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Abstract
XFI is a comprehensive protection system that offers
both flexible access control and fundamental integrity
guarantees, at any privilege level and even for legacy
code in commodity systems. For this purpose, XFI com-
bines static analysis with inline software guards and a
two-stack execution model. We have implemented XFI
for Windows on the x86 architecture using binary rewrit-
ing and a simple, stand-alone verifier; the implementa-
tion’s correctness depends on the verifier, but not on the
rewriter. We have applied XFI to software such as device
drivers and multimedia codecs. The resulting modules
function safely within both kernel and user-mode address
spaces, with only modest enforcement overheads.

1 Introduction
XFI is a comprehensive software protection system that
supports fine-grained memory access control and funda-
mental integrity guarantees for system state. XFI offers
a flexible, generalized form of software-based fault iso-
lation (SFI) [25, 36, 41] by building on control-flow in-
tegrity (CFI) [1, 2] at the machine-code level. This CFI
foundation enforces external and internal interfaces, en-
ables efficient XFI mechanisms, and helps protect the in-
tegrity of critical state, such as the x86 control registers.

In comparison with other protection alternatives, XFI
requires neither hardware support [39, 44] nor type-safe
programming languages [5, 19, 24]. XFI does not restrict
memory layout and is compatible with system aspects
such as signals and multi-threading. Furthermore, XFI
applies at any privilege level, and even to legacy code
that is run natively in the most privileged ring of x86
systems; in this respect, we regard XFI as achieving an
important practical goal.

XFI has a clear architecture, whose basic implemen-
tation can be relatively straightforward and trustworthy.
XFI protection is established through a combination of

static analysis with inline softwareguards that (much
as in SFI) perform checks at runtime. TheXFI verifier
performs the static analysis as a linear inspection of the
structure of machine-code binaries; it ensures that all ex-
ecution paths contain sufficient guards before any pos-
sible protection violation. Verification is simple and, in
principle, amenable to formal analysis and other means
of assuring correctness. AnXFI moduleis an executable
binary that passes verification; such modules can be cre-
ated by hand, by compile-time code generation, or by
binary rewriting. However, software that hosts XFI mod-
ules need trust only the verifier, not the means of module
creation. Thus, XFI modules can be seen as an example
of proof-carrying code (PCC) [29], even though they do
not include logical proofs.

XFI protection relies on several distinct runtime mech-
anisms, whose correct use is established by the XFI ver-
ifier. Guards ensure that control flows only as expected,
even on computed transfers, and similarly that memory
is accessed only as expected. Multiple memory accesses
can be checked by a single memory-range guard, opti-
mized for fast access to the most-frequently-used mem-
ory. XFI also employs two stacks. The regular execution
stack provides ascoped stack, which holds data accessi-
ble only in the static scope of each function, including
return addresses and most local variables. The scoped
stack cannot be accessed via computed memory refer-
ences, such as pointers; therefore, it serves as isolated
storage for function-localvirtual registers. A separate
allocation stackholds other stack data which may be
shared within an XFI module. Like heap memory, the al-
location stack may be corrupted by buffer overflows and
other pointer errors.

XFI protection can be of benefit to anyhost system
that loads binary modules into its address space to make
use of their functionality. Operating systems are exam-
ple host systems, as are web browsers. Conversely, those
modules may rely on their host system, by invoking its
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Figure 1: The address space of a host system with an XFI module. The module’s external interfaces are restricted, as shown by the
arrows. When the module uses a host-system stack, it is as a protected, scoped stack of virtual registers. Shaded areas are subject
to arbitrary writes by the XFI module. Optionally, the module may read all memory.

support routines. For example, the XFI module in Fig-
ure 1 can use two support routines, and can be called
through twoentry pointsby its host system. The mod-
ule can read its own code and constants (or, optionally,
all of memory). It may read and write a section of its
loaded module binary, and two contiguous heap regions
to which the host system has granted it write access. It
cannot modify its own code at runtime, so it cannot inval-
idate the properties established by the verifier statically.

