. use RANSAC to find 

lines, then use corners as features) 

n  Camera: “interest point detectors”, textures, color, … 

n  Often need to track multiple hypotheses 
n  Data association/Correspondence problem: when seeing features that 

constitute a landmark --- Which landmark is it?   

n  Closing the loop problem: how to know you are closing a loop? 

à  Can split off multiple EKFs whenever there is ambiguity;  

à  Keep track of the likelihood score of each EKF and discard the ones with 
low likelihood score 

n  Computational complexity with large numbers of landmarks. 
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n  High-dimensional ocean and atmospheric circulation models  
(106 dimensional state space) 

n  SLAM with 106 landmarks 

à  Becomes computationally very challenging to work with the 
106 x 106 covariance matrix (terabytes!) 

à  In SLAM community: information filter which keeps tracks 
of the inverse covariance matrix, which can often be well 
approximated by a sparse matrix 

à  In civil engineering community: ensemble Kalman filter, 
with applications often being in tracking systems described 
by partial differential equations 

KF over very large state spaces 

Fast SLAM 

n  Rao-Blackwellized particle filter 
n  Robot state = x, y, µ          (just like gMapping) 
n  Map = Landmark based     (vs. map = gridmap for gMapping) 

n  Key observation (why Rao Blackwellization is so useful): 
n  Location of landmark i is independent of location of 

landmark j given the entire robot pose sequence 
à  Instead of joint Gaussian over poses of all landmarks, can just 

keep track of Gaussian for each landmark separately 
à  Linear scaling with number of landmarks (rather than quadratic) 
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n  Landmark based  vs. occupancy grid 

n  Probability distribution representation: 

n  EKF vs. particle filter vs. Rao-Blackwellized particle filter 

n  EKF, SEIF, FastSLAM are all “online” 

n  Currently popular 4th alternative: GraphSLAM 

SLAM thus far 

Graph-based Formulation 
n  Use a graph to represent the problem 

n  Every node in the graph corresponds to a pose of the 
robot during mapping 

n  Every edge between two nodes corresponds to the 
spatial constraints between them 

n  Goal:  
Find a configuration of the nodes that minimize the error 
introduced by the constraints 
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The KUKA Production Site 

The KUKA Production Site 
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The KUKA Production Site 

scans     59668 
total acquisition time        4,699.71 seconds 
traveled distance       2,587.71 meters 
total rotations     262.07 radians 
size     180 x 110 meters 
processing time    < 30 minutes 


