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t. The problem of state abstra
tion is of 
entral importan
e in optimal 
ontrol, reinfor
e-ment learning and Markov de
ision pro
esses. This paper studies the 
ase of variable resolutionstate abstra
tion for 
ontinuous time and spa
e, deterministi
 dynami
 
ontrol problems in whi
hnear-optimal poli
ies are required. We begin by de�ning a 
lass of variable resolution poli
y andvalue fun
tion representations based on Kuhn triangulations embedded in a kd-trie. We then 
on-sider top-down approa
hes to 
hoosing whi
h 
ells to split in order to generate improved poli
ies.The 
ore of this paper is the introdu
tion and evaluation of a wide variety of possible splitting
riteria. We begin with lo
al approa
hes based on value fun
tion and poli
y properties that useonly features of individual 
ells in making split 
hoi
es. Later, by introdu
ing two new non-lo
almeasures, in
uen
e and varian
e, we derive splitting 
riteria that allow one 
ell to eÆ
iently takeinto a

ount its impa
t on other 
ells when de
iding whether to split. In
uen
e is an eÆ
iently-
al
ulable measure of the extent to whi
h 
hanges in some state e�e
t the value fun
tion of someother states. Varian
e is an eÆ
iently-
al
ulable measure of how risky is some state in a Markov
hain: a low varian
e state is one in whi
h we would be very surprised if, during any one exe
ution,the long-term reward attained from that state di�ered substantially from its expe
ted value, givenby the value fun
tion.The paper pro
eeds by graphi
ally demonstrating the various approa
hes to splitting on thefamiliar, non-linear, non-minimum phase, and two dimensional problem of the \Car on the hill".It then evaluates the performan
e of a variety of splitting 
riteria on many ben
hmark problems,paying 
areful attention to their number-of-
ells versus 
loseness-to-optimality tradeo� 
urves.Keywords: Optimal 
ontrol, reinfor
ement learning, variable resolution dis
retization, adaptivemesh re�nement1. Introdu
tionThis paper is about non-uniform dis
retization of state spa
es when �nding optimal
ontrollers for 
ontinuous time and spa
e Markov Pro
esses.There is an extensive literature in Numeri
al Analysis about solving numeri
allypartial di�erential equations su
h as the famous Hamilton-Ja
obi-Bellman (HJB)equations that arise in optimal 
ontrol.Dis
retization te
hniques (Kushner & Dupuis, 1992) using �nite-element (FE) or�nite-di�eren
e (FD) methods applied to uniform grids (and multi-grids) are widelyused and provide 
onvergen
e results and rates of 
onvergen
e (using analyti
al



2 R�EMI MUNOS AND ANDREW MOORE(Barles & Souganidis, 1991; Crandall, Ishii, & Lions, 1992; Crandall & Lions, 1983)or probabilisti
al (Kushner & Dupuis, 1992; Dupuis & James, 1998) approa
hes).However, su
h uniform dis
retization su�er from impra
ti
al 
omputational re-quirements when the size of the dis
retization step is small, espe
ially when thestate spa
e is of high dimension. Indeed, sin
e the symmetries of the 
ontrol prob-lem or the smoothness properties of the value fun
tion are not re
e
ted in thestru
ture of the grid, possible 
ompa
t representations and 
omputation are notexploited.On the other hand, there is a growing interest for 
ombining 
ompa
t fun
tionrepresentations (su
h as Neural Networks) with Dynami
 Programming (Bertsekas& Tsitsiklis, 1996; Baird, 1995; Sutton, 1996) in order to handle high dimensionality.Su

essful appli
ations in
lude the game of ba
kgammon (Tesauro, 1995) and a
ontroller for elevator dispat
hing (Crites & Barto, 1996). However in general,there is no guarantee of 
onvergen
e to the optimal solution (Boyan & Moore, 1995;Baird, 1995; Munos, 2000; Munos, Baird, & Moore, 1999). Some lo
al 
onvergen
eresults are in (Gordon, 1995; Baird, 1998; Tsitsiklis & Van Roy, 1996; Bertsekas &Tsitsiklis, 1996).The distin
tion between dis
retization and approximation methods is not simple.Usually we denote by dis
retization a way to de
ompose a fun
tion using a set ofbasis fun
tions with lo
al support (su
h as 'hat' fun
tions used in �nite-elementmethods) whereas approximation methods refer to using basis fun
tions with globalsupport (possibly the whole state spa
e). However this distin
tion is not obvioussin
e there exists some fan
y grids (for example the sparse grids (Zenger, 1990)) thatuse extrapolation on large parts of the state spa
e and some fun
tion approximatorsthat use lo
al basis fun
tions (su
h as the Normalized Gaussian Networks (Moody& Darken, 1989)).In this paper we 
onsider variable resolution dis
retizations to approximate thevalue fun
tion and the optimal 
ontrol and 
ompare experimentally several splitting
riteria. The ideas developed here are illustrated on a spe
i�
 grid representationusing kd-trees and Kuhn triangulation. However the same ideas 
an be used to im-plement variable resolution on other kinds of grids su
h as the sparse grids (Zenger,1990; Griebel, 1998), the random and low-dis
repan
y grids (Niederreiter, 1992;Rust, 1996).We 
onsider a \general towards spe
i�
" approa
h where an initial 
oarse gridis su

essively re�ned at some areas of the state spa
e a

ording to a splitting
riterion. In this work we evaluates and 
ompare the performan
e of a variety ofsplitting 
riteria. We start (se
tion 6) with two 
riteria - the 
orner-value di�eren
eand the value non-linearity - whi
h 
onsider splitting around the \singularities" ofthe value fun
tion. This is a re�nement 
riterion 
ommonly used in numeri
alresolution of partial di�erential equations using adaptive meshes (see for example(Gr�une, 1997) for HJB equations).This method approximates very a

urately the value fun
tion, but it may be
omputationaly very expensive when the value fun
tion is dis
ountinous.Besides, the singularities of the value fun
tion are usually not lo
ated at the sameareas as those of the optimal 
ontroller: a good approximation of the value fun
tion



VARIABLE RESOLUTION DISCRETIZATION IN OPTIMAL CONTROL 3at some areas is not needed if this does not have any impa
t on the quality of the
ontroller.Next (se
tion 7), we 
onsider a splitting 
riterion - the poli
y disagreement - thattakes into a

ount the poli
y. This method split only where the optimal poli
yis expe
ted to 
hange. Unfortunately, the transition boundaries of the optimal
ontrol obtained are not optimally lo
ated, the reason for this being that the valuefun
tion is not 
orre
tly approximated at the areas that have an \in
uen
e" onthese boundaries. We illustrate the short
omings of these lo
al approa
hes thatonly 
onsider features of individual 
ells in making split 
hoi
es, and justify theneed for global splitting 
riteria that take into a

ount the non-lo
al impa
t of thesplitting pro
ess.In se
tion 8, we introdu
e the notion of in
uen
e as a measure of the non-lo
al
ontribution of a state to the value fun
tion at other states. Then, in se
tion 9, wede�ne the varian
e of the expe
ted future rewards. We show how to 
ombine thesetwo measures to derive eÆ
ient grid re�nement te
hniques.We des
ribe an heuristi
 whi
h intends to sele
t the 
ells whose splitting willmostly in
rease the a

ura
y of the value fun
tion at the parts of the state spa
ewhere there is a transition in the optimal 
ontrol.We illustrate the di�erent splitting 
riteria on the \Car on the hill" problemdes
ribed in se
tion 4, and in se
tion 11 we show the results for other 
ontrolproblems, in
luding the 4-dimensional \Cart-pole", \A
robot", \spa
e-shuttle" and\airplane meeting" problems.In this paper we make the assumption that we have a model of the dynami
s andof the reinfor
ement fun
tion. For 
onvenien
e we assume that the dynami
s aredeterministi
; however the results are extendible to the sto
hasti
 
ase (providedthat we remove the natural noise from the measure of varian
e, as suggested in thelast remark of se
tion 10).2. Des
ription of the optimal 
ontrol problemWe 
onsider dis
ounted deterministi
 
ontrol problems. Let x(t) 2 X be the stateof the system, with the state spa
e X being a 
ompa
t subset of IRd. The evolutionof the state depends on the 
ontrol u(t) 2 U (with the 
ontrol spa
e U a �nite setof possible a
tions) by the di�erential equation, 
alled state dynami
s:dx(t)dt = f(x(t); u(t)) (1)For an initial state x and a 
ontrol fun
tion u(t), this equation leads to a uniquetraje
tory x(t). Let � be the exit time from the state spa
e (with the 
onventionthat if x(t) always stays in X , then � = 1). Then, we de�ne the gain J as thedis
ounted 
umulative reinfor
ement:J(x;u(t)) = Z �0 
tr(x(t); u(t))dt + 
�rb(x(�)) (2)where r(x; u) is the 
urrent reinfor
ement and rb(x) the boundary reinfor
ement.
 is the dis
ount fa
tor (0 � 
 < 1).



