EKF, UKF

Pieter Abbeel
UC Berkeley EECS

Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

Kalman Filter

m Kalman Filter = special case of a Bayes’ filter with dynamics model and
sensory model being linear Gaussian:

@) (u) ®
Xo~ N So) o= ) ) (5.

Xiy1 = AXi+Bu+e e ~N(0,Qy)
Zy = CXy+di+6 6 ~N(0,Ry)
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Kalman Filtering Algorithm

|
= Attime 0: X, ~ N ()0, Zoj0)

m Fort=1,2,...

= Dynamics update:

P10t = Aipijo:e + Brug
T
Yivr00 = Aoy + Q1
= Measurement update:
Ky = z:t+1|0;th,T+1(Ct+12t+1[0;tct-r+1 + Ri1) !
Par1)0:t41 = Mar1]0:t + Keg1(ze41 — (Corp1te41)0: + d))
Siroe4r = (= Ki1Ct41) Zi410:

Nonlinear Dynamical Systems

I
= Most realistic robotic problems involve nonlinear functions:

X1 = [ilX,w)+er e ~N(0,Qy)
Zy = ht(Xt) +0; O NN(O,Rt)
= Versus linear setting:
Xiy1 = AXi+Bug+er e ~N(0,Qy)

Zy = CXp+di+ 9 5tNN(0,Rt)
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‘Linearity Assumption Revisited
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\ EKF Linearization (1)

6 6
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EKF Linearization (2)
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p(x) has high variance relative to regio?mn which Tingarization is accurate. 8
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\ EKF Linearization (3)

|
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p(x) has small variance relative to regign in whic

earization is.accurate. °

EKF Linearization: First Order Taylor
Series Expansion

= Dynamics model: for X, “close to” p, we have:

flze,w) =~ ft(ﬂtvut)'F%:vt;m)

= felpe,ur) + Fy(we — pue)

(xt - ﬂt)

= Measurement model: for X, “close to” p, we have:

he(pe) + (wg—xt)(ivt — )

hi(pe) + Hi(we — pr)

ht (l’f)

Q

10
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EKF Linearization: Numerical

flzew) =~ ft(ﬂt7ut)+%mt;w

= filpe,ue) + Fy(e — pue)

(xt - Mt)

= Numerically compute F, column by column:

Je(pe +cei ug) — fi(pe — ceq, uy)
2e

fori=1,....n Fi(,i)=

= Here € is the basis vector with all entries equal to zero,
except for the i’t entry, which equals .

= If wanting to approximate F, as closely as possible then ¢
is chosen to be a small number, but not too small to avoid
numerical issues

Ordinary Least Squares

]
= Given: samples {(x(), y()), (x®, y@), ..., (x(m), y(Mm)}

20

= Problem: find function of the form f(x) = @, + a, x that fits

the samples as well as possible in the following sense:
m

1 . .
min — Z(ag + a1z — (D)2
i=1

ap,aq 2

Page 6




‘ Ordinary Least Squares

I m
1 ‘ N
= Recall our objective: min 7 Z(ao + a2 — )
ap,a1 2 im1
m Let’s write this in vector notation:

m

1 , .
1 ao] IS =0T, L 0)y2
w20 = L’f’(i)} a= [al] giving:  ming ;:1(55 a—y")
= Set gradient equal to zero to find extremum:

0= Va( . ) = Z 7() (j(i)Ta _ y(i))
=1

m ) ) m ) )
- (Z g—c(z)j(m) a3 a0y
i=1 i=1 1 1 . 1

= XXTa-Xy X=1.0 @ ... zm

a=(XX")"1Xy yT= 0 y@ . ym]

(See the Matrix Cookbook for matrix identities, including derivatives.)

