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Abstract. The problem of state abstraction is of central importance in optimal control, reinforce-
ment learning and Markov decision processes. This paper studies the case of variable resolution
state abstraction for continuous time and space, deterministic dynamic control problems in which
near-optimal policies are required. We begin by defining a class of variable resolution policy and
value function representations based on Kuhn triangulations embedded in a kd-trie. We then con-
sider top-down approaches to choosing which cells to split in order to generate improved policies.
The core of this paper is the introduction and evaluation of a wide variety of possible splitting
criteria. We begin with local approaches based on value function and policy properties that use
only features of individual cells in making split choices. Later, by introducing two new non-local
measures, influence and variance, we derive splitting criteria that allow one cell to efficiently take
into account its impact on other cells when deciding whether to split. Influence is an efficiently-
calculable measure of the extent to which changes in some state effect the value function of some
other states. Variance is an efficiently-calculable measure of how risky is some state in a Markov
chain: a low variance state is one in which we would be very surprised if, during any one execution,
the long-term reward attained from that state differed substantially from its expected value, given
by the value function.

The paper proceeds by graphically demonstrating the various approaches to splitting on the
familiar, non-linear, non-minimum phase, and two dimensional problem of the “Car on the hill”.
It then evaluates the performance of a variety of splitting criteria on many benchmark problems,
paying careful attention to their number-of-cells versus closeness-to-optimality tradeoff curves.

Keywords: Optimal control, reinforcement learning, variable resolution discretization, adaptive
mesh refinement

1. Introduction

This paper is about non-uniform discretization of state spaces when finding optimal
controllers for continuous time and space Markov Processes.

There is an extensive literature in Numerical Analysis about solving numerically
partial differential equations such as the famous Hamilton-Jacobi-Bellman (HJB)
equations that arise in optimal control.

Discretization techniques (Kushner & Dupuis, 1992) using finite-element (FE) or
finite-difference (FD) methods applied to uniform grids (and multi-grids) are widely
used and provide convergence results and rates of convergence (using analytical
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(Barles & Souganidis, 1991; Crandall, Ishii, & Lions, 1992; Crandall & Lions, 1983)
or probabilistical (Kushner & Dupuis, 1992; Dupuis & James, 1998) approaches).

However, such uniform discretization suffer from impractical computational re-
quirements when the size of the discretization step is small, especially when the
state space is of high dimension. Indeed, since the symmetries of the control prob-
lem or the smoothness properties of the value function are not reflected in the
structure of the grid, possible compact representations and computation are not
exploited.

On the other hand, there is a growing interest for combining compact function
representations (such as Neural Networks) with Dynamic Programming (Bertsekas
& Tsitsiklis, 1996; Baird, 1995; Sutton, 1996) in order to handle high dimensionality.
Successful applications include the game of backgammon (Tesauro, 1995) and a
controller for elevator dispatching (Crites & Barto, 1996). However in general,
there is no guarantee of convergence to the optimal solution (Boyan & Moore, 1995;
Baird, 1995; Munos, 2000; Munos, Baird, & Moore, 1999). Some local convergence
results are in (Gordon, 1995; Baird, 1998; Tsitsiklis & Van Roy, 1996; Bertsekas &
Tsitsiklis, 1996).

The distinction between discretization and approximation methods is not simple.
Usually we denote by discretization a way to decompose a function using a set of
basis functions with local support (such as ’hat’ functions used in finite-element
methods) whereas approximation methods refer to using basis functions with global
support (possibly the whole state space). However this distinction is not obvious
since there exists some fancy grids (for example the sparse grids (Zenger, 1990)) that
use extrapolation on large parts of the state space and some function approximators
that use local basis functions (such as the Normalized Gaussian Networks (Moody
& Darken, 1989)).

In this paper we consider variable resolution discretizations to approximate the
value function and the optimal control and compare experimentally several splitting
criteria. The ideas developed here are illustrated on a specific grid representation
using kd-trees and Kuhn triangulation. However the same ideas can be used to im-
plement variable resolution on other kinds of grids such as the sparse grids (Zenger,
1990; Griebel, 1998), the random and low-discrepancy grids (Niederreiter, 1992;
Rust, 1996).

We consider a “general towards specific” approach where an initial coarse grid
is successively refined at some areas of the state space according to a splitting
criterion. In this work we evaluates and compare the performance of a variety of
splitting criteria. We start (section 6) with two criteria - the corner-value difference
and the value non-linearity - which consider splitting around the “singularities” of
the value function. This is a refinement criterion commonly used in numerical
resolution of partial differential equations using adaptive meshes (see for example
(Griine, 1997) for HIB equations).

This method approximates very accurately the value function, but it may be
computationaly very expensive when the value function is discountinous.

Besides, the singularities of the value function are usually not located at the same
areas as those of the optimal controller: a good approximation of the value function
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at some areas is not needed if this does not have any impact on the quality of the
controller.

Next (section 7), we consider a splitting criterion - the policy disagreement - that
takes into account the policy. This method split only where the optimal policy
is expected to change. Unfortunately, the transition boundaries of the optimal
control obtained are not optimally located, the reason for this being that the value
function is not correctly approximated at the areas that have an “influence” on
these boundaries. We illustrate the shortcomings of these local approaches that
only consider features of individual cells in making split choices, and justify the
need for global splitting criteria that take into account the non-local impact of the
splitting process.

In section 8, we introduce the notion of influence as a measure of the non-local
contribution of a state to the value function at other states. Then, in section 9, we
define the variance of the expected future rewards. We show how to combine these
two measures to derive efficient grid refinement techniques.

We describe an heuristic which intends to select the cells whose splitting will
mostly increase the accuracy of the value function at the parts of the state space
where there is a transition in the optimal control.

We illustrate the different splitting criteria on the “Car on the hill” problem
described in section 4, and in section 11 we show the results for other control
problems, including the 4-dimensional “Cart-pole”, “Acrobot”, “space-shuttle” and
“airplane meeting” problems.

In this paper we make the assumption that we have a model of the dynamics and
of the reinforcement function. For convenience we assume that the dynamics are
deterministic; however the results are extendible to the stochastic case (provided
that we remove the natural noise from the measure of variance, as suggested in the
last remark of section 10).

2. Description of the optimal control problem

We consider discounted deterministic control problems. Let z(t) € X be the state
of the system, with the state space X being a compact subset of IR?. The evolution
of the state depends on the control u(t) € U (with the control space U a finite set
of possible actions) by the differential equation, called state dynamics:

dz(t)
3 f(@(t),u(?)) (1)
For an initial state z and a control function u(t), this equation leads to a unique
trajectory z(t). Let 7 be the exit time from the state space (with the convention

that if x(t) always stays in X, then 7 = o0). Then, we define the gain J as the
discounted cumulative reinforcement:

J(w;u(t)) = /OT (@), u(t))dt + 47 ry(z (7)) (2)

where r(x,u) is the current reinforcement and ry(x) the boundary reinforcement.
~ is the discount factor (0 <~y < 1).
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The objective of the control problem is to find, for any initial condition z, the
control u*(t) that maximizes the functional .J.