XFI requires no complex infrastructure from host sys-
tems: XFI modules are normal executable binaries (e.g.,
DLLs), and can be loaded and used as such. As a result,
host systems may sometimes be unaware of whether or
not they are using an XFI module. In general, however,
XFI protection does rely on support components, for in-
stance for thread-specific management and for granting
and revoking memory-access permissions.

We have implemented XFI for Windows on the x86
architecture as two main components: first, a relatively
complexXFI rewriter, based on Vulcan [37], that instru-
ments and structures executable binaries, and, second, a
smaller, self-contained verifier. We have also designed
and built host-system support components. Further, we
have studied optional, lightweight hardware support for
XFI, through cycle-accurate simulations.

We have used our implementation for creating inde-
pendently verifiable dynamic libraries, device drivers,
and multimedia codecs. The resulting XFI modules func-
tion safely within the address spaces of the Windows ker-
nel and the Internet Explorer web browser, and provide
services to those host systems. Thus, while still only a
prototype, our implementation is already practical.

Although we have not explored many optimizations,
XFI enforcement overhead is modest: in our experi-
ments it ranged from 5% to a factor of two, on current
x86 hardware. This overhead is acceptable for many
systems; sometimes it can be lower than that of tradi-
tional hardware-supported address spaces (because con-
text switching across XFI modules is fast [27, 41]).

Sections 2 and 3 describe XFI policies and mecha-
nisms, respectively. Section 4 presents our implementa-

tion of these mechanisms. Section 5 discusses the appli-
cation of XFI protection to device drivers and multimedia
codecs. Section 6 gives measurements and other results
of our experiments. Section 7 puts XFI in the context of
related work, and Section 8 concludes.

2 Policies
XFI guarantees that certain properties hold during the ex-
ecution of XFI modules. Some of these properties are
fundamental ground rules about the interaction between
XFI modules and their system environment. Others are
convenient, auxiliary rules for this interaction. Yet oth-
ers deal with the internal behavior of XFI modules, and
contribute to security.

In discussing the implications of these properties,
we rely on a running example: the Independent JPEG
Group’s image-decoding reference implementation [20].
This JPEG codec is an important, ubiquitous, legacy
program. It is intended to behave as a pure function
that reads compressed image data and writes an output
bitmap. We have turned this codec into an XFI mod-
ule, and used that module in the Internet Explorer web
browser; we can equally well use it in the Windows ker-
nel. XFI protection implies that image decoding does
behave as a side-effect-free procedure.

2.1 External Properties
An XFI module complies with the following policy in its
interactions with its system environment:

P1 Memory-access constraints: Memory accesses are
either into (a) the memory of the XFI module, such
as its global variables, or (b) into contiguous mem-
ory regions to which the host system has explicitly
granted access. In both cases, read, write, and exe-
cute operations are handled separately, and may ac-
cess different regions. In particular, no writes are
permitted into the code of the XFI module.

P2 Interface restrictions: Control can never flow out-
side the module’s code, except via calls to a set of
prescribed support routines, and via returns to ex-
ternal call-sites.



P3 Scoped-stack integrity: The scoped stack is always
well formed. In particular: (a) the stack regis-
ter points to at least a fixed amount of writable
stack memory; (b) the stack accurately reflects func-
tion calls, returns, and exceptions; (c) the Windows
stack exception frames are well formed, and linked
to each other.

P1 and P3 aim to ensure that state has appropriate values.
In general, for memory, we do not know what those val-
ues are, so we trust particular components to maintain
those values properly—hence we need to authenticate
and authorize accesses to memory, as indicated in P1.
For the scoped stack, on the other hand, we can formulate
integrity properties, and preserve them as invariants, as
indicated in P3. As for P2, it addresses external interface
protection. Much as in other protection systems [35], P2
does not, by itself, rule out the improper use of legitimate
interfaces, for example calling functions in an unsafe or-
der. However, XFI facilitates checking compliance with
safety specifications by other means (see Section 2.3).