Ordinary Least Squares

I
= For our example problem we obtain a = [4.75; 2.00]

20
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‘ Ordinary Least Squares

|
= More generally:  z(") € R"

m

L ¢ i , )
min"*”’n 5 Z(ao + almg : + a2xé) +...+ aﬂx’S:) - y(l))Q

ap,a1,a2,. i—1
= In vector notation: o
G 1 ao] . 1 _@)T (i)\2
(1) — — |0 . _ _
m ZVY = L(i)}, a= [al} gives: min g Z;(m a—y")
/L:

= Set gradient equal to zero to find extremum (exact same
derivation as two slides back):

% [ 11 1
< < _ < = | (D) 2 ... (m)

a = (XXT) 1Xy x z z
yT= [0 y@ . ]

Vector Valued Ordinary Least Squares

Problems
|

= So far have considered approximating a scalar valued function from
samples {(X(l), y(l)), (X(Z)’ y(z))’ e (X(m), y(m))} with 2@ ¢ R", y(i) ceR

= A vector valued function is just many scalar valued functions and

we can approximate it the same way by solving an OLS problem
multiple times. Concretely, let 3y € R” then we have:

Find ag € R?, A € R"*P such that Vi =1,...,m ag+ Az® ~ y@.
= In our vector notation:

zOT =11 20T], A=lay A],

Find A such that Vi =1,...,m Az ~ ¢y,

= This can be solved by solving a separate ordinary least squares
problem to find each row of A4
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Vector Valued Ordinary Least Squares

Problems y® e R
|

= Solving the OLS problem for each row gives us:

(A;)7 = (XX ) 1xy{®m

T
0,..., m m

= Each OLS problem has the same structure. We have

AT — (XX XY

Y = I:yg(),...,m) yé(),...,m) . y1(70 ..... m):|
0 0 0
yﬁl) ygl> . y’(’l)
= yg ) yé ) yé )
ygm) yém) o y]()m)

Vector Valued Ordinary Least Squares and

EKF Linearization
|

= Approximate X, = f(X, U,)

with affine function a, + F, X,

by running least squares on samples from the function:

{(x,, yO=f (x.O,u,), ( X,®, y@=f(x@,u,), ..., (X m), y™=f (x.m,u,)}

lap F] =AT =(XXT)"'XY

= Similarly for z.,, = h,(x,)
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OLS and EKF Linearization: Sample Point
Selection
|

= OLS vs. traditional (tangent) linearization:

‘ OLS Linearization: choosing samples points
|

m Perhaps most natural choice:

. ,thaﬂt+2t1/2aﬂt_2%/2 |

= reasonable way of trying to cover the region with
reasonably high probability mass

Page 10




Analytical vs. Numerical Linearization

= Numerical (based on least squares or finite differences) could
give a more accurate “regional”’ approximation. Size of
region determined by evaluation points.

= Computational efficiency:

= Analytical derivatives can be cheaper or more expensive
than function evaluations

= Development hint:
= Numerical derivatives tend to be easier to implement

= If deciding to use analytical derivatives, implementing finite
difference derivative and comparing with analytical results
can help debugging the analytical derivatives

EKF Algorithm

s At time O: Xo ~ N(poj0, Xojo)
m Fort=1,2,...
= Dynamics update: fe(ze,up) =~ aop + Fy(we — fe)0:e)
(a0, Fy) = linearize(ft, f4)0:, Xt)0:t» Ut)
Ht41j0:t = Qo
Yir100:6 = f*ﬂth|0;thsT + Q¢
» Measurement update: hyqi(zi41) &~ coqr + Hip1 (@1 — o))
(cot41, Hey1) = linearize(hiy1, fhe41)0:4> De1/0:t)
Ky = Zt+1|0:th—:-1(Ht+lzt+l|0:th,—:-1 + Ryp1) ™!
Ht41)0:t41 = He+1]0:t T+ Kiy1(2ze41 — coe41)
2t+1|0:t+1 = (I - Kt+1Ht+1)2t+1|0:t
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EKF Summary

= Highly efficient: Polynomial in measurement dimensionality k
and state dimensionality n:
O(k2376 + n?)

= Not optimal!
= Can diverge if nonlinearities are large!

= Works surprisingly well even when all assumptions are
violated!