Here, we use the method of Dynamic Programming (DP) that introduces the
value function (VF), maximum of J as a function of initial state z:

V(z) = sup J(z;u(t)).
u(t)

From the DP principle we know (see (Fleming & Soner, 1993) for example) that
V satisfies a first-order non-linear differential equation, called the Hamilton-Jacobi-
Bellman (HIB) equation:

THEOREM 1 If V is differentiable at x € X, let DV (x) be the gradient of V at x,
then the following HJB equation holds at x:

V(z)Iny+ r;leag[DV(a:).f(a:, u) +r(z,u)] =0 (3)

DP computes the VF in order to define the optimal control with a feed-back
control policy m(z) : X — U such that the optimal control u*(f) at time ¢ only
depends on current state z(t): u*(t) = w(x(t)). Indeed, from the value function,
we deduce the following optimal feed-back control policy:

w(x) € arg Teaéz[DV(m).f(x, u) + r(z,u)) (4)

3. The discretization process

In order to discretize the continuous control problem described in the previous
section, we use the numerical approximation scheme of (Kushner & Dupuis, 1992).
We implement a class of functions known as barycentric interpolators (Munos &
Moore, 1998), built from a triangulation of the state-space using a tree structure.
This representation has been chosen for its very fast computational properties.

Here is a description of this class of functions. The state-space is discretized into
a variable resolution grid using a structure of a tree. The root of the tree covers
the whole state space, supposed to be a (hyper) rectangle. It has two branches
which divide the state space into two smaller rectangles by means of a hyperplane
perpendicular to the chosen splitting dimension. In the same way, each node (except
for the leaves) splits in some direction i = 1..d the rectangle it covers at its middle
into two nodes of equal areas (see Figure 1). This kind of structure is known as
a kd-trie (Knuth, 1973), and is a special kind of kd-tree (Friedman, Bentley, &
Finkel, 1977) in which splits occur at the center of every cell.

On every leaf, we implement a Coxeter-Freudenthal-Kuhn triangulation (or sim-
ply the Kuhn triangulation (Moore, 1992)). In dimension 2 (Figure 1(b)) each
rectangle is composed of 2 triangles. In dimension 3 (see Figure 2) they are com-
posed of 6 pyramids, and in dimension d, of d! simplexes.

The interpolated functions considered here are defined by their values at the
corners of the rectangles. We use the Kuhn triangulation to linearly interpolate
inside the rectangles. Thus, these functions are piecewise linear, continuous inside
each rectangle, but may be discontinuous at the boundary between two rectangles.
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(a) Example of discretization (b) The corresponding tree - 7+ H

Figure 1. (a) An example of discretization of the state space. There are 12 cells and 24 corners
(the dots). (b) The corresponding tree structure. The area covered by each node is indicated in
gray level. We implement a Kuhn triangulation on every leaf.

The approach of using Kuhn triangulations to interpolate the value function has
been introduced to the reinforcement learning literature by (Davies, 1997).

Remark. As we are going to approximate the value function V' with such piecewise
linear functions, it is very easy to compute the gradient DV at (almost) any point
of the state space, thus making it possible to use the feed-back equation (4) to
deduce the corresponding optimal control.
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1t Figure 2. The Kuhn
g / triangulation of a (3d)
2 &3 rectangle. The point z
satisfying 1 > zy >
xo > x1 > 0 is in the

€o

& & simplex (£0, €4, &5, 7).

3.1.  Computational issues
Although the number of simplexes inside a rectangle is factorial with the dimension
d, the computation time for interpolating the value at any point inside a rectangle
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is only of order (dInd), which corresponds to a sorting of the d relative coordinates
(2o, -.-,24—1) of the point inside the rectangle.

Assume we want to compute the indexes ig, ...,iq of the (d + 1) vertices of the
simplex containing a point defined by its relative coordinates (zq, ..., z4—1) with
respect to the rectangle in which it belongs to. Let {&o, ..., &a} be the corners of
this d-rectangle. The indexes of the corners use the binary decomposition in dimen-
sion d, as illustrated in Figure 2. Computing these indexes is achieved by sorting
the coordinates from the highest to the smallest: there exist indices jo, ..., ja—1,
permutation of {0,..,d — 1}, such that 1 > z;, > 2;, > ... > z;,_, > 0. Then
the indices ig, ..., ¢4 of the (d + 1) vertices of the simplex containing the point are:
ip =0, 41 =i+ 2j0, ey b = Gp—1 + 2]'7“*1, ey bg = tg—1 + 2ja-1 = 2d _ 1. For
example, if the coordinates satisfy: 1 > xo > xg > x; > 0 (illustrated by the point
z in Figure 2) then the vertices are: &, (every simplex contains this vertex, as well
as ya_q = &7), &4 (we added 22), & (we added 2°) and & (we added 21).

Let us define the barycentric coordinates Ag, ..., \q of the point = inside the sim-
plex &, ..., &, as the positive coefficients (uniquely) defined by: ZZ:O A =1 and

ZZ:O A&, = z. Usually, these barycentric coordinates are expensive to com-
pute; however, in the case of Kuhn triangulation these coefficients are simply:
)\0 =1 — Tjp, >\1 = Tjg — Ljys «-es >\k = Tj_1 = LTjps -es >\d =Tjy_, — 0= LTjg_q- In

the previous example, the barycentric coordinates are: \g = 1 — x5, Ay = T2 — g,
A2 =2y — T1, Ag =2.

3.2.  Building the discretized MDP
We refer to (Kushner & Dupuis, 1992) for the process of discretizing a continu-

ous time and space optimal control problem into a finite Markov Decision Process
(MDP), and to (Munos, 2000) for similar methods in reinforcement learning.

Oal

[q
e q

n(&,u)
A

&o

Figure 3. According to the current (variable res-
olution) grid, we build a discrete MDP. For every
- corner ¢ (state of the MDP) and every control u,
we integrate the corresponding trajectory until
it enters a new cell at n(¢,u). The probabilities
of transition of the MDP for (state &, control u)
to (states {&; }i=o..2) are the barycentric coordi-
4 o nates A¢, (n(&, u)) of n(¢&, u) inside (&o, &1, &2).