4 R�EMI MUNOS AND ANDREW MOOREThe obje
tive of the 
ontrol problem is to �nd, for any initial 
ondition x, the
ontrol u�(t) that maximizes the fun
tional J .Here, we use the method of Dynami
 Programming (DP) that introdu
es thevalue fun
tion (VF), maximum of J as a fun
tion of initial state x:V (x) = supu(t) J(x;u(t)):From the DP prin
iple we know (see (Fleming & Soner, 1993) for example) thatV satis�es a �rst-order non-linear di�erential equation, 
alled the Hamilton-Ja
obi-Bellman (HJB) equation:Theorem 1 If V is di�erentiable at x 2 X, let DV (x) be the gradient of V at x,then the following HJB equation holds at x:V (x) ln 
 +maxu2U [DV (x):f(x; u) + r(x; u)℄ = 0 (3)DP 
omputes the VF in order to de�ne the optimal 
ontrol with a feed-ba
k
ontrol poli
y �(x) : X ! U su
h that the optimal 
ontrol u�(t) at time t onlydepends on 
urrent state x(t): u�(t) = �(x(t)). Indeed, from the value fun
tion,we dedu
e the following optimal feed-ba
k 
ontrol poli
y:�(x) 2 argmaxu2U [DV (x):f(x; u) + r(x; u)℄ (4)3. The dis
retization pro
essIn order to dis
retize the 
ontinuous 
ontrol problem des
ribed in the previousse
tion, we use the numeri
al approximation s
heme of (Kushner & Dupuis, 1992).We implement a 
lass of fun
tions known as bary
entri
 interpolators (Munos &Moore, 1998), built from a triangulation of the state-spa
e using a tree stru
ture.This representation has been 
hosen for its very fast 
omputational properties.Here is a des
ription of this 
lass of fun
tions. The state-spa
e is dis
retized intoa variable resolution grid using a stru
ture of a tree. The root of the tree 
oversthe whole state spa
e, supposed to be a (hyper) re
tangle. It has two bran
heswhi
h divide the state spa
e into two smaller re
tangles by means of a hyperplaneperpendi
ular to the 
hosen splitting dimension. In the same way, ea
h node (ex
eptfor the leaves) splits in some dire
tion i = 1::d the re
tangle it 
overs at its middleinto two nodes of equal areas (see Figure 1). This kind of stru
ture is known asa kd-trie (Knuth, 1973), and is a spe
ial kind of kd-tree (Friedman, Bentley, &Finkel, 1977) in whi
h splits o

ur at the 
enter of every 
ell.On every leaf, we implement a Coxeter-Freudenthal-Kuhn triangulation (or sim-ply the Kuhn triangulation (Moore, 1992)). In dimension 2 (Figure 1(b)) ea
hre
tangle is 
omposed of 2 triangles. In dimension 3 (see Figure 2) they are 
om-posed of 6 pyramids, and in dimension d, of d! simplexes.The interpolated fun
tions 
onsidered here are de�ned by their values at the
orners of the re
tangles. We use the Kuhn triangulation to linearly interpolateinside the re
tangles. Thus, these fun
tions are pie
ewise linear, 
ontinuous insideea
h re
tangle, but may be dis
ontinuous at the boundary between two re
tangles.
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(b) The corresponding tree(a) Example of discretizationFigure 1. (a) An example of dis
retization of the state spa
e. There are 12 
ells and 24 
orners(the dots). (b) The 
orresponding tree stru
ture. The area 
overed by ea
h node is indi
ated ingray level. We implement a Kuhn triangulation on every leaf.The approa
h of using Kuhn triangulations to interpolate the value fun
tion hasbeen introdu
ed to the reinfor
ement learning literature by (Davies, 1997).Remark. As we are going to approximate the value fun
tion V with su
h pie
ewiselinear fun
tions, it is very easy to 
ompute the gradient DV at (almost) any pointof the state spa
e, thus making it possible to use the feed-ba
k equation (4) todedu
e the 
orresponding optimal 
ontrol.
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Figure 2. The Kuhntriangulation of a (3d)re
tangle. The point xsatisfying 1 � x2 �x0 � x1 � 0 is in thesimplex (�0; �4; �5; �7).3.1. Computational issuesAlthough the number of simplexes inside a re
tangle is fa
torial with the dimensiond, the 
omputation time for interpolating the value at any point inside a re
tangle



6 R�EMI MUNOS AND ANDREW MOOREis only of order (d ln d), whi
h 
orresponds to a sorting of the d relative 
oordinates(x0; :::; xd�1) of the point inside the re
tangle.Assume we want to 
ompute the indexes i0; :::; id of the (d + 1) verti
es of thesimplex 
ontaining a point de�ned by its relative 
oordinates (x0; :::; xd�1) withrespe
t to the re
tangle in whi
h it belongs to. Let f�0; :::; �2dg be the 
orners ofthis d-re
tangle. The indexes of the 
orners use the binary de
omposition in dimen-sion d, as illustrated in Figure 2. Computing these indexes is a
hieved by sortingthe 
oordinates from the highest to the smallest: there exist indi
es j0; :::; jd�1,permutation of f0; ::; d � 1g, su
h that 1 � xj0 � xj1 � ::: � xjd�1 � 0. Thenthe indi
es i0; :::; id of the (d + 1) verti
es of the simplex 
ontaining the point are:i0 = 0, i1 = i0 + 2j0 , ..., ik = ik�1 + 2jk�1 , ..., id = id�1 + 2jd�1 = 2d � 1. Forexample, if the 
oordinates satisfy: 1 � x2 � x0 � x1 � 0 (illustrated by the pointx in Figure 2) then the verti
es are: �0 (every simplex 
ontains this vertex, as wellas �2d�1 = �7), �4 (we added 22), �5 (we added 20) and �7 (we added 21).Let us de�ne the bary
entri
 
oordinates �0; :::; �d of the point x inside the sim-plex �i0 ; :::; �id as the positive 
oeÆ
ients (uniquely) de�ned by: Pdk=0 �k = 1 andPdk=0 �k�ik = x. Usually, these bary
entri
 
oordinates are expensive to 
om-pute; however, in the 
ase of Kuhn triangulation these 
oeÆ
ients are simply:�0 = 1� xj0 , �1 = xj0 � xj1 , ..., �k = xjk�1 � xjk , ..., �d = xjd�1 � 0 = xjd�1 . Inthe previous example, the bary
entri
 
oordinates are: �0 = 1� x2, �1 = x2 � x0,�2 = x0 � x1, �3 = x1.3.2. Building the dis
retized MDPWe refer to (Kushner & Dupuis, 1992) for the pro
ess of dis
retizing a 
ontinu-ous time and spa
e optimal 
ontrol problem into a �nite Markov De
ision Pro
ess(MDP), and to (Munos, 2000) for similar methods in reinfor
ement learning.
ξ

ξ

ξ η(ξ,  )u

0

12 ξ

Figure 3. A

ording to the 
urrent (variable res-olution) grid, we build a dis
rete MDP. For every
orner � (state of the MDP) and every 
ontrol u,we integrate the 
orresponding traje
tory untilit enters a new 
ell at �(�; u). The probabilitiesof transition of the MDP for (state �, 
ontrol u)to (states f�igi=0::2) are the bary
entri
 
oordi-nates ��i (�(�; u)) of �(�; u) inside (�0; �1; �2).For a given dis
retization, we build a 
orresponding MDP in the following way.The state spa
e of the MDP is the set � of 
orners of the 
ells. The 
ontrolspa
e is the �nite set U . For every 
orner � 2 � and 
ontrol u 2 U we approximate
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e of a traje
tory x(t) (using Euler or Runge-Kuta method to integrate thestate dynami
s (1)) starting from initial state �, using a 
onstant 
ontrol u duringsome time �(�; u) until the traje
tory enters inside a new 
ell (whi
h de�nes thepoint �(�; u) = x(�(�; u)) (see Figure 3). At the same time, we also 
ompute theintegral of the 
urrent reinfor
ement:R(�; u) = R �(�;u)t=0 
t � r(x(t); u)dtwhi
h de�nes the reward of the MDP. Then we 
ompute the verti
es (�0; :::; �d)of the simplex 
ontaining �(�; u) and the 
orresponding bary
entri
 
oordinates��0(�(�; u)); :::; ��d (�(�; u)). The probabilities of transition p(�ij�; u) of theMDP from state � and 
ontrol u to states �i are the bary
entri
 
oordinates:p(�ij�; u) = ��i(�(�; u)). The DP equation 
orresponding to this MDP is:V (�) = maxu "
�(�;u) � dXi=0 p(�ij�; u)V (�i) +R(�; u)# (5)Remark. If while integrating (1) from initial state � with the 
ontrol u, the tra-je
tory exits from the state spa
e at some time �(�; u), then in the MDP (�; u) willlead to a terminal state �t (i.e. satisfying p(�tj�t; v) = 1; p(� 6= �tj�t; v) = 0 for allv) with probability 1 and with the reward: R = R �(�;u)t=0 
t � r(x(t); u)dt + 
�(�;u) �rb(x(�(�; u))).Remark. The interpolated value at �(�; u) is a linear 
ombination of the valuesof the verti
es of the simplex it belongs to (simplex (�0; �1; �2)) in �gure 3), withpositive 
oeÆ
ients that sum to one. Doing this interpolation is thus mathe-mati
ally equivalent to probabilisti
ally jumping to a vertex: we approx-imate a deterministi
 
ontinuous pro
ess by a sto
hasti
 dis
rete one. Theamount of sto
hasti
ity introdu
ed by this interpolation pro
ess will be estimatedby the measure of varian
e in se
tion 9.The DP equation (5) is a �xed-point equation satisfying a 
ontra
tion property(in max-norm), thus it 
an be solved iteratively with any DP method like valueiteration, poli
y iteration, ormodi�ed poli
y iteration (Puterman, 1994), (Bertsekas,1987), (Barto, Bradtke, & Singh, 1995).Remark. The main requirement to obtain the 
onvergen
e of the approximateVF (solution to the DP equation (5)) to the VF of the 
ontinuous pro
ess (solutionto the HJB equation (3)) is the property of 
onsisten
y of the numeri
al s
heme(Kushner & Dupuis, 1992; Barles & Souganidis, 1991). In the deterministi
 
ase,this property roughly means that the expe
ted jump from a state � to next states�i when 
hoosing 
ontrol u in the approximate MDP is a �rst-order approximationof the state dynami
 ve
tor f(�; u):Pdi=0 p(�ij�; u) � (�i � �) = �(�; u) � f(�; u) + o(Æ)with Æ being the resolution of the grid. The dis
retization method previously in-trodu
ed satis�es this property, whi
h implies that the VF of the dis
rete MDP
onverges to the VF of the 
ontinuous optimal 
ontrol problem as the (maximal)size of the 
ells Æ tends to zero.



