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Bellman’s curse of dimensionality 

n  n-dimensional state space 

n  Number of states grows exponentially in n (assuming some fixed 
number of discretization levels per coordinate) 

n  In practice 

n  Discretization is considered only computationally feasible up 
to 5 or 6 dimensional state spaces even when using 

n  Variable resolution discretization 
n  Highly optimized implementations 
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n  Optimal Control for Linear Dynamical Systems and Quadratic Cost 
(aka LQ setting, or LQR setting) 

n  Very special case: can solve continuous state-space optimal 
control problem exactly and only requires performing linear 
algebra operations 

Great reference:  

 [optional] Anderson and Moore, Linear Quadratic Methods --- standard reference for 
LQ setting 

n  Note: strong similarity with Kalman filtering, which is able to 
compute the Bayes’ filter updates exactly even though in general 
there are no closed form solutions and numerical solutions scale 
poorly with dimensionality. 

This Lecture 

Linear Quadratic Regulator (LQR) 
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While LQ assumptions might (at first) seem very restrictive, 
we will see the method can be made applicable 
 for non-linear systems, e.g., helicopter. 

Value Iteration 

n  Back-up step for i+1 steps to go: 

n  LQR: 
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LQR value iteration: J1 

LQR value iteration: J1 (ctd) 
n  In summary: 

n  J1(x) is quadratic, just like J0(x).   

 àValue iteration update is the same for all times and can be done in 
closed form for this particular continuous state-space system and cost! 
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n  Fact: Guaranteed to converge to the infinite horizon optimal policy iff the 
dynamics (A, B) is such that there exists a policy that can drive the state 
to zero. 

n  Often most convenient to use the steady-state K for all times. 

Value iteration solution to LQR 

n  Extensions which make it more generally applicable: 
n  Affine systems 

n  System with stochasticity 

n  Regulation around non-zero fixed point for non-linear systems 

n  Penalization for change in control inputs 

n  Linear time varying (LTV) systems 

n  Trajectory following for non-linear systems 

LQR assumptions revisited 

= for keeping a linear system at the all-zeros state 
while preferring to keep the control input small. 
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n  Optimal control policy remains linear, optimal cost-to-go 
function remains quadratic 

n  Two avenues to do derivation: 
n  1. Re-derive the update, which is very similar to what we did for 

standard setting 

n  2. Re-define the state as:  zt = [xt; 1], then we have: 

LQR Ext0: Affine systems 

n  Exercise: work through similar derivation as we did for the 
deterministic case. 

n  Result:  
n  Same optimal control policy 

n  Cost-to-go function is almost identical: has one additional term which 
depends on the variance in the noise (and which cannot be influenced 
by the choice of control inputs) 

LQR Ext1: stochastic system 
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Nonlinear system: 
 

We can keep the system at the state x*  iff 

 
Linearizing the dynamics around x* gives: 

  
 

Equivalently: 
 
 

Let zt = xt – x* , let vt = ut – u*, then: 
                            [=standard LQR] 

LQR Ext2: non-linear systems 

A B 

LQR Ext3: penalize for change in control inputs 

n  Standard LQR: 

n  When run in this format on real systems: often high frequency control 
inputs get generated.  Typically highly undesirable and results in poor 
control performance. 

n  Why? 

n  Solution: frequency shaping of the cost function.  Can be done by 
augmenting the system with a filter and then the filter output can be used 
in the quadratic cost function.  (See, e.g., Anderson and Moore.)   

n  Simple special case which works well in practice: penalize for change in 
control inputs. ---- How ?? 
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LQR Ext3: penalize for change in control inputs 

n  Standard LQR: 

n  How to incorporate the change in controls into the cost/
reward function? 

n  Soln. method A: explicitly incorporate into the state by augmenting 
the state with the past control input vector, and the difference 
between the last two control input vectors.    

n  Soln. method B: change of variables to fit into the standard LQR 
setting. 