With XFI, memory and interfaces can be protected at
the granularity of individual bytes and calls, respectively.
Moreover, different parts of an XFI module may enjoy
different access rights, and—via special guards—XFI
can support write-once, call-once, and other elaborate
policies. For example, our JPEG module can be given
access to the exact regions of an image data and an out-
put bitmap (respectively, read-only and write-only), no
matter where this memory resides. Moreover, although
the JPEG module currently needs no external support, it
could be safely allowed to invoke support routines, for
instance to output status or error messages.

P1, P2, and P3 are more restrictive than strictly nec-
essary. For example, an XFI module might safely be al-
lowed to overwrite certain constants within its code sec-
tion or to call other XFI modules instead of just host-
system support routines. However, in what follows, we
do not relax these properties but rather strengthen them.

Our additional restrictions do not, in practice, hinder
the use of XFI protection for existing software; they do,
however, generally help our implementation. In partic-
ular, the following restrictions P4 and P5 imply that, on
the x86, we need not consider instructions with esoteric
external effects on segments, descriptors, or page tables.
Thus, P4 and P5 help ensure that an XFI implementa-
tion is complete and correct, despite complexities of the
hardware architecture.

P4 Simplified instruction semantics: Certain machine-
code instructions can never be executed. These in-
clude dangerous, privileged instructions (e.g., mod-
ifying x86 task descriptors), as well as potentially
harmless but deprecated instructions (e.g., far jumps
between segments). Certain other machine-code in-

structions may be executed only in a context that
constrains their effects; this context may be estab-
lished by static verification, or by a specific dy-
namic check.

P5 System-environment integrity: Certain aspects of the
system environment, such as the machine model,
are subject to invariants. For instance, the x86 seg-
ment registers cannot be modified, nor can the x86
flags register—except for condition flags, which
contain results of comparisons.

In particular, these properties allow the x86 flags register
to be safely saved on the scoped stack. They also allow
the safe use of x86 programmed-I/O instructions, via a
guard that restricts dynamically the I/O ports used. The
stack-register integrity of P3(a) is a special case of P5.

System-environment integrity is a key advantage and
differentiator of XFI protection. It is especially crucial to
highly privileged host systems, such as operating system
kernels. Without this protection, any computation, when
run at high privilege, can fatally corrupt system state in
a number of ways—not only through an incorrect, stray
write to memory. In particular, XFI can restrict danger-
ous operations, such as modification of the x86 flags reg-
ister, so that they are safe. For example, even if our JPEG
module allowed buffer overflows, it could never tamper
with the flag that controls the direction ofREPmemory
operations. Thus, XFI can eliminate the possibility of
unexpected ring changes, x86 “double faults”, and other
fatal conditions.

2.2 Internal Properties
In addition to restricting interactions between a module
and its host, XFI places constraints on the execution of
the module:

P6 Control-flow integrity: Execution must follow a
static, expected control-flow graph, even on com-
puted calls and jumps. In particular, function calls
must target the start of functions, and those func-
tions must return to their callers.

P7 Program-data integrity: Certain module-global and
function-local variables can be accessed only via
static references from the proper instructions in the
XFI module. These variables are not subject to
computed memory access.

P6 and P7 enable a simple, practical XFI verifier. We
would find it much harder to have P1–P5 without P6
and P7. In particular, P6 prevents jumps that could cir-
cumvent guards, and P7 serves for securing temporary
state. On the x86 architecture, P6 also supports P4 by
preventing jumps into the middle of an instruction, where
another, forbidden instruction may be encoded.