34

‘Linearization via Unscented Transform
|
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UKF Sigma-Point Estimate (2)

|
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UKF Sigma-Point Estimate (3)
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UKF Sigma-Point Estimate (4)

- 3 '\'

[Julier and Uhlmann, 1997]
UKF intuition why it can perform better

|
= Assume we know the distribution over X and it has a mean \bar{x}

. Y = f(X)

f[x] = f[x + dx]
L

1o, .
= f [x] + VFfox + §V2f6x2 + 3

1
V3 ox® + IV4f6x4 + -
T 1, ,
y=f[x + §v~f P..+ 5VLfE [6x1] + - -
1
2 x 4!
VR[5 (VD) 4

Py, = VP, (VT +

v (E [‘SX/I] -E [5x2P711/] -B [PWJX2] + P?]LU) (sz)T +

= EKF approximates f by first order and ignores higher-order terms

= UKEF uses f exactly, but approximates p(x).
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‘ Self-quiz

= When would the UKEF significantly outperform the EKF?
y

X

= Analytical derivatives, finite-difference derivatives, and least squares
will all end up with a horizontal linearization

—> they’d predict zero variance in Y = f(X)

A crude preliminary investigation of whether we can get EKF to match ﬁi{j&‘l‘r’]gscfg‘r’i;;g‘l’e“{es:esl:“
UKF by particular choice of points used in the least squares fitting

Let’s assume the mean is zero, and ignore it in this consideration. Not sure
yet if non-zero means would fundamentally change anything or not.
For the EKF we want to find A such that

AX ~ f(X)
The least squares solution for A is given by:
A=fX)XT(xXxT)!
We choose X = [¥1/2 — ¥1/?) and get:

A=t gm0 (me [ Zn])”
LR D AR

= e e [

This gives for the covariance matrix after propagation:

n-1/2

ey
aza” = jpen semm) s e ({805

n-12 F(E2)T

HUCOI 0| R LR | F e
T sy
= v sesm [T G
= HIEIEAT - LHEVA ST - LT 4 -2 (-2 )T

So we have that if f(—z) = —f(z) that ALAT = f(E2)f(£42)7 as in the
ting. In contrast, however, whenever f(—x) = f(z) then we have
which is a terrible estimate!
ry f can be written as sum of symmetric and anti-symmetric,
ST =T, with fT(—2) = [t(x) and [7(—2)
this can be done by choosing f*+(z) = LD anq £ ()
Using this decomposition we get (after some algebraic simplifi
canceling out terms):

ic.,

cations by

ATAT = [TV

This suggests that even with what seems the most reasonable way to linearize
to capture the nonlinear function f, we only end up capturing its asymmetric
part (perhaps naturally so, as linearization only gives us an asymmetric com-
ponent).
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‘Original unscented transform

|
= Picks a minimal set of sample points that match 1%, 2" and 3¢ moments
of a Gaussian:

X =X Wo =r/(n+ k)
X,  =x+ ( (n + H)P,,_,.) W, =1/2(n+ k)
XiJrn. =X — ( (” + H)P.l'.l') ) " 'i*n. = l/2(” + H)

= \bar{x} = mean, P, = covariance, i 2 i’th column, x € R"

= K :extra degree of freedom to fine-tune the higher order moments of
the approximation; when x is Gaussian, n+x = 3 is a suggested heuristic

n L =\sqrt{P_{xx}} can be chosen to be any matrix satisfying:
= LLT= Pxx
[Julier and Uhlmann, 1997]

Unscented Kalman filter

I
= Dynamics update:

= Can simply use unscented transform and estimate the
mean and variance at the next time from the sample
points

= Observation update:

= Use sigma-points from unscented transform to compute
the covariance matrix between X, and z. Then can do the
standard update.
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Algorithm Unscented Kalman filter(u;—1, 1, ut, 2¢):

1.
2.

3.

11.
12.
13.

Xicr= (-1 e+ o1 — 7/ Zim1)

X = g(pe, K1)

fie =300 whi &

=2 Wiz
0w AT
C S = Z?Eo '“JE] (Zf[ I Zt) (Zl I 21,) +Q:

=l (a8 ) (20

10.

Ky =%97s;t
pe = i + Ko (2e — 2)
Eg = it - KtSthT

return g, 3

= 0l - a) (Y - 50T + R,
L X = (ﬂt B+ YVEE —VVSt)

. Zt = h(./?t)

Here L = /¥ can be chosen
to be any n X n matrix satisfying:
LLT =%

Technically this is an abuse of
notation for the symbol /™.

[Table 3.4 in Probabilistic Robotics]

UKF Summary

Highly efficient: Same complexity as EKF, with a constant factor

slower in typical practical applications

Better linearization than EKF: Accurate in first two terms of

Taylor expansion (EKF only first term) + capturing more
aspects of the higher order terms

» Still not optimal!

Derivative-free: No Jacobians needed
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