LQR Ext3: penalize for change in control inputs 

n  Standard LQR: 

n  Introducing change in controls ¢u: 

A’ B’ x’t+1 x’t = + u’t 

[If R’=0, then equivalent to standard LQR.] 
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LQR Ext4: Linear Time Varying (LTV) Systems 

 

LQR Ext4: Linear Time Varying (LTV) Systems 
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LQR Ext5: Trajectory following for non-linear systems 

n  A state sequence x0*, x1*, …, xH* is a feasible target 
trajectory iff 

 

n  Problem statement: 

n  Transform into linear time varying case (LTV): 

At Bt 

LQR Ext5: Trajectory following for non-linear systems 

n  Transformed into linear time varying case (LTV): 

n  Now we can run the standard LQR back-up iterations. 

n  Resulting policy at i time-steps from the end: 

n  The target trajectory need not be feasible to apply this technique, 
however, if it is infeasible then the linearizations are not around the 
(state,input) pairs that will be visited 
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n  Methods which attempt to solve the generic optimal control 
problem  

  

 by iteratively approximating it and leveraging the fact that the 
linear quadratic formulation is easy to solve. 

Most general cases 

Iteratively apply LQR 
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Iterative LQR: in standard LTV format 

n  Need not converge as formulated! 

n  Reason: the optimal policy for the LQ approximation 
might end up not staying close to the sequence of points 
around which the LQ approximation was computed by 
Taylor expansion. 

n  Solution: in each iteration, adjust the cost function so this 
is the case, i.e., use the cost function 

 Assuming g is bounded, for ® close enough to one, the 
2nd term will dominate and ensure the linearizations are 
good approximations around the solution trajectory 
found by LQR. 

Iteratively apply LQR: convergence 
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n  f is non-linear, hence this is a non-convex optimization 
problem.  Can get stuck in local optima!  Good initialization 
matters. 

n  g could be non-convex: Then the LQ approximation fails to 
have positive-definite cost matrices. 

n  Practical fix: if Qt or Rt are not positive definite à 
increase penalty for deviating from current state and input 
(x(i)

t, u(i)
t) until resulting Qt and Rt are positive definite.  

Iteratively apply LQR: practicalities 

Iterative LQR for trajectory following 
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n  Often loosely used to refer to iterative LQR procedure. 

n  More precisely: Directly perform 2nd order Taylor expansion of the Bellman 
back-up equation [rather than linearizing the dynamics and 2nd order 
approximating the cost] 

n  Turns out this retains a term in the back-up equation which is discarded in 
the iterative LQR approach 

n  [It’s a quadratic term in the dynamics model though, so even if cost is 
convex, resulting LQ problem could be non-convex …] 

 

 

[Reference: Jacobson and Mayne, “Differential dynamic programming,” 1970] 

Differential Dynamic Programming (DDP) 

Differential dynamic programming 

To keep entire expression 2nd order:  
Use Taylor expansions of f and then remove all resulting 
terms which are higher than 2nd order. 
Turns out this keeps 1 additional term compared to 
iterative LQR 
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n  Yes! 

n  At convergence of iLQR and DDP, we end up with linearizations around the 
(state,input) trajectory the algorithm converged to 

n  In practice: the system could not be on this trajectory due to perturbations / 
initial state being off / dynamics model being off / … 

n  Solution: at time t when asked to generate control input ut, we could re-solve 
the control problem using iLQR or DDP over the time steps t through H 

n  Replanning entire trajectory is often impractical à in practice: replan over 
horizon h.  = receding horizon control 

n  This requires providing a cost to go J(t+h)  which accounts for all future 
costs.  This could be taken from the offline iLQR or DDP run 

Can we do even better? 

n  In many systems of interest, there is noise entering the 
system which is multiplicative in the control inputs, i.e.: 

n  Exercise: LQR derivation for this setting 

[optional related reading:Todorov and Jordan, nips 2003] 

Multiplicative noise 

xt+ 1 =Axt +(B+Bwwt)ut
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Cart-pole 

[See also Section 3.3 in Tedrake notes.] 