8 R�EMI MUNOS AND ANDREW MOORE4. Example: the \Car on the Hill" 
ontrol problemFor a des
ription of the dynami
s of this problem, see (Moore & Atkeson, 1995).This problem is of dimension 2, the variables being the position and velo
ity ofthe 
ar. In our experiments, we 
hose the reinfor
ement fun
tions as follows: the
urrent reinfor
ement r(x; u) is zero everywhere. The boundary reinfor
ement rb(x)is �1 if the 
ar exits from the left side of the state spa
e, and varies linearly between+1 and �1 depending on the velo
ity of the 
ar when it exits from the right side ofthe state spa
e. The best reinfor
ement +1 o

urs when the 
ar rea
hes the rightboundary (top of the hill) with zero velo
ity (�gure 4). The 
ontrol u has only 2possible values: maximal positive or negative thrust.
Thrust

Gravitation

Resistance

r=0

Goal

Current
Reinforcement:

Reinforcement:
Boundary

r  =-1 for max. velocity

r  =-1b

b

r  =+1 for zero velocityb Figure 4. The \Car on the Hill"
ontrol problem. The 
ar mustrea
h the top of the hill as fastas possible and stop there. Of
ourse, the 
ar 
annot 
limb theslope without initial speed. Itmust gain some momentum by�rst going ba
kwards. It mustalso be 
areful not to hit the leftboundary.Figure 5 represents the approximate value fun
tion of the MDP obtained by aregular grid of 257 by 257 states (using a dis
ount fa
tor 
 = 0:6).We observe the following distin
tive features of the value fun
tion:� There is a dis
ontinuity in the VF along the \Frontier 1" (see Figure 5) whi
hresults from the fa
t that given an initial point situated above this frontier,the optimal traje
tory stays inside the state spa
e (and eventually leads to apositive reward) so the value fun
tion at this point is positive. Whereas for ainitial point below this frontier, any 
ontrol lead the 
ar to hit the left boundary(be
ause the initial velo
ity is too mu
h negative), thus the 
orresponding valuefun
tion is negative (see some optimal traje
tories in Figure 6). We observe thatthere is no 
hange in the optimal 
ontrol around this frontier.� There is a dis
ontinuity in the gradient of the VF along the upper part of\Frontier 2" whi
h results from a frontier of transition of the optimal 
ontrol.For example, a point above frontier 2 
an rea
h dire
tly the top of the hill,whereas a point below this frontier has to go ba
kwards and do one loop to gainenough momentum to rea
h the top (see Figure 6). Moreover, we observe thataround the lower part of frontier 2 (see Figures 5), there is no visible irregularityof the VF despite the fa
t that there is a 
hange in the optimal 
ontrol.
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ontinuity in the gradient of the VF along the \Frontier 3" be
auseof a 
hange in the optimal 
ontrol (below the frontier, the 
ar a

elerates in orderto rea
h the goal as fast as possible, whereas above, it de
elerates to rea
h thetop of the hill with the lowest velo
ity and re
eive the highest reward).

Figure 5. The value fun
tion of the Car-on-the-Hill problem obtained by a regular grid of 257by 257 = 66049 states. The Frontier 1 (white line) illustrates the dis
ontinuity of the VF, theFrontiers 2 and 3 (bla
k lines) stands where there is a transition of the optimal 
ontrol.
Frontier 3

Frontier 2, upper part

Frontier 2, lower part

GOAL 0

-4
Position

V
el

oc
ity

+1-1

+4

Figure 6. The optimal poli
y is in-di
ated by di�erent gray levels (lightgray=positive thrust, dark gray=negativethrust). Several optimal traje
tories aredrawn for di�erent initial starting points.We dedu
e from these observations that a dis
ontinuity in the value fun
tion(frontier 1) does not ne
essarily indi
ate that there is a transition in the optimal
ontrol, and that a dis
ontinuity in the gradient of the value fun
tion (frontiers 2and 3) may a

ompany a frontier of transition in the optimal 
ontrol.



10 R�EMI MUNOS AND ANDREW MOORE5. The variable resolution approa
hWe start with an initial 
oarse dis
retization and build the 
orresponding MDP.We solve it and obtain a initial (rough) approximation of the value fun
tion. Then,we 
hoose whi
h 
ells to split a

ording to the pro
ess:1. S
ore ea
h 
ell for ea
h dire
tion i a

ording to some splitting 
riterion.2. Sele
t the top h% (where h is a parameter) of the highest s
oring 
ouples (
ell,dire
tion).Then, we lo
ally re�ne the grid by splitting those 
ells in the 
orresponding dire
-tion. Next, we build the new dis
retized MDP, and we repeat this 
y
le (see thesplitting pro
ess in Figure 7) until some estimation of the quality of approximationof the value fun
tion or the optimal 
ontrol has been rea
hed.
Figure 7. Several dis
retizations resulting of su

essive splitting operations.Note that only the 
ells that were split, and those whose su

essive states involvea split 
ell need to have their state transition re
omputed.Remark. Here, we only 
onsider a top-down pro
ess where the dis
retization isalways re�ned. We 
ould also 
onsider a bottom-up pro
ess whi
h would prune thetree and remove over-partitioned leaves.The main goal of this paper is the study and 
omparison of several splitting
riteria. In what follows, we illustrate the dis
retizations resulting from di�erentsplitting 
riteria on the \Car on the Hill" 
ontrol problem previously introdu
ed.6. Criteria based on the value fun
tionIn order to minimize the approximation error of the value fun
tion, in the two split-ting 
riteria that follow we 
hoose to split the 
ells a

ording to lo
al irregularitiesof the approximate value fun
tion.6.1. First 
riterion: average 
orner-value di�eren
eFor every 
ell, we 
ompute the average of the absolute di�eren
e of the values atthe 
orners of the edges for all dire
tions i = 0:::d � 1. For example, this s
ore onthe 
ell shown in Figure 2 for dire
tion i = 0 is 14 [jV (�1)�V (�0)j+ jV (�3)�V (�2)j+jV (�5)� V (�4)j+ jV (�7)� V (�6)j℄.Figure 8 represents the dis
retization obtained after 15 iterations of this pro-
edure, starting with a 9 by 9 initial grid and using the 
orner-value di�eren
e
riterion with a splitting rate of h = 50% of the 
ells at ea
h iteration.
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Figure 8. The dis
retization of the state spa
efor the \Car on the Hill" problem using the
orner-value di�eren
e 
riterion. Figure 9. The dis
retization of the state spa
efor the \Car on the Hill" problem using thevalue non-linearity 
riterion.6.2. Se
ond 
riterion: value non-linearityFor every 
ell, we 
ompute the varian
e of the absolute in
rease of the values atthe 
orners of the edges for all dire
tions i = 0:::d. This 
riterion is similar to theprevious one ex
ept that it 
omputes the varian
e instead of the average.Figure 9 shows the 
orresponding dis
retization using the value non-linearity 
ri-terion with a splitting rate of 50% after 15 iterations.Comments on these results:� We observe that in both 
ases, the splitting o

urs around the frontiers 1, 3and the upper part of frontier 2, previously de�ned. In fa
t, the �rst 
riteriondete
ts the 
ells with high average variation of the 
orner values, thus splitswherever the value fun
tion is not 
onstant.� The value non-linearity 
riterion dete
ts the 
ells with high varian
e variationof the 
orner values, thus splits wherever the value fun
tion is not linear. So this
riterion will also 
on
entrate on similar irregularities but with two importantdi�eren
es 
ompared to the 
orner-value di�eren
e 
riterion:{ The value non-linearity 
riterion splits more parsimoniously than the 
orner-value di�eren
e (for a given a

ura
y of approximation). See, for example,the di�eren
e of splitting in the area above frontier 3.{ The dis
retization around the dis
ontinuity (frontier 1) are di�erent (seeFigure 10 for an explanation on a 1-dimensional problem). The value non-linearity 
riterion splits where the approximate fun
tion is the least linear.This explains the 2 parallel tails observed around frontier 1 in Figure 9.� The re�nement pro
ess spends a huge amount of resour
es to re�ne the gridaround the dis
ontinuity (frontier 1) in order to obtain a good approximation
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e that the optimal 
ontrol is 
onstant around thisarea.
      value non-linearity
(d) Splitting criterion:

(a) Discontinuity in the
      value function

(b) Approximation with
      an initial coarse grid

(c) Splitting criterion:
      corner-value difference

Figure 10. Cross-se
tion of a dis
ontinuous VF (a) and several approximations with a uniform grid(b) and variable resolution grids using the 
orner-value di�eren
e (
) and the value non-linearity(d) splitting 
riteria. Noti
e the di�erent repartition in (
) and (d) of the grid points around thedis
ontinuity.These variable resolution methods (espe
ially the value non-linearity) providevery a

urate estimations of the value fun
tion 
ompared to uniform dis
retizations(for a given number of states of the dis
retized MDP). However, in the end, we wantto �nd the best 
ontroller and not so mu
h a very good approximation of the VF,whi
h is simply an artifa
t used in DP to generate the poli
y. Thus, we 
an questionthe eÆ
ien
y of the previous splitting methods whi
h spend too mu
h e�ort aroundthe dis
ontinuity of the VF whereas the 
ontrol is 
onstant in this area.In an attempt to spare some 
omputational resour
es, we introdu
e in the nextse
tion some 
riteria that also take into a

ount the poli
y.Remark. The per
entage h of the number of 
ells to be split at ea
h iterationis a parameter a
ting on the uniformity of the resolution of the obtained grids.The 
hoi
e of h allows a tradeo� between deriving almost uniform grids (for highvalues of h) whi
h ensures 
onvergen
e of the approximations but with possiblehigh 
omputational 
ost, and very non-uniform grids (low h), only re�ned at some
riti
al parts of the state spa
e, whi
h save many 
omputational resour
es but maypotentially 
onverge to sub-optimal solutions.7. Criteria based on the poli
yFigure 6 shows the optimal poli
y and several optimal traje
tories for di�erentstarting points. We would like to re�ne the grid only around the areas of transitionof the optimal 
ontrol: frontiers 2 and 3 but not around frontier 1. In what follows,
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e su
h a 
riterion based on the in
onsisten
y of the 
ontrol derived fromthe value fun
tion and from the poli
y.7.1. The poli
y disagreement 
riterionWhen we solve the MDP and 
ompute the value fun
tion of the DP equation (5),we dedu
e the following poli
y for any state � 2 �:�(�) 2 argmaxu2U h
�(�;u)Pdi=0 p(�ij�; u)V (�i) +R(�; u)i (6)The poli
y disagreement 
riterion 
ompares the 
ontrol derived from the poli
yof the MDP (6) with the 
ontrol derived from the lo
al gradient of V (4).Remark. Instead of 
omputing the gradient DV for all the (d!) simplexes in the
ells, we 
ompute an approximated gradient ~DV for all the (2d) 
orners, based ona �nite di�eren
e quotient. For the example of �gure 2, the approximated gradientat 
orner �0 is �V (�1)�V (�0)jj�0��1jj ; V (�2)�V (�0)jj�0��2jj ; V (�4)�V (�0)jj�0��4jj �.Thus, for every 
orner we 
ompute this approximate gradient and the 
orrespondingoptimal 
ontrol from (4) and 
ompare it to the optimal poli
y given by (6).Figure 11 shows the dis
retization obtained by splitting all the 
ells where thesetwo measures of the optimal 
ontrol diverge (the parameter h is not used here).

Figure 11. The dis
retization of the state spa
eusing the poli
y disagreement 
riterion. Herewe used an initial grid of 33�33. The dash lineshows the true frontiers of 
ontrol transition. Figure 12. The dis
retization of the state spa
efor the \Car on the Hill" problem using the
ombination of the value non-linearity and thepoli
y disagreement 
riterion.This 
riterion is interesting sin
e it splits at the pla
es where there is a 
hangein the optimal 
ontrol, thus re�ning the resolution at the most important partsof the state spa
e for the approximation of the optimal 
ontrol. However, as we
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an expe
t, if we only use this 
riterion, the value fun
tion will not be 
orre
tlyapproximated, and in turn, the poli
y may su�er from this approximation error.Indeed, we observe that on Figure 11, the bottom part of frontier 2 is (slightly)lo
ated higher than its optimal position, shown by the dash line. This error is dueto an underestimation of the value fun
tion at that area, whi
h is 
aused by thela
k of pre
ision around the dis
ontinuity (frontier 1). Here, we 
learly observe thenon-lo
al in
uen
es between the value fun
tion and the optimal 
ontrol.The performan
e of this splitting 
riterion is relatively weak (see se
tion 7.3).However, this splitting 
riterion 
an be bene�
ially 
ombined with previous onesbased on the VF.7.2. Combination of several 
riteriaWe 
an 
ombine the poli
y disagreement 
riterion with the 
orner-value di�eren
eor value non-linearity 
riterion in order to obtain the advantages of both methods: agood approximation of the value fun
tion on the whole state spa
e and an in
rease ofthe resolution around the areas of transition of the optimal 
ontrol. We 
an 
ombinethose 
riteria in several ways, for example by a weighted sum of the respe
tive s
oresof ea
h 
ells, by a logi
al operation (split if an and/or 
ombination of these 
riteriais satis�ed), or by an ordering of the 
riteria (�rst split with one 
riterion, then useanother one).Figure 12 shows the dis
retization obtained by alternatively, between iterations,using the value non-linearity 
riterion and the poli
y disagreement 
riterion. Weobserve an in
reased re�nement at areas of singularities of both the value fun
tionand the optimal 
ontrol.7.3. Comparison of the performan
eIn order to 
ompare the respe
tive performan
e of the dis
retizations, we ran aset (here 256) of optimal traje
tories starting from initial states regularly situatedin the state spa
e and using the feed-ba
k 
ontroller (4). The performan
e ofa dis
retization is the sum of the 
umulated reinfor
ement (the gain de�ned byequation (2)) obtained along these traje
tories, over the set of start positions.Figure 13 shows the respe
tive performan
es of several splitting 
riteria as afun
tion of the number of states of the respe
tive dis
rete MDPs.For this 2-dimensional 
ontrol problem, all the variable resolution approa
h per-forms better than uniform grids, ex
ept for the poli
y disagreement 
riterion usedalone. However, as we will see later on, for higher dimensional problems, the re-sour
es allo
ated to approximate the VF-dis
ontinuities around areas of the statespa
e that are not useful for improving the optimal 
ontrol might be prohibitivelyhigh.Can we do better ?So far, we have only 
onsidered lo
al splitting 
riteria, in whi
h we de
ide to split a
ell a

ording to information (value fun
tion and poli
y) relative to the 
ell itself.However, the e�e
t of the splitting is not lo
al: it has an in
uen
e on the wholestate spa
e.
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Figure 13. The performan
efor the uniform versus variableresolution grids for severalsplitting 
riterion. Both the
orner-value di�eren
e andvalue non-linearity splittingpro
esses perform better thanthe uniform grids. The poli
ydisagreement splitting is verygood for a small number ofstates but does not improveafter, and thus leads to sub-optimal performan
e. Thepoli
y disagreement 
ombinedwith the value non-linearitygives the best performan
es.We would like to de�ne a re�nement pro
ess that would split 
ells only if it isuseful to improve the performan
e. Se
tions that follow introdu
e two notions thatwill be useful for de�ning su
h global splitting methods: the in
uen
emeasures theextent to whi
h states a�e
t globally the VF, and the varian
e, whi
h measuresthe amount of interpolation introdu
ed by the dis
retization pro
ess.8. Notion of in
uen
eLet us 
onsider the Markov 
hain resulting from the dis
retized MDP in whi
hwe 
hoose the optimal poli
y �. For 
onvenien
e, we denote R(�) = R(�; �(�)),p(�ij�) = p(�ij�; �(�)), and �(�) = �(�; �(�)).8.1. Intuitive ideaThe in
uen
e I(�ij�) of a state �i on another state � is de�ned as a measure of theextent to whi
h the state �i \
ontributes" to the VF of another state �. This 
anbe done by estimating the in�nitesimal variation of the VF at � resulting from ain�nitesimal modi�
ation of the reward at �i.By 
onsidering the dis
ounted transition probabilities p1(�ij�) = 
�(�)p(�ij�) andby de�ning an additional jump to a \dead state" with a transition probability of1� 
�(�), the in
uen
e I(�ij�) 
an be interpreted more intuitively as the expe
tednumber of visits of state �i starting from state � when using the optimal poli
y,before the system dies.8.2. De�nition of the in
uen
eLet us de�ne the dis
ounted 
umulative k�
hained probabilities pk(�ij�), whi
hrepresent the sum of the dis
ounted transition probabilities of all sequen
es of kstates from � to �i:p0(�ij�) = 1 (if � = �i) or 0 (if � 6= �i)p1(�ij�) = 
�(�)p(�ij�)