Furthermore, XFI protection constrains software inter-
nals in ways that make many attacks impossible. In com-



bination with P1–P5, P6 implies that attackers cannot
subvert control flow, and P7 implies that attackers cannot
overwrite certain program state, such as global variables
that hold configuration data or function-local variables
that indicate authentication status. These properties offer
a strong defense against actual attacks (see [2, 12, 32]).
Although an XFI module may still allow certain buffer
overflows and other vulnerabilities, XFI protection can
prevent exploits of those vulnerabilities. In particular,
XFI guarantees correct function returns (cf. [13]), and
prevents introduction of new machine code as well as un-
expected uses of existing code. Thereby, XFI foils two
of the most popular exploit techniques: code injection
and jump-to-libc attacks [32]. For example, our JPEG
module cannot be exploited by any of the several pub-
lished JPEG attacks [2], despite originating in the same
source code as vulnerable versions.

2.3 Additional Properties
P6 and P7 can also serve as a foundation for the dynamic
enforcement of additional properties, such as the validity
of system-call arguments and (more generally) compli-
ance with specifications for the use of interfaces. P6 im-
plies that dynamic checks cannot be circumvented, while
P7 provides secure storage for state used by those checks.

Going further, P1–P7 support the enforcement of
many other useful properties. We have implemented the
following one, because it provides a guarantee that is
important in our application of XFI to Windows device
drivers, described in Section 5.

Assured self-authentication: An XFI module au-
thenticates itself to the host system, e.g., by passing
an immutable value chosen by the host system as an
extra argument to support routines.

We have considered several other properties (without yet
finding the need to realize them). For instance, when it
is difficult or awkward to implement timeouts (e.g., in
a kernel interrupt handler), XFI could bound the length
of execution before a support routine is invoked. Alter-
natively, XFI could allow interrupts to be disabled when
they are re-enabled within a fixed number of instructions.

3 Mechanisms
Several mechanisms can enforce the policies of Sec-
tion 2. We have chosen mechanisms that allow for an
x86 software implementation with good runtime per-
formance. However, our mechanisms should apply to
any architecture, and could be combined with hardware-
based means of protection.

In our choice of mechanisms, we have considered not
only efficiency but also trustworthiness. Because of re-
strictions such as P4, our mechanisms safely exclude
problematic aspects of the x86 architecture. Also, com-
plex rewriters and compilers are not in our trusted com-

puting base. Crucially, correctness depends on an inde-
pendent static verifier. In principle, correctness could
be established formally by analysis of this verifier. We
have created proofs for CFI for a small machine-code
language [1]; in further work, those proofs could be
extended to the full XFI system given a partial formal
model of the x86 instruction set (e.g., as in [3, 11, 25]).

This section describes the XFI mechanisms and out-
lines their implementation. The next section provides
further details.

Static Code Inspection The XFI verifier checks stat-
ically that each XFI module has the appropriate struc-
ture and the necessary guards. For instance, the verifier
checks that the XFI module includes only certain instruc-
tions. The guards should ensure that, when executed on
the intended host system, the module will satisfy suf-
ficient conditions for properties P1–P7 and, optionally,
other requirements specific to the host system.

In particular, the verifier establishes constraints on
control flow and memory accesses. For direct branches
and jumps that statically meet those constraints, no CFI
guard is required. Similarly, for direct access to global
variables in the XFI module and to virtual registers on
the scoped stack, no memory-range guard is required.
In other cases, the verifier ascertains the presence of
proper guards; these guards must precede the instruction
in question along all execution paths.

XFI verification can be done by the users of extensible
systems, in order to establish the safety of an XFI module
before it is installed or executed. Optionally, verification
could be repeated at runtime, for example to counter the
corruption of read-only memory by an external device.
Verification may be useful in other scenarios as well. For
instance, for systems structured as distinct modules with
clearly defined interactions (e.g., with COM [7]), verifi-
cation may be a quality-assurance step during software
production.

Section 4.3 gives further details on the verifier.

CFI Guards on Computed Control-Flow Transfers
As indicated above, computed control-flow instructions
may be preceded by CFI guards that ensure control trans-
fers are within the allowed control-flow graph.