For a given discretization, we build a corresponding MDP in the following way.
The state space of the MDP is the set Z of corners of the cells. The control
space is the finite set U. For every corner ¢ € = and control u € U we approximate
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a piece of a trajectory z(t) (using Euler or Runge-Kuta method to integrate the
state dynamics (1)) starting from initial state £, using a constant control u during
some time 7(&,u) until the trajectory enters inside a new cell (which defines the
point n(¢,u) = z(7(&,u)) (see Figure 3). At the same time, we also compute the
integral of the current reinforcement:

R(&u) =[5 " r(a(t), )t
which defines the reward of the MDP. Then we compute the vertices (&, ..., &4)
of the simplex containing n(£,u) and the corresponding barycentric coordinates
Aeo (M€ 1)),y Ae,(n(€, 1)), The probabilities of transition p(&;|¢,u) of the

MDP from state £ and control u to states & are the barycentric coordinates:
(&€, u) = Ag; (n(€,u)). The DP equation corresponding to this MDP is:

d
V() = max (7Y 7 p(&il€, u)V (&) + R(E w) (5)
i=0
Remark. If while integrating (1) from initial state ¢ with the control u, the tra-
jectory exits from the state space at some time 7(&, u), then in the MDP (£, u) will
lead to a terminal state & (i.e. satisfying p(&|&,v) = 1,p(€ # &|&,v) = 0 for all
v) with probability 1 and with the reward: R = f;(g’u) vt (z(t), u)dt + 47 EW
ro(z(7(&, u))).
Remark. The interpolated value at n(£,u) is a linear combination of the values
of the vertices of the simplex it belongs to (simplex (&, &1,&)) in figure 3), with
positive coefficients that sum to one. Doing this interpolation is thus mathe-
matically equivalent to probabilistically jumping to a vertex: we approx-
imate a deterministic continuous process by a stochastic discrete one. The
amount of stochasticity introduced by this interpolation process will be estimated
by the measure of variance in section 9.

The DP equation (5) is a fixed-point equation satisfying a contraction property
(in max-norm), thus it can be solved iteratively with any DP method like value

iteration, policy iteration, or modified policy iteration (Puterman, 1994), (Bertsekas,
1987), (Barto, Bradtke, & Singh, 1995).

Remark. The main requirement to obtain the convergence of the approximate
VF (solution to the DP equation (5)) to the VF of the continuous process (solution
to the HJB equation (3)) is the property of consistency of the numerical scheme
(Kushner & Dupuis, 1992; Barles & Souganidis, 1991). In the deterministic case,
this property roughly means that the expected jump from a state ¢ to next states
& when choosing control u in the approximate MDP is a first-order approximation
of the state dynamic vector f(&,u):

Ying P(&il€u) - (& = €) = T(Eu) - f(§u) + 0(6)
with § being the resolution of the grid. The discretization method previously in-
troduced satisfies this property, which implies that the VF of the discrete MDP
converges to the VF of the continuous optimal control problem as the (maximal)
size of the cells § tends to zero.
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4. Example: the “Car on the Hill” control problem

For a description of the dynamics of this problem, see (Moore & Atkeson, 1995).
This problem is of dimension 2, the variables being the position and velocity of
the car. In our experiments, we chose the reinforcement functions as follows: the
current reinforcement r(x, u) is zero everywhere. The boundary reinforcement ry(x)
is —1 if the car exits from the left side of the state space, and varies linearly between
+1 and —1 depending on the velocity of the car when it exits from the right side of
the state space. The best reinforcement +1 occurs when the car reaches the right
boundary (top of the hill) with zero velocity (figure 4). The control u has only 2
possible values: maximal positive or negative thrust.

Current r,.=+1 for zero velocity
Reinforcement: r=0 rp=-1for max. velocity

Goal

Resistance
Figure 4. The “Car on the Hill”

Boundary control problem. The car must
Reinforcement: Thrust reach the top of the hill as fast

-1 as possible and stop there. Of
rb_- course, the car cannot climb the

slope without initial speed. It
must gain some momentum by
first going backwards. It must
also be careful not to hit the left
boundary.

Gravitation

Figure 5 represents the approximate value function of the MDP obtained by a
regular grid of 257 by 257 states (using a discount factor v = 0.6).
We observe the following distinctive features of the value function:

e There is a discontinuity in the VF along the “Frontier 1”7 (see Figure 5) which
results from the fact that given an initial point situated above this frontier,
the optimal trajectory stays inside the state space (and eventually leads to a
positive reward) so the value function at this point is positive. Whereas for a
initial point below this frontier, any control lead the car to hit the left boundary
(because the initial velocity is too much negative), thus the corresponding value
function is negative (see some optimal trajectories in Figure 6). We observe that
there is no change in the optimal control around this frontier.

e There is a discontinuity in the gradient of the VF along the upper part of
“Frontier 2” which results from a frontier of transition of the optimal control.
For example, a point above frontier 2 can reach directly the top of the hill,
whereas a point below this frontier has to go backwards and do one loop to gain
enough momentum to reach the top (see Figure 6). Moreover, we observe that
around the lower part of frontier 2 (see Figures 5), there is no visible irregularity
of the VF despite the fact that there is a change in the optimal control.
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e There is a discontinuity in the gradient of the VF along the “Frontier 3” because
of a change in the optimal control (below the frontier, the car accelerates in order
to reach the goal as fast as possible, whereas above, it decelerates to reach the
top of the hill with the lowest velocity and receive the highest reward).

“alue function

Frontier 1

05 elocity

Fasition

“elocity

Fasition

Figure 5. The value function of the Car-on-the-Hill problem obtained by a regular grid of 257
by 257 = 66049 states. The Frontier 1 (white line) illustrates the discontinuity of the VF, the
Frontiers 2 and 3 (black lines) stands where there is a transition of the optimal control.

-1 Position

+1

Figure 6. The optimal policy is in-
dicated by different gray levels (light
gray=positive thrust, dark gray=negative
thrust). Several optimal trajectories are
drawn for different initial starting points.

We deduce from these observations that a discontinuity in the value function
(frontier 1) does not necessarily indicate that there is a transition in the optimal
control, and that a discontinuity in the gradient of the value function (frontiers 2
and 3) may accompany a frontier of transition in the optimal control.
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5. The variable resolution approach

We start with an initial coarse discretization and build the corresponding MDP.

We solve it and obtain a initial (rough) approximation of the value function. Then,

we choose which cells to split according to the process:

1. Score each cell for each direction i according to some splitting criterion.

2. Select the top h% (where h is a parameter) of the highest scoring couples (cell,
direction).

Then, we locally refine the grid by splitting those cells in the corresponding direc-
tion. Next, we build the new discretized MDP, and we repeat this cycle (see the
splitting process in Figure 7) until some estimation of the quality of approximation
of the value function or the optimal control has been reached.

I t=
1] 01000

Figure 7. Several discretizations resulting of successive splitting operations.

Note that only the cells that were split, and those whose successive states involve
a split cell need to have their state transition recomputed.

Remark. Here, we only consider a top-down process where the discretization is
always refined. We could also consider a bottom-up process which would prune the
tree and remove over-partitioned leaves.