16 R�EMI MUNOS AND ANDREW MOOREp2(�ij�) = X�j2� p1(�ij�j) � p1(�j j�):::pk(�ij�) = X�j2� p1(�ij�j) � pk�1(�j j�) (7)De�nition 1. Let � 2 �. We de�ne the in
uen
e of a state �i on the state � as:I(�ij�) = 1Xk=0 pk(�ij�)Similarly, let � be a subset of �. We de�ne the in
uen
e of a state �i on the subset� as I(�ij�) =P�2� I(�ij�).We 
all in
uen
ers of a state � (respe
tively of a subset �), the set of states �ithat have a non-zero in
uen
e on � (respe
tively on �) (note, by de�nition, thatall in
uen
es are non-negative).8.3. Some properties of the in
uen
eFirst, we noti
e that if all the times �(�) are > 0, then the in
uen
e is well de�nedand is bounded by: I(�ij�) � 11�
�min with �min = min� �(�). Indeed, from thede�nition of the dis
ounted 
hained-probabilities, we have pk(�ij�) � 
k��min thus:I(�ij�) �P1k=0 
k��min = 11�
�min .Moreover, the de�nition of the in
uen
e is related to the intuitive idea expressedabove that the in
uen
e I(�ij�) is the partial derivative of V (�) by R(�i):I(�ij�) = �V (�)�R(�i) (8)Proof: The Bellman equation is: V (�) = R(�) +P�i p1(�ij�) � V (�i). By applyingthe Bellman equation to V (�i), we have:V (�) = R(�) +P�i p1(�ij�) hR(�i) +P�j p1(�j j�i) � V (�j)iFrom the de�nition of p2, we 
an rewrite this equation as:V (�) = R(�) +P�i p1(�ij�) �R(�i) +P�i p2(�ij�) � V (�i)Again, we 
an apply the Bellman equation to V (�i) and easily prove the 
onvergen
eat the limit:V (�) =P1k=0P�i pk(�ij�) �R(�i)from whi
h we dedu
e that the 
ontribution of the reward at �i to the VF at � isthe in
uen
e of �i on �:�V (�)�R(�i) = 1Xk=0 pk(�ij�) = I(�ij�)The VF at � is expressed as a linear 
ombination of the rewards at states �iweighted by the in
uen
es I(�ij�).
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uen
eFirst, let us prove the following property: for any states � and �i, we haveI(�ij�) =X�j p1(�ij�j) � I(�j j�) +� 1 if �i = �0 if �i 6= � (9)Proof: This result is easily dedu
ed from the de�nition of the in
uen
e and the
hained transition probability property (7):I(�ij�) = P1k=0 pk(�ij�) =P1k=0 pk+1(�ij�) + p0(�ij�)= P1k=0P�j p1(�ij�j) � pk(�j j�) + p0(�ij�)= X�j p1(�ij�j) � I(�j j�) +� 1 if �i = �0 if �i 6= �For a given �, let us de�ne the operator �� that, applied to any fun
tion  (de�nedon �), returns: �� (�i) =P�j p1(�ij�j) �  (�j)Equation (9) is equivalent to: I(�ij�) = ��I(�j�)(�i) +� 1 if �i = �0 if �i 6= � . This is nota Bellman equation sin
e the sum of the probabilitiesP�j p1(�ij�j) may be greaterthan 1, so we 
annot dedu
e that the su

essive iterations:In+1(�ij�) = ��In(�j�)(�i) +� 1 if �i = �0 if �i 6= � (10)
onverge to the in
uen
e by using the 
lassi
al 
ontra
tion property of the operator�� in max-norm (Puterman, 1994). However, by using the 1-norm, we have:jj�� jj1 =X�i j�� (�i)j � X�i X�j jp1(�ij�j) �  (�j)j� 
�minX�j j (�j)j � 
�minjj jj1thus �� is a 
ontra
tant operator in 1-norm. We dedu
e that the iterated valuesIn(�ij�) in (10) satisfyjjIn+1(�j�)� I(�j�)jj1 =X�i j��In(�j�)(�i)� ��I(�j�)(�i)j=X�i j��[In(�j�)� I(�j�)℄(�i)j � 
�minjjIn(�j�)� I(�j�)jj1thus 
onverge to the in
uen
e I(�ij�), unique solution of (9).Remark. In order to 
ompute the in
uen
e I(�ij
) on a subset 
, we use theiteration:In+1(�ij�) =X�j p1(�ij
) � In(�j j
) +� 1 if �i 2 
0 if �i 62 
 (11)
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h 
onverge (similar proof) to I(�ij
). The 
omputation of the in
uen
e is thus
heap: equivalent to 
omputing the value fun
tion of a dis
ounted Markov 
hain.Remark. As pointed out by Geo�rey Gordon, the in
uen
e is 
losely related tothe dual variables (or shadow pri
es in e
onomi
s) of the Linear Program equivalentto the Bellman equation (Gordon, 1999). This property has already been used in(Tri
k & Zin, 1993) to derive an eÆ
ient adaptive grid generation.Remark. A possible extension is to de�ne the in
uen
e of a MDP as the in-�nitesimal 
hange in the value fun
tion of a state resulting from an in�nitesimalmodi�
ation of the reward at another state. Sin
e the value fun
tion is a maximumof linear expressions, the in
uen
e on states with multiple optimal a
tions (thus forwhi
h the value fun
tion is not di�erentiable) is de�ned (as a set-valued map) bytaking the partial sub-gradient instead of the regular gradient (8).8.5. A tool to sele
t out the most important areasWe would like to use the in
uen
e as a tool to dis
over what are the areas of thestate spa
e where we need a high quality interpolation pro
ess to obtain an a

urate
ontroller, so we 
ould fo
us our re�nement pro
ess there and negle
t other areas.The idea is that we want a high quality estimation of the VF around the areas oftransition of the optimal 
ontrol so that those swit
hing boundaries be a

uratelylo
ated. Thus, the relevant areas of the state spa
e are those that have an in
uen
eon the states around these swit
hing boundaries.Let us illustrate this idea on the \Car on the Hill" problem.For any subset 
, we 
an 
omputeits in
uen
ers. As an example, �g-ure 14 shows the in
uen
ers of 3points.Figure 14. In
uen
ers of 3 points (the
rosses). The darker the gray level, themore important the in
uen
e. We noti
ethat the in
uen
ers of a state \follow"some di�usion pro
ess in the dire
tionof the optimal traje
tory (see �gure 6).This di�usion represents the sto
hasti
-ity introdu
ed by the dis
retization dueto the averaging e�e
t of the interpola-tion pro
ess.First, for a given grid, let us de�ne the subset � of the states of poli
y dis-agreement (in the sense of se
tion 7.1). Figure 15(a) shows � for a regular gridof 129 � 129. � represents an estimation (given the 
urrent grid) of the optimal
ontrol swit
hing boundaries.
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ompute the in
uen
e on � (Figure 15(b)). The darkest zones show thestates that in
uen
e the most the value fun
tion at �.Consequently, if we were to in
rease the a

ura
y of the lo
al interpolation pro
essat the states illustrated by Figure 15(b) we would obtain a better approximationof the VF at the states shown in Figure 15(a), whi
h would in
rease the pre
isionof the swit
hing boundaries, thus the performan
e of the 
ontroller.

(a) States of policy disagreement (b) Influence on these statesFigure 15. The set of states of poli
y disagreement (a) and its in
uen
ers (b).From this idea, we want to design a splitting heuristi
 that would take into a

ountthese non-lo
al in
uen
es.In order to de
rease the lo
al interpolation error, we �rst need to estimate, for agiven grid, the VF approximation error 
aused by the a

umulation of the interpo-lation errors due to the dis
retization.In order to estimate this amount of sto
hasti
ity introdu
ed by the interpolationpro
ess, we 
ompute, in the next se
tion, the varian
e of the future rewards for thedis
retized Markov 
hain.9. Varian
e of a Markov 
hainAgain we 
onsider the Markov 
hain resulting from the dis
retized MDP in whi
hwe 
hoose the optimal poli
y �, and we use the same notations as in the previousse
tion. Let s(�) = (�(0) = �; �(1); �(2); :::) be an in�nite sequen
e of states startingfrom an initial state � and generated by this Markov 
hain (the probability oftransition from � to �0 being p(�0j�)).The gain J(s(�)) of a sequen
e s(�) is the dis
ounted 
umulative rewards:J(s(�)) = R(�) +Xt�1 
Pt�1s=0 �(�(s))R(�(t)) (12)and the VF of a state � is the expe
tation of this gain, for all possible sequen
ess(�): V (�) = E[J(s(�))℄.
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ontinuous) 
ontrol problem is deterministi
, thus the VF of a stateis simply the gain (de�ned by (2)) obtained along one optimal traje
tory: thevarian
e of the gain is zero. When this deterministi
 problem is dis
retized, theinterpolation pro
ess produ
es an averaging e�e
t that is mathemati
ally equivalentto the introdu
tion of sto
hasti
ity in the jumps from (dis
rete) state to state: theVF of the dis
retized MDP is an expe
tation of the gain (12) along all (dis
rete)optimal traje
tories. Thus, the varian
e of the dis
rete MDP indi
ates the amountof averaging introdu
ed during the dis
retization pro
ess.The varian
e �2 of the gain is:�2(�) = E �[J(s(�)) � V (�)℄2�In order to 
ompute this varian
e we �rst prove that the varian
e is solution tothe Bellman equation:�2(�) = 
2�(�)X�0 p(�0j�) � �2(�0) + e(�) (13)with the one-step ahead 
ontribution e(�) de�ned as:e(�) =X�0 p(�0j�) � h
�(�)V (�0)� V (�) +R(�)i2 (14)Proof: The gain obtained along a sequen
e s(�) = (�(0) = �; �(1); �(2); :::) satis�esJ(s(�)) = R(�) + 
�(�)J(s(�(1))), with s(�(1)) = (�(1); �(2); :::).Thus the varian
e is:�2(�) = E h[
�(�)J(s(�(1)))� (V (�)�R(�))℄2iFrom the de�nition of the VF, V (�)�R(�) = 
�(�)E[V (�(1))℄ = 
�(�)E[J(s(�(1)))℄,thus: �2(�) = E h[
�(�)J(s(�(1)))℄2 � [V (�)�R(�)℄2iNow, let us de
ompose this expe
tation using an average for all possible se
ondstates �0 in the sequen
e, weighted by the probability of o