H(q)q̈+C(q, q̇) +G(q) =B(q)u

Cart-pole --- LQR 
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Cart-pole --- LQR 

Q = diag([1;1;1;1]); R = 0;  [x, theta, xdot, thetadot] 

Cart-pole --- LQR 

Q = diag([1;1;1;1]); R = 1;  [x, theta, xdot, thetadot] 



Page 18!

Defn. x* is an asymptotically stable equilibrium point for system f 
if there exists an ² > 0 such that for all initial states x s.t. || x – 
x* || · ² we have that limt! 1 xt  = x*  

We will not cover any details, but here is the basic result: 

 Assume x* is an equilibrium point for f(x), i.e., x* = f(x*).         

 If x* is an asymptotically stable equilibrium point for the linearized 
system, then it is asymptotically stable for the non-linear system.   

 If x* is unstable for the linear system, it’s unstable for the non-
linear system.   

 If x* is marginally stable for the linear system, no conclusion can 
be drawn. 

= additional justification for linear control design techniques 

Lyapunov’s linearization method 
[See, e.g., Slotine and Li, or Boyd lecture notes (pointers available on course website) if you want to find out more.] 

n  A system is t-time-steps controllable if from any start state, x0, we can reach any target 
state, x*, at time t.   

n  For a linear time-invariant systems, we have: 

    hence the system is t-time-steps controllable if and only if the above linear system of 
equations in u0, …, ut-1 has a solution for all choices of x0 and xt.  This is the case if and only if 

 

with n the dimension of the statespace. 

The Cayley-Hamilton theorem from linear algebra says that for all A, for all t ¸ n :   

 

 

Hence we obtain that the system (A,B) is controllable for all times t>=n, if and only if 

 

Controllability 
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Feedback linearization 

Feedback linearization 
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Feedback linearization 

Feedback linearization 

[From: Slotine and Li] 

ẋ= f(x)+g(x)u (6.52)

[A function is called a di®eomorphism if it is smooth and its inverse is
smooth.]
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Feedback linearization 

Feedback linearization 
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Feedback linearization 

Feedback linearization 

à This condition can be checked by applying 
the chain rule and examining the rank of 
certain matrices! 
à  The proof is actually semi-constructive: it 
constructs a set of partial differential 
equations to which the state transformation is 
the solution.   
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n  Further readings: 

n  Slotine and Li, Chapter 6 – example 6.10 shows state-
input linearization in action 

n  Isidori, Nonlinear control systems, 1989. 

Feedback linearization 

 

n  For your reference: Standard (kinematic) car models: (From Lavalle, Planning Algorithms, 2006, Chapter 
13) 

n  Tricycle:   

n  Simple Car:  

n  Reeds-Shepp Car:  

n  Dubins Car:  

Car 
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Cart-pole 

[See also Section 3.3 in Tedrake notes.] 

H(q)q̈+C(q, q̇) +G(q) =B(q)u

H(q) =

·∙
mc +mp mp l cos µ
mp l cos µ mp l

2

¸

C(q, q̇) =

·∙
0 ¡ mp lµ̇ sin µ
0 0

¸

G(q) =

·∙
0
mpgl sin µ

¸

B =

·∙
1
0

¸

 

Acrobot 

[See also Section 3.2 in Tedrake notes.] 

H(q)q̈+C(q, q̇) +G(q) =B(q)u
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n  Newton:  F = ma 

n  Quite generally applicable 

n  Its application can become a bit cumbersome in multi-
body systems with constraints/internal forces 

n  Lagrangian dynamics method eliminates the internal forces 
from the outset and expresses dynamics w.r.t. the degrees of 
freedom of the system 

Lagrangian dynamics 

n  ri: generalized coordinates 

n  T: total kinetic energy 

n  U: total potential energy 

n  Qi : generalized forces 

n  Lagrangian L = T – U 

à Lagrangian dynamic equations:   

Lagrangian dynamics 

[Nice reference: Goldstein, Poole and Satko, “Classical Mechanics”] 
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Lagrangian dynamics: point mass example 

Lagrangian dynamics: simple double pendulum 

[From: Tedrake Appendix A] 

q1 = µ1, q2 = µ2, si = sinµi , ci = cosµi , s1+ 2 = sin(µ1 +µ2)