The main goal of this paper is the study and comparison of several splitting
criteria. In what follows, we illustrate the discretizations resulting from different
splitting criteria on the “Car on the Hill” control problem previously introduced.

6. Criteria based on the value function

In order to minimize the approximation error of the value function, in the two split-
ting criteria that follow we choose to split the cells according to local irregularities
of the approximate value function.

6.1. First criterion: average corner-value difference

For every cell, we compute the average of the absolute difference of the values at
the corners of the edges for all directions i = 0...d — 1. For example, this score on
the cell shown in Figure 2 for direction i = 0is $[|[V (&) =V (&)|+|V (&) -V (&)|+
V(&) = V(&) + V(&) = V(&)I]-

Figure 8 represents the discretization obtained after 15 iterations of this pro-
cedure, starting with a 9 by 9 initial grid and using the corner-value difference
criterion with a splitting rate of h = 50% of the cells at each iteration.
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Figure 8. The discretization of the state space Figure 9. The discretization of the state space
for the “Car on the Hill” problem using the for the “Car on the Hill” problem using the
corner-value difference criterion. value non-linearity criterion.

6.2. Second criterion: value non-linearity

For every cell, we compute the variance of the absolute increase of the values at
the corners of the edges for all directions ¢ = 0...d. This criterion is similar to the
previous one except that it computes the variance instead of the average.

Figure 9 shows the corresponding discretization using the value non-linearity cri-
terion with a splitting rate of 50% after 15 iterations.

Comments on these results:

e We observe that in both cases, the splitting occurs around the frontiers 1, 3
and the upper part of frontier 2, previously defined. In fact, the first criterion
detects the cells with high average variation of the corner values, thus splits
wherever the value function is not constant.

e The value non-linearity criterion detects the cells with high variance variation
of the corner values, thus splits wherever the value function is not linear. So this
criterion will also concentrate on similar irregularities but with two important
differences compared to the corner-value difference criterion:

—  The value non-linearity criterion splits more parsimoniously than the corner-
value difference (for a given accuracy of approximation). See, for example,
the difference of splitting in the area above frontier 3.

— The discretization around the discontinuity (frontier 1) are different (see
Figure 10 for an explanation on a 1-dimensional problem). The value non-
linearity criterion splits where the approximate function is the least linear.
This explains the 2 parallel tails observed around frontier 1 in Figure 9.

e The refinement process spends a huge amount of resources to refine the grid
around the discontinuity (frontier 1) in order to obtain a good approximation
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of the VF. However, we notice that the optimal control is constant around this
area.

(a) Discontinuity in the (b) Approximation with
value function aninitial coarse grid

(c) Splitting criterion: (d) Splitting cri_terior_m:
corner-value difference ///// value non-linearity

Figure 10. Cross-section of a discontinuous VF (a) and several approximations with a uniform grid
(b) and variable resolution grids using the corner-value difference (c) and the value non-linearity
(d) splitting criteria. Notice the different repartition in (c) and (d) of the grid points around the
discontinuity.

These variable resolution methods (especially the wvalue non-linearity) provide
very accurate estimations of the value function compared to uniform discretizations
(for a given number of states of the discretized MDP). However, in the end, we want
to find the best controller and not so much a very good approximation of the VF,
which is simply an artifact used in DP to generate the policy. Thus, we can question
the efficiency of the previous splitting methods which spend too much effort around
the discontinuity of the VF whereas the control is constant in this area.

In an attempt to spare some computational resources, we introduce in the next
section some criteria that also take into account the policy.

Remark. The percentage h of the number of cells to be split at each iteration
is a parameter acting on the uniformity of the resolution of the obtained grids.
The choice of h allows a tradeoff between deriving almost uniform grids (for high
values of h) which ensures convergence of the approximations but with possible
high computational cost, and very non-uniform grids (low k), only refined at some
critical parts of the state space, which save many computational resources but may
potentially converge to sub-optimal solutions.

7. Criteria based on the policy

Figure 6 shows the optimal policy and several optimal trajectories for different
starting points. We would like to refine the grid only around the areas of transition
of the optimal control: frontiers 2 and 3 but not around frontier 1. In what follows,
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we introduce such a criterion based on the inconsistency of the control derived from
the value function and from the policy.

7.1. The policy disagreement criterion

When we solve the MDP and compute the value function of the DP equation (5),
we deduce the following policy for any state £ € =:

7(€) € argmax |57 S Lo p(&lE, w)V (&) + R(E, u) (6)

The policy disagreement criterion compares the control derived from the policy
of the MDP (6) with the control derived from the local gradient of V' (4).

Remark. Instead of computing the gradient DV for all the (d!) simplexes in the
cells, we compute an approximated gradient DV for all the (2¢) corners, based on

a finite difference quotient. For the example of figure 2, the approximated gradient

. V(€1)—V(€0) V(&2)—V(&) V(£4)—V (&)
at corner & ls( Teo=&rl] * léo—Eall *  [léo—€al] )

Thus, for every corner we compute this approximate gradient and the corresponding

optimal control from (4) and compare it to the optimal policy given by (6).
Figure 11 shows the discretization obtained by splitting all the cells where these

two measures of the optimal control diverge (the parameter h is not used here).
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Figure 11. The discretization of the state space Figure 12. The discretization of the state space
using the policy disagreement criterion. Here for the “Car on the Hill” problem using the
we used an initial grid of 33 X 33. The dash line  combination of the value non-linearity and the
shows the true frontiers of control transition. policy disagreement criterion.

This criterion is interesting since it splits at the places where there is a change
in the optimal control, thus refining the resolution at the most important parts
of the state space for the approximation of the optimal control. However, as we
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can expect, if we only use this criterion, the value function will not be correctly
approximated, and in turn, the policy may suffer from this approximation error.
Indeed, we observe that on Figure 11, the bottom part of frontier 2 is (slightly)
located higher than its optimal position, shown by the dash line. This error is due
to an underestimation of the value function at that area, which is caused by the
lack of precision around the discontinuity (frontier 1). Here, we clearly observe the
non-local influences between the value function and the optimal control.

The performance of this splitting criterion is relatively weak (see section 7.3).
However, this splitting criterion can be beneficially combined with previous ones
based on the VF.

7.2.  Combination of several criteria

We can combine the policy disagreement criterion with the corner-value difference
or value non-linearity criterion in order to obtain the advantages of both methods: a
good approximation of the value function on the whole state space and an increase of
the resolution around the areas of transition of the optimal control. We can combine
those criteria in several ways, for example by a weighted sum of the respective scores
of each cells, by a logical operation (split if an and/or combination of these criteria
is satisfied), or by an ordering of the criteria (first split with one criterion, then use
another one).

Figure 12 shows the discretization obtained by alternatively, between iterations,
using the wvalue non-linearity criterion and the policy disagreement criterion. We
observe an increased refinement at areas of singularities of both the value function
and the optimal control.