urren
e p(�0j�):�2(�) = X�0 p(�0j�) � E h[
�(�)J(s(�0))℄2 � [V (�)�R(�)℄2i= X�0 p(�0j�) � E h[
�(�)J(s(�0))℄2 � [
�(�)V (�0)℄2i (15)+ X�0 p(�0j�) � E h[
�(�)V (�0)℄2 � [V (�) �R(�)℄2iNow, from the Bellman equation V (�) = R(�)+P�0 p(�0j�) �
�(�)V (�0) we dedu
ethat:
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�(�)V (�0)℄2 � [V (�)�R(�)℄2i = e(�) (16)with e(�) de�ned in (14). Moreover, we have:E h[
�(�)J(�0)℄2 � [
�(�)V (�0)℄2i = 
2�(�)E �[J(�0)� V (�0)℄2� = 
2�(�) � �2(�0)Whi
h, 
ombined with (16) in (15) gives (13).Thus the varian
e �2(�) is equal to the immediate 
ontribution e(�) that takesinto a

ount the variation in the values of the immediate su

essors �0 plus thedis
ounted expe
ted varian
e �2(�0) of these su

essors.The equation (13) is a Bellman equation: it is a �xed-point equation of a 
on-tra
tant operator (in max-norm) (with a 
ontra
tion 
oeÆ
ient of 
2�min) and thus
an be solved by value iteration.
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Figure 16. The term e(�) as a fun
tion of the interpolated point � for low-(left) and high-(right)gradient value fun
tions.Remark. We 
an provide a geometri
al interpretation of the term e(�) related tothe gradient of the value fun
tion at the iterated point � = �(�; u�) (see �gure 3) andto the bary
entri
 
oordinates ��i (�). Indeed, from the de�nition of the dis
retizedMDP (se
tion 3.2), we have V (�) = R(�) + 
�(�)V (�) and from the pie
ewiselinearity of the approximated fun
tions we have V (�i) = V (�) + DV (�):(�i � �),thus: e(�) =P�i��i(�):
2�(�)[DV (�):(�i � �)℄2, whi
h 
an be expressed as:e(�) = 
2�(�):DV (�)T :Q(�):DV (�)with the matrix Q(�) de�ned by its elements qjk(�) =P�i ��i(�):(�i��)j :(�i��)k.Thus, e(�) is 
lose to 0 in two spe
i�
 
ases: when the gradient at the iteratedpoint � is low (i.e. the values are almost 
onstant) and when � is 
lose to a gridpoint �i (then the bary
entri
 
oordinate ��i is 
lose to 1 and the other bary
entri

oordinates are 
lose to 0, thus Q(�) is low). In both 
ases, e(�) is low and impliesthat the interpolation at � does not introdu
e a high degradation of the quality ofapproximation of the value fun
tion (the varian
e does not in
rease). Figure 16shows e(�) for a one-dimensional spa
e.



22 R�EMI MUNOS AND ANDREW MOORERemark. The varian
e measures the amount of averaging a

umulated by theinterpolation pro
ess due to the dis
retization of the state spa
e. Our basi
 as-sumption is that this measure is a good estimation of the approximation error ofthe VF, for a given grid. However, this may not be the 
ase if the grid is too 
oarseso the poli
y of the dis
retized MDP di�ers too mu
h from the optimal 
ontrolof the 
ontinuous problem. Indeed, in that 
ase, the varian
e would be 
omputedalong traje
tories using a wrong poli
y. A detailed analysis of the estimation ofthe VF approximation error from lo
al interpolation errors is initiated in (Munos& Moore, 2000).Illustration of the varian
e for the \Car on the Hill"Figure 17 shows the standard deviation �(�) for the \Car on the Hill" obtainedwith a uniform grid (of 257 by 257). Figure 17. The standard devia-tion � for the \Car on the Hill".We noti
e that it is very higharound the frontier 1 (indeed,a dis
ontinuity is impossible toapproximate perfe
tly by dis-
retization methods, whateverthe resolution is) and noti
eablyhigh around frontiers 2 and 3,the dis
ontinuities of the gradi-ent of V (whi
h 
orrespond toboundaries of 
hange in the op-timal 
ontrol, as shown in �gure6). Indeed, around these areas,the VF averages heterogeneousvalues of the dis
ounted termi-nal rewards.10. A global splitting heuristi
Now, we 
ombine these notions of in
uen
e and varian
e in order to de�ne a non-lo
al splitting 
riterion. We have seen that:� The states � of highest standard deviation �(�) are the states of lowest qualityof approximation of the VF (�gure 18(a)).� The states � of highest in
uen
e on the set � of states of poli
y disagreement(�gure 15(b)) are the states whose value fun
tion a�e
ts the area where thereis a transition in the optimal 
ontrol.Thus, in order to improve the a

ura
y of approximation at the most relevantareas of the state spa
e with respe
t to the 
ontroller (i.e. the optimal 
ontrolswit
hing boundaries), we split the states � of high standard deviation that havean in
uen
e on the areas of 
ontrol transition, a

ording to the Stdev Inf 
riterion(see �gure 18): Stdev Inf(�) = �(�):I(�j�). Figure 19 shows the dis
retizationobtained by using this splitting 
riterion.
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(a) Standard deviation (b) Influence x Standard deviationFigure 18. (a) The standard deviation �(�) for the \Car on the Hill" (equivalent to �gure 17) and(b) The Stdev Inf 
riterion, produ
t of �(�) by the in
uen
e I(�j�) (�gure 15(b)).
Figure 19. The dis
retization resulting fromthe Stdev Inf split 
riterion. We observe thatthe upper part of frontier 1 is well re�ned.This re�nement does not o

ur be
ause wewant to approximate the VF around its dis-
ontinuity (whi
h was the 
ase for the 
orner-value di�eren
e and value non-linearity 
ri-teria) but be
ause the re�nement there isneeded to improve the quality of the 
on-troller at another area of the state spa
e (thebottom part of frontier 2) where there is aswit
hing boundary for the optimal 
ontrol.We noti
e that the bottom part and the up-per right part of the state spa
e are not re-�ned at all: it is not needed for the 
ontroller.



24 R�EMI MUNOS AND ANDREW MOORERemark. The performan
e of this 
riterion for the \Car on the Hill" problem aresimilar to those of 
ombining the value non-linearity and the poli
y disagreement
riterion. We didn't plot those performan
es in �gure 13 for 
larity reasons andbe
ause they do not represent a major improvement. However, the di�eren
e ofperforman
es between the lo
al 
riteria and the Stdev Inf 
riterion are mu
h moresigni�
ant in the 
ase of higher dimensional problems, as illustrated in what follows.It is important to noti
e the fa
t that the Stdev Inf 
riterion does not split theareas where the VF is dis
ontinuous unless some re�nement is ne
essary to improvethe quality of the 
ontroller (possibly at another part of the state spa
e). As we willsee in the simulations that follow, in higher dimensions, the 
ost to get an a

urateapproximation of a dis
ontinuous VF is 
omputationally very expensive, whi
hexplains why the splitting pro
edure using the Stdev Inf 
riterion outperforms theprevious re�nement methods.Remark. In the 
ase of a sto
hasti
 pro
ess (Markov Di�usion Pro
esses), we willneed to re
onsider this splitting heuristi
 sin
e in that 
ase the varian
e would re
e
ttwo 
omponents: the interpolation error introdu
ed by the grid-approximation butalso the intrinsi
 sto
hasti
ity of the 
ontinuous pro
ess. The latter is not relevantto our splitting method sin
e a re�nement around areas of high varian
e of thepro
ess will not result in an improvement of the approximations. This 
ase will befurther developed in future work.11. Illustration on more 
omplex 
ontrol problems11.1. The Cart-Pole problemThe dynami
s of this 4-dimensional physi
al system (illustrated in �gure 20(a))are des
ribed in (Barto, Sutton, & Anderson, 1983). In our experiments, we 
hosethe following parameters as follows: the state spa
e is de�ned by the position y 2[�10;+10℄, angle � 2 [��2 ; �2 ℄, and velo
ities restri
ted to _y 2 [�4; 4℄, _� 2 [�2; 2℄.The 
ontrol 
onsists in applying a strength of �10 Newton. The goal is de�ned bythe area: y = 4:3� 0:2, � = 0� �45 , (and no limits on _y and _�). This is a notablynarrow goal to try to hit (see the proje
tion of the state spa
e and the goal onthe 2d plan (y,�) in �gure 20). Noti
e that our task of \minimum time maneuverto a small goal region" from an arbitrary start state is mu
h harder than merelybalan
ing the pole without falling (Barto et al., 1983). The 
urrent reinfor
ementr is zero everywhere and the boundary reinfor
ement rb is �1 if the system exitsfrom the state spa
e (jyj > 10 or j�j > �2 ), and +1 if the system rea
hes the goal.Figure 21 shows the performan
e obtained for several splitting 
riteria previouslyde�ned for this 4-dimensional 
ontrol problem. We observe the following points:� The lo
al splitting 
riteria do not perform better than the uniform grids. Theproblem is that the VF is dis
ontinuous at several parts of the state spa
e (areasof high j�j for whi
h it is too late to re-balan
e the pole, whi
h is similar to thefrontier 1 of the \Car on the Hill" problem) and the value-based 
riteria spendtoo many resour
es on approximating these useless areas.
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Figure 20. (a) Des
ription of the Cart-pole. (b) The proje
tion of the dis
retization (onto theplane (�,y)) obtained by the Stdev Inf 
riterion and some traje
tories for several initial points.� The Stdev Inf 
riterion performs very well. We observe that the traje
tories(see �gure 20(b)) are nearly optimal (the angle j�j is maximized in order torea
h the goal as fast as possible, and very 
lose to its limit value, for whi
h itis no more possible to re
over the balan
e).