In one implementation [2], a fresh, constant identifier
is assigned to sources and targets of computed control-
flow transfers. An identifier is embedded within the code
of a guard at each source and immediately before the
code of each target. At runtime, the guard compares the
identifier of the source and target, and ensures that they
match. The verifier knows the identifiers and ensures that
they appear in the code segment only at valid targets.

Figure 2 shows machine code for a guard. (For clarity,
this example, and most other machine-code in this paper,
is written in a generic, 32-bit assembly notation with x86



EAX := 0x12345677 # Identifier - 1

EAX := EAX + 1

if Mem[EBX - 4] 6= EAX, goto CFIERR

call EBX

. . .
0x12345678 # Target identifier

L: push EBP # Callee code

Figure 2: A computed call instruction, with a CFI guard and
one valid callee destination.

register names.) This guard checks that right before the
target destinationEBXis the four-byte constant identifier
0x12345678 . The guard embeds that constant minus
one as a literal, not the constant itself, so that the guard’s
code bytes do not become a valid target. Not shown is the
guard that ensures thatEBXpoints to XFI module code.

A guard is needed for computed jumps that may oth-
erwise target unexpected addresses—because of error
or attack—but not for function returns, since function-
return addresses are kept safe in virtual registers (de-
scribed below).

Two Stacks XFI makes use of two stacks: the regular
execution stack for its scoped stack, as well as a sepa-
rate allocation stack. This separation prevents the cor-
ruption of values, such as return addresses, that are sub-
ject to integrity guarantees. The scoped stack is used
only in a stylized, structured manner, and is never the
target of a computed memory access; therefore the in-
tegrity of values on the scoped stack can be established
by the XFI verifier. The allocation stack is used for those
stack values that an XFI module may access via a pointer.
These include all local variables whose address is taken
(e.g., arrays, or variables passed as call-by-reference ar-
guments to functions).

At runtime, guards ensure that the two stacks do not
overflow, and, thereby, that property P3(a) holds. Such
guards must be placed at each module entry point, as
well as in any cycle in the module’s function-call graph.
(Similar guards have been used for implementing non-
contiguous stacks for lightweight threads [40].)

Statically, all explicit references to the scoped stack
must be toSSP+K, where K is a positive, properly
aligned constant, andSSP is the scoped-stack pointer
register. (On the x86,SSP is the regular x86 stack reg-
ister ESP, so that pushes, pops, calls, and returns use
the scoped stack.) Furthermore, at each instruction of a
module function, the scoped stack must be of a known,
constant depth. Within each function,SSPcan be low-
ered and raised only by constant amounts, in a controlled
fashion.SSPis preserved by function calls.

The memory of the scoped stack is not accessible to
an XFI module, except in the manner described above.
Therefore, locations on the scoped stack can function as

virtual registers: like registers, they are thread-local state
that is only accessed by name. In realizing property P7,
these virtual registers can hold local function variables
and other XFI module state to be protected from memory
corruption within the module.

On the other hand, the allocation stack is used for
thread-local module data that is accessible via point-
ers (and, thus, potentially vulnerable to pointer errors).
The allocation stack implements an efficient alternative
to the heap allocation of this data; it is indexed by the
allocation-stack pointer (ASP) register. (ASP can be a
virtual register or, on the x86, the registerEBP.) Within
each function,ASPcan be modified only in a controlled
fashion, by either a constant amount or one bounded by
a runtime check.ASPis preserved by function calls.

XFI requires only the scoped stack for certain sim-
ple modules, including those where arrays and pointer-
accessible variables reside only on the heap. A host sys-
tem that loads only such modules may omit all support
for allocation stacks. In general, however, host systems
must support this two-stack execution model, in particu-
lar by managing allocation stacks and by properly pass-
ing arguments and results between stacks. Section 4.5
describes the components of this support.

Guards on Computed Memory Accesses Whether it
uses an allocation stack or not, a module must be able to
access the memory that contains its code, read-only con-
stants, and writable global variables, in order to execute,
read, and read or write that memory, respectively. In ad-
dition, a host system may wish to give selective access to
other memory regions. XFI uses guards for enabling the
use of those additional regions—in any number, at any
granularity, and for any type of access.