7.8.  Comparison of the performance

In order to compare the respective performance of the discretizations, we ran a
set (here 256) of optimal trajectories starting from initial states regularly situated
in the state space and using the feed-back controller (4). The performance of
a discretization is the sum of the cumulated reinforcement (the gain defined by
equation (2)) obtained along these trajectories, over the set of start positions.

Figure 13 shows the respective performances of several splitting criteria as a
function of the number of states of the respective discrete MDPs.

For this 2-dimensional control problem, all the variable resolution approach per-
forms better than uniform grids, except for the policy disagreement criterion used
alone. However, as we will see later on, for higher dimensional problems, the re-
sources allocated to approximate the VF-discontinuities around areas of the state
space that are not useful for improving the optimal control might be prohibitively
high.

Can we do better ?

So far, we have only considered local splitting criteria, in which we decide to split a
cell according to information (value function and policy) relative to the cell itself.
However, the effect of the splitting is not local: it has an influence on the whole
state space.
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We would like to define a refinement process that would split cells only if it is
useful to improve the performance. Sections that follow introduce two notions that
will be useful for defining such global splitting methods: the influence measures the
extent to which states affect globally the VF, and the variance, which measures
the amount of interpolation introduced by the discretization process.

8. Notion of influence

Let us consider the Markov chain resulting from the discretized MDP in which
we choose the optimal policy #. For convenience, we denote R(§) = R(&,w(£)),

p(&l€) = p(&l& m(£)), and 7(§) = 7(£, 7(§)).
8.1. Intuitive idea

The influence I(&;|€) of a state & on another state € is defined as a measure of the
extent to which the state &; “contributes” to the VF of another state £. This can
be done by estimating the infinitesimal variation of the VF at ¢ resulting from a
infinitesimal modification of the reward at &;.

By considering the discounted transition probabilities p; (&]€) = 7™ p(&;|€) and
by defining an additional jump to a “dead state” with a transition probability of
1 —~7© the influence I(&|€) can be interpreted more intuitively as the expected
number of visits of state §; starting from state ¢ when using the optimal policy,
before the system dies.

8.2.  Definition of the influence

Let us define the discounted cumulative k—chained probabilities py(&;/€), which
represent the sum of the discounted transition probabilities of all sequences of k
states from & to &;:

po(&il§) = 1(f&=E&) or 0 (if £ # &)
Pl(fz’\f) WT(i)p(fi\f)
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p(&ilé) = Z p1(&il&5) - p1(&16)

§€EE

pe(&l8) = ) pi&l&) - pr-1(§19) (7)

§EE

Definition 1. Let £ € Z. We define the influence of a state &; on the state £ as:
I(&16) =Y pe(&le)
k=0

Similarly, let ¥ be a subset of Z. We define the influence of a state &; on the subset
Yas I(§]2) = dez I(&[€).

We call influencers of a state ¢ (respectively of a subset X), the set of states &;
that have a non-zero influence on ¢ (respectively on X) (note, by definition, that
all influences are non-negative).

8.3. Some properties of the influence

First, we notice that if all the times 7(§) are > 0, then the influence is well defined
and is bounded by: I(&|¢€) < +—— with T, = ming 7(€). Indeed, from the

— 1—~"min
definition of the discounted chained-probabilities, we have py (&]€) < v* Tmin thus:

I(&16) < Xl Y ™min =y
Moreover, the definition of the influence is related to the intuitive idea expressed

above that the influence I(§;|€) is the partial derivative of V(¢) by R(&;):
v
610 = Fpie) ©

Proof: The Bellman equation is: V/(§) = R(§) + >, p1(&[€) - V(&) By applying
the Bellman equation to V' (&;), we have:

V(&) = R(E) + T¢, mi(&l0) [R(&) + T, pi(&i1€) - V(&)
From the definition of ps, we can rewrite this equation as:

V(&) = R(E) + 2¢, p1(&l6) - R(&) + D¢, p2(&il€) - V(&)

Again, we can apply the Bellman equation to V' (&;) and easily prove the convergence
at the limit:

V(&) = Xizo 2¢, pr(&il€) - R(&:)

from which we deduce that the contribution of the reward at & to the VF at £ is
the influence of &; on &:

e &
OR(&) kzzopk(fz‘f) = I(&1€) .

The VF at £ is expressed as a linear combination of the rewards at states ¢&;
weighted by the influences I(&;|).
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8.4. Computation of the influence

First, let us prove the following property: for any states ¢ and &;, we have
1if¢g =
1610 = 616 1(610)+ {oie2s )

Proof: This result is easily deduced from the definition of the influence and the
chained transition probability property (7):

I&l6) = YXpeopr(&ilé) = pto prv1(&il€) + po(&il6)
= Yoo g, P1(&il&) - pr(&516) + po(&il€)

Ym(ele) (6 + {oheze

For a given ¢, let us define the operator I that, applied to any function ¢ (defined
on E), returns: Tetp(&i) = 3o, p1(&il€5) - ¥ (&)

Equation (9) is equivalent to: I(&|€) = TeI(-1€)(&) + Lif& =¢ This is not

0if & #E°
a Bellman equation since the sum of the probabilities Zgj p1(&|€;) may be greater

than 1, so we cannot deduce that the successive iterations:
Lt =¢
I, &) =Tel, (- i . 10
A6l =TeCoE) +{ g e ¢ (10

converge to the influence by using the classical contraction property of the operator
['¢ in max-norm (Puterman, 1994). However, by using the 1-norm, we have:

ITelli =Y ITenp(&)] < DD Ipi(&l€) - v(&)]
&i & &

7 3 ()] < 7

&

IN

%1

thus I'¢ is a contractant operator in 1-norm. We deduce that the iterated values
I,(&|€) in (10) satisfy

11ns1 (16) = IC1O)l =D~ [Teln([€)(&) = TeI (1)(&)]

&
= ITe[Tn(16) = TCIOIE)] < ™= |[Tn(-1€) = T(1E)[4
&i

thus converge to the influence I(;|€), unique solution of (9).

Remark. In order to compute the influence I(&;|€2) on a subset 2, we use the
iteration:

Ton@16) = (el0)-1 o+ { g hE S (1)
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which converge (similar proof) to I(£;|2). The computation of the influence is thus
cheap: equivalent to computing the value function of a discounted Markov chain.

Remark. As pointed out by Geoffrey Gordon, the influence is closely related to
the dual variables (or shadow prices in economics) of the Linear Program equivalent
to the Bellman equation (Gordon, 1999). This property has already been used in
(Trick & Zin, 1993) to derive an efficient adaptive grid generation.

Remark. A possible extension is to define the influence of a MDP as the in-
finitesimal change in the value function of a state resulting from an infinitesimal
modification of the reward at another state. Since the value function is a maximum
of linear expressions, the influence on states with multiple optimal actions (thus for
which the value function is not differentiable) is defined (as a set-valued map) by
taking the partial sub-gradient instead of the regular gradient (8).