Figure 21. Performan
e on the \Cart-pole". Figure 22. Performan
e on the A
robot.11.2. The A
robotThe A
robot is a 4-dimensional 
ontrol problem whi
h 
onsists of a two-link armwith one single a
tuator at the elbow. This a
tuator exerts a torque between thelinks (see �gure 23(a)). It has dynami
s similar to a gymnast on a high bar, whereLink 1 is analogous to the gymnast's hands, arms and torso, Link 2 represents the



26 R�EMI MUNOS AND ANDREW MOORElegs, and the joint between the links is the gymnast's waist (Sutton, 1996). Here,the goal of the 
ontroller is to balan
e the A
robot at its unstable, inverted verti
alposition, in the minimum time (Boone, 1997). The goal is de�ned by a very narrowrange of �16 on both angles around the verti
al position �1 = �2 ; �2 = 0 (�gure23(b)), for whi
h the system re
eives a reinfor
ement of rb = +1. Anywhere else,the reinfor
ement is zero. The two �rst dimensions (�1; �2) of the state spa
e have astru
ture of a torus (be
ause of the 2� modulo on the angles), whi
h is implementedin our stru
ture by having the verti
es of 2 �rst dimensions being angle 0 and 2�pointing to the same entry for the value fun
tion in the interpolated kd-trie.Figure 22 shows the performan
e obtained for several splitting 
riteria previouslyde�ned. The respe
tive performan
e of the di�erent 
riteria are similar to the\Cart-pole" problem above: the lo
al 
riteria are no better than the uniform grids ;the Stdev Inf 
riterion performs mu
h better.Figure 23(b) shows the proje
tion of the dis
retization obtained by the Stdev Inf
riterion and one traje
tory onto the 2d-plane (�1,�2).
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(a) The Acrobot (b) Projection of the state spaceFigure 23. (a) Des
ription of the A
robot physi
al system. (b) Proje
tion of the dis
retization(onto the plane (�1,�2)) obtained by the Stdev Inf 
riterion, and one traje
tory.11.3. Brief des
ription of two other 
ontrol problemsThe \spa
e-shuttle" 
ontrol problemThis is a 4-dimensional \spa
e-shuttle" 
ontrol problem de�ned by the position(x; y) and velo
ity (vx; vy) of a point (the shuttle) in a 2d-plane. There are 5 possi-ble 
ontrols : do nothing or thrust to one of the 4 
ardinal dire
tions. The dynami
sfollow the laws of Newtonian physi
s where the shuttle is attra
ted by the gravita-tion of a planet (dark gray 
ir
le in �gure 11.3) and some intergala
ti
 dust (light



VARIABLE RESOLUTION DISCRETIZATION IN OPTIMAL CONTROL 27gray 
ir
le). The goal is to rea
h some position in spa
e (the square) by minimizinga 
ost (fun
tion of the time to rea
h the target and the fuel 
onsumption). Figure11.3 shows some traje
tories.
Goal

Planet

Dust

x

x1

2

x3

Figure 24. The \spa
e-shuttle" tra-je
tories for 3 di�erent starting po-sitions. From x1 the goal is di-re
tly rea
hable (the gravitation islow). From x2 the 
ollision is un-avoidable whatever the thrust (rep-resented by small gray segments) toavoid the planet is. From x3 the 
on-troller uses the gravitation for
es torea
h the goal.The \airplane meeting" 
ontrol problemThis is also a 4-dimensional 
ontrol problem in whi
h we 
onsider one (or several)airplane(s) 
ying at 
onstant altitude and velo
ity. They try to rea
h a targetde�ned by a position xG; yG and an angle �G (the arrow in �gure 25) at a pre
isetime tG. Ea
h plane is de�ned at any time t by its position x(t); y(t) and angle �(t).There are 3 possible 
ontrols for ea
h plane : turn left, right, or go straight. Thestate spa
e is of dimension 4 : the position x; y, the angle � and the time t. Thedynami
s are : dxdt = 
os(�), dydt = sin(�), d�dt = f�1; 0;+1g:v� and dtdt = 1. Here,the terminal 
ost is : (x� xG)2 + (y � yG)2 + k�(� � �G)2 + kt(t� tG)2 and thereis a small 
onstant 
urrent 
ost if a plane is in a gray area (some 
louds that theplanes should avoid). Figure 25 shows some traje
tories for one and 3 planes whenthere is more time than ne
essary to rea
h the target dire
tly (the planes have toloop).Interpretation of the results: We noti
e that for the previous 4d problems, thelo
al splitting 
riteria fail to improve the performan
e of the uniform grids be
ausethey spend too many resour
es on trying to approximate the dis
ontinuities of theVF. For example, for the \Cart-pole" problem, the value non-linearity 
riterionfo
uses on approximating the VF mostly at parts of the state spa
e where thereis already no 
han
e to re-balan
e the pole. And the areas around the verti
alposition (low �), whi
h are the most important areas, will not be re�ned in time(however, if we 
ontinue the simulations after about 90000 states, the lo
al splitting
riteria perform better than the uniform grids, be
ause these important areas areeventually re�ned).
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(a) One airplaine (b) Meeting of 3 airplanesFigure 25. The \airplane meeting" 
ontrol problemThe Stdev Inf 
riterion, whi
h takes into a

ount global 
onsideration for thesplitting, provides an a

urate 
ontroller for all the tasks des
ribed above.12. Con
lusion and Future workIn this paper we proposed a variable resolution dis
retization approa
h to solve
ontinuous time and spa
e 
ontrol problems. We des
ribed several lo
al splitting
riteria, based on the VF or the poli
y approximation. We observed that thisapproa
h works well for 2d problems like the \Car on the Hill". However, for more
omplex problems, these lo
al methods fail to perform better than uniform grids.Lo
al value-based splitting is an eÆ
ient, model-based, relative of the Q-learning-based tree splitting 
riteria used, for example, by (Chapman & Kaelbling, 1991;Simons, Van Brussel, De S
hutter, & Verhaert, 1982; M
Callum, 1995). But it isonly when 
ombined with new non-lo
al measures that we are able to get trulye�e
tive, near-optimal performan
e on diÆ
ult 
ontrol problems. The tree-based,state-spa
e partitions in (Moore, 1991; Moore & Atkeson, 1995) were produ
ed bydi�erent 
riteria (of empiri
al performan
e), and produ
ed far more parsimonioustrees, but no attempt was made to minimize 
ost: merely to �nd a valid path.In order to design a global 
riterion, we introdu
ed two useful measures of aMarkov 
hain: the in
uen
e estimates the non-lo
al dependen
ies in the VF, thevarian
e estimates the VF error of approximation for a given grid. By 
ombiningthese measures, we proposed an eÆ
ient splitting heuristi
 that exhibit good per-forman
e (in 
omparison to the uniform grids) on all the problems studied. Thesemeasures 
ould also be used to solve large (dis
rete) MDPs by sele
ting whi
h ini-tial features (or 
ategories) one has to re�ne to provide a relevant partition of thestate spa
e.
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ould be to learn them through intera
-tions with the environment in order to design eÆ
ient exploration poli
ies in rein-for
ement learning. Our notion of varian
e 
ould be used with \Interval Estima-tion" heuristi
 (Kaelbling, 1993), to permit \optimism-in-the-fa
e-of-un
ertainty"exploration, or with the \ba
k-propagation of exploration bonuses" of (Meuleau &Bourgine, 1999) for exploration in 
ontinuous state-spa
es. Indeed, if we observethat the learned varian
e of a state � is high, then a good exploration strategy 
ouldbe to inspe
t the states that have a high expe
ted in
uen
e on �.Even more parsimonious grid 
an be obtained if we only 
onsider a 
ontroller for aspe
i�
 area 
 of initial states. Indeed, the Stdev Inf 
riterion 
an be 
omputed withrespe
t to �j
 = f� 2 �; I(�j
) > 0g (the areas of transition in the optimal 
ontrolthat have some in
uen
e on 
) instead of �, in order to restri
t the re�nementpro
ess to the areas of the state spa
e a
tually used by the traje
tories.Also, the notion of varian
e might be useful to provide a safe 
ontroller for whi
h
hoosing a sub-optimal a
tion would be preferable if it leads to states of lowervarian
e than when taking the optimal a
tion.The more severe limitation to these dis
retization te
hniques (even with the vari-able resolution approa
h developed here) is still the 
urse of dimensionality. Cur-rently, we were able to solve all 4-dimensional problems 
onsidered and a few 5-dimensional ones.In the future, it seems important to develop the following points:� A generalization pro
ess that 
ould implement a bottom-up pro
ess for regroup-ing the areas (for example by pruning the tree) that have been over-re�ned.� Consider the sto
hasti
 