An XFI module has access only to a certain set of con-
tiguous memory regions; for each type of access, a cer-
tain range[ A , B) may be special, as explained below. For
accesses to constant addresses and to the scoped stack,
this property is established by static verification. Guards
check other accesses at runtime.

XFI memory-range guards ensure that a register holds
an accessible address; moreover, they ensure that a
range around this address is also accessible (within
non-negative constant offsetsL, below, andH, above).
Control-flow integrity implies that a single such guard
can protect multiple memory accesses—namely, those
that it dominates, use the same register value, and re-
main within the range determined byL andH. Similar
(but more complex) memory-range checks ensure that
only accessible addresses are used in simple loops such
as the x86REPinstructions. In this case,L andH may
be variable and reside in registers.

The comparisons in memory-range guards must take
into account the sizes of memory accesses, andH must
be chosen accordingly. For example, the guard for a



# mrguard(EAX, L, H) ::=

if EAX < A + L, goto S

if B - H < EAX, goto S

M: Mem[EAX] := 42 # Two writes

Mem[EAX - L] := 7 # both allowed

. . .
S: push EAX # Arguments for

push L, H # slower guard

call SlowpathGuard

jump M # Allow writes

Figure 3: Two memory writes, and a memory-range guard for
the range[ EAX-L , EAX+H). The guard executes faster if this
range lies within[ A , B). The constantHshould be at least 4.

four-byte write throughEAX must ensure that all bytes
in the range[ EAX, EAX+4) are writable. The guards
must also handle corner cases, such as whenA is near
the end of addressable memory. In the common situa-
tion whereA+L andB−H are constants established by
the loader (as described in Section 4.1), the corner cases
can be treated statically. For variable memory ranges,
like those of x86REPloops, guards must perform addi-
tional runtime checks. The guards must also consider the
possibility of arithmetic overflows.

Figure 3 shows an example memory-range guard that
establishes that access is allowed to all addresses in the
range[ EAX-L , EAX+H). The figure includes two write
instructions that each accesses four bytes of memory
through EAX. For the guard to check the writes cor-
rectly, the offsetH must therefore be at least 4. The
figure also introduces a shorthandmrguard . Below,
mrguard(EAX, L, H) represents the contents of the
figure minus the two writes. As shown in the figure,
memory-range guards can be implemented as two paths:
one faster, the other slower.

• The fastpath directly compares an address in a reg-
ister with the valuesA+L andB−H. The guard per-
mits access if the address lies within these bounds.

• If the fastpath comparisons fail, then the guard calls
a host-system slowpath with appropriate arguments.
The slowpath searches to see if the address range
lies within any other accessible memory regions.
The address, and the valuesL andH, are parameters
to this search. The search itself may be arbitrary
code, and may for example involve direct compar-
isons or data structures similar to page tables. The
search may be invoked by a direct jump, a trap or
fault (e.g., the x86 bounds exception), or by other
explicit or implicit control flow.

Analogously, CFI guards could also use a slowpath
when embedded identifiers do not match, thus supporting
a rich, dynamic notion of validity for function pointers.
We have not yet needed this extension.

4 Implementation
We have designed and built an XFI implementation.
This section describes it, and also considers optional,
simple, specialized hardware support for XFI. Although
still a prototype, the implementation is already complete
enough to be practical, as demonstrated by the applica-
tions and measurements described in later sections.

4.1 XFI Modules
XFI modules are dynamically loadable executables in
an appropriate object format. In our implementation,
they are Windows “Portable Executable” binaries, often
named EXEs or DLLs [34].

Modules consist of multiple sections, which may have
different access permissions. Machine code is in one ex-
ecutable section, and program data, such as read-only
constants and writable global variables, is in others. Data
in import and export sections allow the determination of
module entry points and use of host-system support rou-
tines. Other sections, and the module header, provide
host systems with auxiliary data (for example, crypto-
graphic signatures and offsets for load-time relocation).
Auxiliary sections are used only at load time.