8.5. A tool to select out the most important areas

We would like to use the influence as a tool to discover what are the areas of the
state space where we need a high quality interpolation process to obtain an accurate
controller, so we could focus our refinement process there and neglect other areas.

The idea is that we want a high quality estimation of the VF around the areas of
transition of the optimal control so that those switching boundaries be accurately
located. Thus, the relevant areas of the state space are those that have an influence
on the states around these switching boundaries.

Let us illustrate this idea on the “Car on the Hill” problem.

For any subset ), we can compute

its influencers. As an example, fig- X"-«uﬂ

ure 14 shows the influencers of 3 e

points. T
Figure 14. Influencers of 3 points (the |
crosses). The darker the gray level, the

more important the influence. We notice
that the influencers of a state “follow”
some diffusion process in the direction
of the optimal trajectory (see figure 6).
This diffusion represents the stochastic-
ity introduced by the discretization due _,9(
to the averaging effect of the interpola-
tion process.

First, for a given grid, let us define the subset ¥ of the states of policy dis-
agreement (in the sense of section 7.1). Figure 15(a) shows ¥ for a regular grid
of 129 x 129. ¥ represents an estimation (given the current grid) of the optimal
control switching boundaries.
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Now we compute the influence on ¥ (Figure 15(b)). The darkest zones show the
states that influence the most the value function at X.

Consequently, if we were to increase the accuracy of the local interpolation process
at the states illustrated by Figure 15(b) we would obtain a better approximation
of the VF at the states shown in Figure 15(a), which would increase the precision
of the switching boundaries, thus the performance of the controller.

/
II.“-—-"‘"'_'_""‘"-

(a) States of policy disagreement (b) Influence on these states

Figure 15. The set of states of policy disagreement (a) and its influencers (b).

From this idea, we want to design a splitting heuristic that would take into account
these non-local influences.

In order to decrease the local interpolation error, we first need to estimate, for a
given grid, the VF approximation error caused by the accumulation of the interpo-
lation errors due to the discretization.

In order to estimate this amount of stochasticity introduced by the interpolation
process, we compute, in the next section, the variance of the future rewards for the
discretized Markov chain.

9. Variance of a Markov chain

Again we consider the Markov chain resulting from the discretized MDP in which
we choose the optimal policy w, and we use the same notations as in the previous
section. Let s(§) = (£(0) = &,£(1),£(2),...) be an infinite sequence of states starting
from an initial state £ and generated by this Markov chain (the probability of
transition from & to &' being p(¢'[€)).

The gain J(s(€)) of a sequence s(§) is the discounted cumulative rewards:

J(5(6)) = R(€) + 3 7m0 7€) pe(e)) (12)

and the VF of a state £ is the expectation of this gain, for all possible sequences

s(§): V(&) = E[J(s(§))]-
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The initial (continuous) control problem is deterministic, thus the VF of a state
is simply the gain (defined by (2)) obtained along one optimal trajectory: the
variance of the gain is zero. When this deterministic problem is discretized, the
interpolation process produces an averaging effect that is mathematically equivalent
to the introduction of stochasticity in the jumps from (discrete) state to state: the
VF of the discretized MDP is an expectation of the gain (12) along all (discrete)
optimal trajectories. Thus, the variance of the discrete MDP indicates the amount
of averaging introduced during the discretization process.

The variance o2 of the gain is:

0*(&) = E[[J(s(§) = V(O]

In order to compute this variance we first prove that the variance is solution to
the Bellman equation:

R CEREURE (13)
with the one-step ahead contribution e(¢) defined as:
=S nele- [rOvie) - Vi + A 2 (14)
Proof: The gain obtained along a sequence s(¢) = (£(0) = £, £(1), £(2), ...) satisfies
T(s(6)) = () + 7791 (s(&(1), with s(6(1) = (€(1).€(2). )

Thus the variance is:
7(©) = B [7"O J(s(6(1))) — (V(€) - RE)P]

From the definition of the VF, V(¢) — R(¢) = 4y O E[V (£(1))] = v" @ E[J(s(£(1)))],
thus:

Now, let us decompose this expectation using an average for all possible second
states & in the sequence, weighted by the probability of occurrence p(¢'|€):

(&) = Y p(El) - B[l OT(s(¢))? - V(&) - RE)P]
.

Sp(E16) - E [ QI - Ve (15)
-
+ Y wE1e) B[ OVEN - V(©) - REY]

Now, from the Bellman equation V(£) = R(&) + Y. p(¢']€) ATEOV(¢') we deduce
that:
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S (€10 B [ OVER - V() - REQP] = e) (16)
.

with e(&) defined in (14). Moreover, we have:

E [ @O0 - 77 OVEN] = OB [I(E) - VEI] =4O - 02 (€))
Which, combined with (16) in (15) gives (13). [ |

Thus the variance 02(§) is equal to the immediate contribution e(¢) that takes
into account the variation in the values of the immediate successors £’ plus the
discounted expected variance o2(¢') of these successors.

The equation (13) is a Bellman equation: it is a fixed-point equation of a con-
tractant operator (in max-norm) (with a contraction coefficient of y2™mi») and thus
can be solved by value iteration.

¢—Y0) Q)
o)

&(€)
€o & & &N

Figure 16. The term e(€) as a function of the interpolated point n for low-(left) and high-(right)
gradient value functions.

Remark. We can provide a geometrical interpretation of the term e(§) related to
the gradient of the value function at the iterated point n = (&, u*) (see figure 3) and
to the barycentric coordinates A¢, (). Indeed, from the definition of the discretized
MDP (section 3.2), we have V(§) = R(¢) + 77V (n) and from the piecewise
linearity of the approximated functions we have V(&) = V(n) + DV (n).(& — n),
thus: e(&) = 3. Ae; (1) 7> O [DV (n).(& — n)]?, which can be expressed as:

e(¢) = *7@.DV()".Q(n).DV (n)

with the matrix () defined by its elements q;x (1) = >, Ae; (n)-(& —n);.(& —m)-
Thus, e(¢) is close to 0 in two specific cases: when the gradient at the iterated
point 7 is low (i.e. the values are almost constant) and when 7 is close to a grid
point &; (then the barycentric coordinate A¢; is close to 1 and the other barycentric
coordinates are close to 0, thus Q(n) is low). In both cases, e(¢) is low and implies
that the interpolation at £ does not introduce a high degradation of the quality of
approximation of the value function (the variance does not increase). Figure 16
shows e(§) for a one-dimensional space.
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Remark. The variance measures the amount of averaging accumulated by the
interpolation process due to the discretization of the state space. Our basic as-
sumption is that this measure is a good estimation of the approximation error of
the VF, for a given grid. However, this may not be the case if the grid is too coarse
so the policy of the discretized MDP differs too much from the optimal control
of the continuous problem. Indeed, in that case, the variance would be computed
along trajectories using a wrong policy. A detailed analysis of the estimation of
the VF approximation error from local interpolation errors is initiated in (Munos
& Moore, 2000).