ase, for whi
h the 
omputation of the VF approxima-tion error (obtained by the measure of varian
e in the deterministi
 
ase) shouldonly take into a

ount the interpolation error and not the intrinsi
 noise of thepro
ess.� Implement the same ideas on sparse representations that 
an handle high di-mensions (and even in some 
ase are able to break the 
urse of dimensionality),su
h as the sparse grids (Zenger, 1990; Griebel, 1998), the random and low-dis
repan
y grids (Niederreiter, 1992; Rust, 1996). In some early experimentsusing variable resolution random grids, we were able to solve sto
hasti
 prob-lems in dimension six.A
knowledgements to Je� S
hneider, Geo�rey Gordon, Ni
olas Meuleau, PaulBourgine, Csaba Szepesv�ari, Ron Parr, Andy Barto, and Leslie Kaelbling for theiruseful suggestions and advi
e.Referen
esBaird, L. C. (1995). Residual algorithms : Reinfor
ement learning with fun
tion approximation. Ma-
hine Learning : pro
eedings of the Twelfth International Conferen
e.Baird, L. C. (1998). Gradient des
ent for general reinfor
ement learning. Neural InformationPro
essingSystems, 11.Barles, G., & Souganidis, P. (1991). Convergen
e of approximation s
hemes for fully nonlinear se
ondorder equations. Asymptoti
 Analysis, 4, 271{283.



30 R�EMI MUNOS AND ANDREW MOOREBarto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike Adaptive elements that that 
an learndiÆ
ult Control Problems. IEEE Trans. on Systems Man and Cyberneti
s, 13 (5), 835{846.Barto, A. G., Bradtke, S. J., & Singh, S. P. (1995). Learning to a
t using real-time dynami
 program-ming. Arti�
ial Intelligen
e, pp. 81{138.Bertsekas, D. P. (1987). Dynami
 Programming: Deterministi
 and Sto
hasti
 Models. Prenti
e Hall.Bertsekas, D. P., & Tsitsiklis, J. (1996). Neuro-Dynami
 Programming. Athena S
ienti�
.Boone, G. (1997). Minimum-time 
ontrol of the a
robot. International Conferen
e on Roboti
s andAutomation.Boyan, J., & Moore, A. (1995). Generalization in reinfor
ement learning : Safely approximating thevalue fun
tion. Advan
es in Neural Information Pro
essing Systems, 7.Chapman, D., & Kaelbling, L. P. (1991). Learning from Delayed Reinfor
ement In a Complex Domain.In IJCAI-91.Crandall, M., Ishii, H., & Lions, P. (1992). User's guide to vis
osity solutions of se
ond order partialdi�erential equations. Bulletin of the Ameri
an Mathemati
al So
iety, 27 (1).Crandall, M., & Lions, P. (1983). Vis
osity solutions of hamilton-ja
obi equations. Trans. of theAmeri
an Mathemati
al So
iety, 277.Crites, B., & Barto, A. (1996). Improving elevator performan
e using reinfor
ement learning. Advan
esin Neural Information Pro
essing Systems, 8.Davies, S. (1997). Multidimensional Triangulation and Interpolation for Reinfor
ement Learning. InNeural Information Pro
essing Systems 9, 1996. Morgan Kaufmann.Dupuis, P., & James, M. R. (1998). Rates of 
onvergen
e for approximation s
hemes in optimal 
ontrol.SIAM Journal Control and Optimization, 360 (2).Fleming, W. H., & Soner, H. M. (1993). Controlled Markov Pro
esses and Vis
osity Solutions. Appli-
ations of Mathemati
s. Springer-Verlag.Friedman, J. H., Bentley, J. L., & Finkel, R. A. (1977). An algorithm for �nding best mat
hes inlogarithmi
 expe
ted time. ACM Transa
tions on Mathemati
al Software, 3 (3), 209{226.Gordon, G. (1995). Stable fun
tion approximation in dynami
 programming. Pro
eedings of the Inter-national Conferen
e on Ma
hine Learning.Gordon, G. J. (1999). Approximate solutions to Markov De
ision Pro
esses. Ph.D. thesis, CS depart-ment, Carnegie Mellon University, Pittsburgh, PA.Griebel, M. (1998). Adaptive sparse grid multilevel methods for ellipti
 pdes based on �nite di�eren
es.Notes on Numeri
al Fluid Me
hani
s, Pro
eedings Large S
ale S
ienti�
 Computations.Gr�une, L. (1997). An adaptive grid s
heme for the dis
rete hamilton-ja
obi-bellman equation. Nu-meris
he Mathematik, 75-3.Kaelbling, L. P. (1993). Learning in Embedded Systems. MIT Press, Cambridge MA.Knuth, D. E. (1973). Sorting and Sear
hing. Addison Wesley.Kushner, H. J., & Dupuis (1992). Numeri
al Methods for Sto
hasti
 Control Problems in ContinuousTime. Appli
ations of Mathemati
s. Springer-Verlag.M
Callum, A. (1995). Instan
e-Based Utile Distin
tions for Reifor
ement Learning with Hidden State.In Ma
hine Learning (pro
eedings of the twelfth international 
onferen
e) San Fran
is
o, CA.Morgan Kaufmann.Meuleau, N., & Bourgine, P. (1999). Exploration of multi-state environments: Lo
al measures andba
k-propagation of un
ertainty. Ma
hine Learning Journal, vol 35(2).Moody, J., & Darken, C. (1989). Fast learning in networks of lo
ally-tuned pro
essing units. NeuralComputation, 1, 289{303.



VARIABLE RESOLUTION DISCRETIZATION IN OPTIMAL CONTROL 31Moore, A. W. (1991). Variable Resolution Dynami
 Programming: EÆ
iently Learning A
tion Maps inMultivariate Real-valued State-spa
es. In Birnbaum, L., & Collins, G. (Eds.),Ma
hine Learning:Pro
eedings of the Eighth International Workshop. Morgan Kaufmann.Moore, A. W., & Atkeson, C. (1995). The parti-game algorithm for variable resolution reinfor
ementlearning in multidimensional state spa
e. Ma
hine Learning Journal, 21.Moore, D. W. (1992). Simpli
al Mesh Generation with Appli
ations. Ph.D. thesis, Cornell University.Munos, R. (2000). A study of reinfor
ement learning in the 
ontinuous 
ase by the means of vis
ositysolutions. Ma
hine Learning Journal.Munos, R., Baird, L., & Moore, A. (1999). Gradient des
ent approa
hes to neural-net-based solutionsof the hamilton-ja
obi-bellman equation. International Joint Conferen
e on Neural Networks.Munos, R., & Moore, A. (1998). Bary
entri
 interpolators for 
ontinuous spa
e and time reinfor
ementlearning. Advan
es in Neural Information Pro
essing Systems.Munos, R., & Moore, A. W. (2000). Rates of 
onvergen
e for variable resolution s
hemes in optimal
ontrol. International Conferen
e on Ma
hine Learning.Niederreiter, H. (1992). Random number generation and quasi-monte 
arlo methods. SIAM CBMS-NSFConferen
e Series in Applied Mathemati
s, Philadelphia, 63.Puterman, M. L. (1994). Markov De
ision Pro
esses, Dis
rete Sto
hasti
 Dynami
 Programming. AWiley-Inters
ien
e Publi
ation.Rust, J. (1996). Numeri
al Dynami
 Programming in E
onomi
s. In Handbook of ComputationalE
onomi
s. Elsevier, North Holland.Simons, J., Van Brussel, H., De S
hutter, J., & Verhaert, J. (1982). A Self-Learning Automaton withVariable Resolution for High Pre
ision Assembly by Industrial Robots. IEEE Trans. on Auto-mati
 Control, 27 (5), 1109{1113.Sutton, R. S. (1996). Generalization in reinfor
ement learning : Su

essful examples using sparse 
oarse
oding. Advan
es in Neural Information Pro
essing Systems, 8.Tesauro, G. (1995). Temporal di�eren
e learning and td-gammon. Communi
ation of the ACM, 38,58{68.Tri
k, M. A., & Zin, S. E. (1993). A linear programming approa
h to solving sto
hasti
 dynami
programs. Unpublished manus
ript.Tsitsiklis, J., & Van Roy, B. (1996). An analysis of temporal di�eren
e learning with fun
tion approxi-mation. Te
hni
al report LIDS-P-2322, MIT.Zenger, C. (1990). Sparse grids. Parallel Algorithms for Partial Di�erential Equations, Pro
eedingsof the sixth GAMM-Seminar.