XFI protection thus relies on several module sections.
Import sections, as well as host-system policy, limit an
XFI module’s use of support routines; similarly, mem-
ory access is constrained by section access permissions.
The relocation section may give values to XFI constants,
such as the constantsA+L used in memory-range guards.
Finally, a new, auxiliary section holds untrusted verifica-
tion hints (discussed in Section 4.3).

The efficiency of memory protection can benefit from
choices in the structure of XFI modules. Specifically,
writable fastpath memory may lie completely within a
read/write section of each XFI module: once a module is
loaded, this section can have any amount of memory. (A
section-header value gives its size.) In this case, the mod-
ule, or its host system, may provide a heap implementa-
tion that allocates memory within that section. Such a
fastpath region can be made large without wasting phys-
ical memory: host systems with virtual memory support
can allocate physical pages as requested by the XFI mod-
ule (e.g., by the heap implementation calling a support
routine). This strategy is especially attractive for 64-bit
systems, where ample virtual size can be given to a fast-
path region.

4.2 The Rewriter
We produce XFI binary modules from Windows x86 exe-
cutables with a rewriter based on the Vulcan library [37];
XFI rewriters could as easily be created using similar
libraries for other architectures [37, Section 7]. Al-
though our x86 rewriter requires neither recompilation
nor source-code access, it makes use of debug informa-



tion (PDB files), for instance to distinguish code from
data. Such PDB files are publicly available for all Win-
dows components. Our rewriter is relatively complex and
not very fast. In particular, it must do intra-procedural
analyses for control flow, stack use, and register use;
these analyses are not always linear.

Our rewriter does not currently handle certain hand-
written modules; it also stumbles on frame-pointer-
optimized code, and code with certain variable-size stack
allocation. (Both can be supported using a virtual regis-
ter.) Similarly, our verifier does not handle MMX, SSE,
and other x86 instruction-set extensions. However, since
our verifier is conservative, neither these limitations nor
rewriter bugs should ever result in the execution of an
XFI module without XFI protection.

Alternatively, XFI modules could be output by the
code-generation phase of a compiler. A compiler that
would produce XFI modules would generate mostly
standard machine code, but add structured inline guards
and verification hints, and use the allocation stack for
stack data subject to computed memory access. Such a
compiler could make more thorough use of XFI mech-
anisms, help reduce overhead, and remove some limita-
tions of our prototype.

4.3 Verification
As discussed in Section 3, the correctness of XFI pro-
tection depends on the load-time verification of XFI
modules. Our verifier was written from scratch and is
self-contained. In particular, it is independent from our
rewriter, and from any specific strategy for creating XFI
modules. It is 3000 lines of straightforward, commented
C++ code, most of which are tables for x86 opcode de-
coding. The verifier needs only a basic understanding of
x86 behavior, modeling nothing more complex than inte-
ger comparisons and how instructions copy registers. Its
simplicity contributes to our confidence in the verifier.

The verifier is much simpler than the rewriter because
the verifier does only local reasoning about individual
basic blocks. This reasoning takes advantage of a set of
untrusted verification hints that must be present in the
XFI module. A similar strategy is used by Java bytecode
verifiers and in PCC systems.

Therefore, the verifier is not only simple but also fast.
It makes a linear pass over the bytes of an XFI module,
doing mostly instruction decoding and comparisons.

In order to establish the correct use of other XFI ma-
chinery, the verifier checks several specific conditions.
These conditions refine and strengthen the requirements
outlined in Section 3. In particular, the verifier ensures
that both the allocation stack and the scoped stack are
managed properly: the allocation-stack and scoped-stack
pointers are updated only by bounded, constant amounts,
the code contains stack overflow guards, the return ad-

dress and other virtual registers are saved and retrieved
from the scoped stack only, and function calls preserve
the heights of both stacks.