Illustration of the variance for the “Car on the Hill”
Figure 17 shows the standard deviation o (&) for the “Car on the Hill” obtained
with a uniform grid (of 257 by 257).

Figure 17. The standard devia-
tion o for the “Car on the Hill”.
We notice that it is very high
around the frontier 1 (indeed,
a discontinuity is impossible to
approximate perfectly by dis-
cretization methods, whatever
the resolution is) and noticeably
high around frontiers 2 and 3,
the discontinuities of the gradi-
ent of V' (which correspond to
boundaries of change in the op-
timal control, as shown in figure
6). Indeed, around these areas,
Velocity the VF averages heterogeneous
values of the discounted termi-
Fosition nal rewards.

Standard deviation

10. A global splitting heuristic

Now, we combine these notions of influence and variance in order to define a non-

local splitting criterion. We have seen that:

e The states ¢ of highest standard deviation () are the states of lowest quality
of approximation of the VF (figure 18(a)).

e The states ¢ of highest influence on the set ¥ of states of policy disagreement
(figure 15(b)) are the states whose value function affects the area where there
is a transition in the optimal control.

Thus, in order to improve the accuracy of approximation at the most relevant
areas of the state space with respect to the controller (i.e. the optimal control
switching boundaries), we split the states & of high standard deviation that have
an influence on the areas of control transition, according to the Stdev_Inf criterion
(see figure 18): Stdev_Inf(§) = o(§).I(¢|X). Figure 19 shows the discretization
obtained by using this splitting criterion.
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(a) Standard deviation (b) Influence x Standard deviation

Figure 18. (a) The standard deviation o(¢) for the “Car on the Hill” (equivalent to figure 17) and
(b) The Stdev_Inf criterion, product of o(£) by the influence I(¢|X) (figure 15(b)).

|
HH

I Figure 19. The discretization resulting from
the Stdev_Inf split criterion. We observe that
i the upper part of frontier 1 is well refined.
This refinement does not occur because we
| want to approximate the VF around its dis-
S —F& continuity (which was the case for the corner-
H value difference and value non-linearity cri-
teria) but because the refinement there is
needed to improve the quality of the con-
troller at another area of the state space (the
bottom part of frontier 2) where there is a
P ‘ switching boundary for the optimal control.
I We notice that the bottom part and the up-
per right part of the state space are not re-
fined at all: it is not needed for the controller.
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Remark. The performance of this criterion for the “Car on the Hill” problem are
similar to those of combining the value non-linearity and the policy disagreement
criterion. We didn’t plot those performances in figure 13 for clarity reasons and
because they do not represent a major improvement. However, the difference of
performances between the local criteria and the Stdev_Inf criterion are much more
significant in the case of higher dimensional problems, as illustrated in what follows.

It is important to notice the fact that the Stdev_Inf criterion does not split the
areas where the VF is discontinuous unless some refinement is necessary to improve
the quality of the controller (possibly at another part of the state space). As we will
see in the simulations that follow, in higher dimensions, the cost to get an accurate
approximation of a discontinuous VF is computationally very expensive, which
explains why the splitting procedure using the Stdev_Inf criterion outperforms the
previous refinement methods.

Remark. In the case of a stochastic process (Markov Diffusion Processes), we will
need to reconsider this splitting heuristic since in that case the variance would reflect
two components: the interpolation error introduced by the grid-approximation but
also the intrinsic stochasticity of the continuous process. The latter is not relevant
to our splitting method since a refinement around areas of high variance of the
process will not result in an improvement of the approximations. This case will be
further developed in future work.

11. Illustration on more complex control problems

11.1. The Cart-Pole problem

The dynamics of this 4-dimensional physical system (illustrated in figure 20(a))
are described in (Barto, Sutton, & Anderson, 1983). In our experiments, we chose
the following parameters as follows: the state space is defined by the position y €
[—10, +10], angle 6 € [-F, Z], and velocities restricted to g € [—4,4], e [-2,2].
The control consists in applying a strength of £10 Newton. The goal is defined by
the area: y =4.3+0.2,0 = 0+ %, (and no limits on y and 9) This is a notably
narrow goal to try to hit (see the projection of the state space and the goal on
the 2d plan (y,0) in figure 20). Notice that our task of “minimum time maneuver
to a small goal region” from an arbitrary start state is much harder than merely
balancing the pole without falling (Barto et al., 1983). The current reinforcement
r is zero everywhere and the boundary reinforcement r, is —1 if the system exits
from the state space (|y| > 10 or |#] > 7), and +1 if the system reaches the goal.
Figure 21 shows the performance obtained for several splitting criteria previously
defined for this 4-dimensional control problem. We observe the following points:

e The local splitting criteria do not perform better than the uniform grids. The
problem is that the VF is discontinuous at several parts of the state space (areas
of high || for which it is too late to re-balance the pole, which is similar to the
frontier 1 of the “Car on the Hill” problem) and the value-based criteria spend
too many resources on approximating these useless areas.
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Figure 20. (a) Description of the Cart-pole. (b) The projection of the discretization (onto the
plane (6,y)) obtained by the Stdev_Inf criterion and some trajectories for several initial points.

e The Stdev_Inf criterion performs very well. We observe that the trajectories
(see figure 20(b)) are nearly optimal (the angle |f| is maximized in order to
reach the goal as fast as possible, and very close to its limit value, for which it
is no more possible to recover the balance).
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Figure 21. Performance on the “Cart-pole”.

11.2. The Acrobot
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Figure 22. Performance on the Acrobot.

The Acrobot is a 4-dimensional control problem which consists of a two-link arm
with one single actuator at the elbow. This actuator exerts a torque between the
links (see figure 23(a)). It has dynamics similar to a gymnast on a high bar, where
Link 1 is analogous to the gymnast’s hands, arms and torso, Link 2 represents the
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legs, and the joint between the links is the gymnast’s waist (Sutton, 1996). Here,
the goal of the controller is to balance the Acrobot at its unstable, inverted vertical
position, in the minimum time (Boone, 1997). The goal is defined by a very narrow
range of {z on both angles around the vertical position ; = 7,6, = 0 (figure
23(b)), for which the system receives a reinforcement of r, = +1. Anywhere else,
the reinforcement is zero. The two first dimensions (61, 6,) of the state space have a
structure of a torus (because of the 27 modulo on the angles), which is implemented
in our structure by having the vertices of 2 first dimensions being angle 0 and 27
pointing to the same entry for the value function in the interpolated kd-trie.

Figure 22 shows the performance obtained for several splitting criteria previously
defined. The respective performance of the different criteria are similar to the
“Cart-pole” problem above: the local criteria are no better than the uniform grids ;
the Stdev_Inf criterion performs much better.

Figure 23(b) shows the projection of the discretization obtained by the Stdev_Inf
criterion and one trajectory onto the 2d-plane (6;,05).

Goal : I m} 6,

P
I

el
I
\;/

7

T T T 2
FiFi - FJ 3
o _A—f =% L]
=k i
ol j -
’/I k. —Ir
=1 ot
LY
: :
' T
(a) The Acrobot (b) Projection of the state space

Figure 23. (a) Description of the Acrobot physical system. (b) Projection of the discretization
(onto the plane (01,02)) obtained by the Stdev_Inf criterion, and one trajectory.

11.3. Brief description of two other control problems

The “space-shuttle” control problem

This is a 4-dimensional “space-shuttle” control problem defined by the position
(2,y) and velocity (v,,vy) of a point (the shuttle) in a 2d-plane. There are 5 possi-
ble controls : do nothing or thrust to one of the 4 cardinal directions. The dynamics
follow the laws of Newtonian physics where the shuttle is attracted by the gravita-
tion of a planet (dark gray circle in figure 11.3) and some intergalactic dust (light
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gray circle). The goal is to reach some position in space (the square) by minimizing
a cost (function of the time to reach the target and the fuel consumption). Figure
11.3 shows some trajectories.

Goad

Planet

Figure 24. The “space-shuttle” tra-
jectories for 3 different starting po-
sitions. From z; the goal is di-
rectly reachable (the gravitation is
low). From z2 the collision is un-
avoidable whatever the thrust (rep-
resented by small gray segments) to
avoid the planet is. From z3 the con-
troller uses the gravitation forces to
reach the goal.

The “airplane meeting” control problem

This is also a 4-dimensional control problem in which we consider one (or several)
airplane(s) flying at constant altitude and velocity. They try to reach a target
defined by a position zg,ye and an angle 65 (the arrow in figure 25) at a precise
time ti. Each plane is defined at any time ¢ by its position z(t), y(¢) and angle 6(t).
There are 3 possible controls for each plane : turn left, right, or go straight. The
state space is of dimension 4 : the position z,y, the angle 6 and the time t. The
dynamics are : 2 = cos(f), ‘;—f = sin(h), Z—i ={-1,0,+1}.vy and % = 1. Here,
the terminal cost is : (z — zg)? + (y — ya)? + kg (0 — 05)? + ki(t — t5)? and there
is a small constant current cost if a plane is in a gray area (some clouds that the
planes should avoid). Figure 25 shows some trajectories for one and 3 planes when
there is more time than necessary to reach the target directly (the planes have to
loop).

Interpretation of the results: We notice that for the previous 4d problems, the
local splitting criteria fail to improve the performance of the uniform grids because
they spend too many resources on trying to approximate the discontinuities of the
VF. For example, for the “Cart-pole” problem, the wvalue non-linearity criterion
focuses on approximating the VF mostly at parts of the state space where there
is already no chance to re-balance the pole. And the areas around the vertical
position (low ), which are the most important areas, will not be refined in time
(however, if we continue the simulations after about 90000 states, the local splitting
criteria perform better than the uniform grids, because these important areas are
eventually refined).
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(@) One airplaine (b) Meeting of 3 airplanes

Figure 25. The “airplane meeting” control problem

The Stdev_Inf criterion, which takes into account global consideration for the
splitting, provides an accurate controller for all the tasks described above.

12. Conclusion and Future work

In this paper we proposed a variable resolution discretization approach to solve
continuous time and space control problems. We described several local splitting
criteria, based on the VF or the policy approximation. We observed that this
approach works well for 2d problems like the “Car on the Hill”. However, for more
complex problems, these local methods fail to perform better than uniform grids.

Local value-based splitting is an efficient, model-based, relative of the Q-learning-
based tree splitting criteria used, for example, by (Chapman & Kaelbling, 1991;
Simons, Van Brussel, De Schutter, & Verhaert, 1982; McCallum, 1995). But it is
only when combined with new non-local measures that we are able to get truly
effective, near-optimal performance on difficult control problems. The tree-based,
state-space partitions in (Moore, 1991; Moore & Atkeson, 1995) were produced by
different criteria (of empirical performance), and produced far more parsimonious
trees, but no attempt was made to minimize cost: merely to find a valid path.

In order to design a global criterion, we introduced two useful measures of a
Markov chain: the influence estimates the non-local dependencies in the VF, the
variance estimates the VF error of approximation for a given grid. By combining
these measures, we proposed an efficient splitting heuristic that exhibit good per-
formance (in comparison to the uniform grids) on all the problems studied. These
measures could also be used to solve large (discrete) MDPs by selecting which ini-
tial features (or categories) one has to refine to provide a relevant partition of the
state space.
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Another extension of these measures could be to learn them through interac-
tions with the environment in order to design efficient exploration policies in rein-
forcement learning. Our notion of variance could be used with “Interval Estima-
tion” heuristic (Kaelbling, 1993), to permit “optimism-in-the-face-of-uncertainty”
exploration, or with the “back-propagation of exploration bonuses” of (Meuleau &
Bourgine, 1999) for exploration in continuous state-spaces. Indeed, if we observe
that the learned variance of a state £ is high, then a good exploration strategy could
be to inspect the states that have a high expected influence on &.

Even more parsimonious grid can be obtained if we only consider a controller for a
specific area {2 of initial states. Indeed, the Stdev_Inf criterion can be computed with
respect to Xjq = {£ € X, I(£|Q) > 0} (the areas of transition in the optimal control
that have some influence on Q) instead of ¥, in order to restrict the refinement
process to the areas of the state space actually used by the trajectories.

Also, the notion of variance might be useful to provide a safe controller for which
choosing a sub-optimal action would be preferable if it leads to states of lower
variance than when taking the optimal action.

The more severe limitation to these discretization techniques (even with the vari-
able resolution approach developed here) is still the curse of dimensionality. Cur-
rently, we were able to solve all 4-dimensional problems considered and a few 5-
dimensional ones.

In the future, it seems important to develop the following points:

e A generalization process that could implement a bottom-up process for regroup-
ing the areas (for example by pruning the tree) that have been over-refined.

e Consider the stochastic case, for which the computation of the VF approxima-
tion error (obtained by the measure of variance in the deterministic case) should
only take into account the interpolation error and not the intrinsic noise of the
process.

e Implement the same ideas on sparse representations that can handle high di-
mensions (and even in some case are able to break the curse of dimensionality),
such as the sparse grids (Zenger, 1990; Griebel, 1998), the random and low-
discrepancy grids (Niederreiter, 1992; Rust, 1996). In some early experiments
using variable resolution random grids, we were able to solve stochastic prob-
lems in dimension six.
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