Verification proceeds by considering the execution of
machine-code instructions abstractly; it manipulates ver-
ification states which are predicates that describe con-
crete execution states. In particular, verification states
model register contents, including the contents of the
scoped stack which holds function-local virtual registers.
The execution of each instructioni can be represented
by a Hoare triple:{ P } i { Q }, whereP and Q are
verification states. GivenP , the verifier ensures thatP
guarantees the safe execution ofi ; the verifier also com-
putesQ and ensures thatQ implies the verification states
before each possible successor instruction.

To simplify verification, XFI modules must include a
set of verification hints that guide the verifier. For the
most basic version of the verifier, the hints must provide
the verification state for the entry to each basic block.
The verification is done one basic block at a time, and on
basic-block exit the verifier checks that the final, com-
puted verification state implies the verification state at
entry to all possible successor blocks.

As mentioned above, the verifier also ensures that the
proper CFI guards precede computed control-flow trans-
fers. The verifier expects hints to specify the set of pos-
sible targets of computed jumps; these hints allow the
verifier to collect the set of CFI target identifiers used
in the module. The verifier scans the machine code of
the module in order to ensure that these identifiers oc-
cur only at the beginning of basic blocks. Finally, the
verifier allows computed control flow only when the ver-
ification state records the effects of an appropriate CFI
guard. Similarly, the verifier allows a computed memory
access only when the verification state records the effects
of an appropriate memory-range guard.

Figure 4 shows an example program fragment. The
memory-range guard in line 0 checks that the memory in
the range[ EAX-0 , EAX+8) lies within a single acces-
sible memory region. (See Figure 3 for a definition of
mrguard .) This fragment copies the word stored at ad-
dressEAXto addressEAX+4, loads the result value from
the allocation stack intoEAX(in line 3), then restores the
allocation-stack pointer (ASP) by loading it from a vir-
tual register on the scoped stack, and returns. As shown
in the comments, the pop and return instructions use the
scoped stack.

At the start of verification of the code in Figure 4, the
verification state encodes that the original value of the
scoped stack pointer is 8 more than the current value, the
return address is in the virtual register at addressSSP+4,
the value on function entry of the allocation-stack pointer
is stored in the virtual register at addressSSP, and the
allocation-stack frame range[ ASP-32 , ASP) falls into a



Code Verification state

{origSSP=SSP+8, valid[SSP, SSP+8)}
{retaddr=Mem[SSP+4]}
{origASP=Mem[SSP], valid[ASP-32, ASP)}

0. mrguard(EAX, 0, 8)

{valid[EAX-0, EAX+8)}
1. EDX := Mem[EAX]

2. Mem[EAX + 4] := EDX

3. EAX := Mem[ASP - 4]

4. pop ASP # ASP := Mem[SSP]; SSP := SSP+4

{origASP=ASP, valid[SSP, SSP+4)}
{origSSP=SSP+4, retaddr=Mem[SSP]}

5. ret # SSP := SSP+4; jump Mem[SSP-4]

Figure 4: Verification states for a small fragment of XFI mod-
ule code. The items written in braces correspond to the verifi-
cation state at the given program point.

contiguous accessible region of memory. For clarity, Fig-
ure 4 shows only modifications to the verification state.
The verifier recognizes the meaning of the instructions
of the memory-range guard in line 0, and adds the corre-
sponding “valid” fact to the verification state for the fol-
lowing instruction. All of the previously known facts are
preserved in this case, and the resulting “valid” facts suf-
fice for checking all the memory accesses in the program
fragment. In line 4, the verification state is changed to re-
flect the arithmetic operation implicit in thepop instruc-
tion. After line 4, the verification state considers valid
only the range[ SSP, SSP+4), since in systems code the
contents of the stack belowSSPcan always be clobbered
by interrupts. At line 5, the verifier checks that the stack
pointers will be restored to their original values before
the return, and that the proper return address is used. In
order to enable this reasoning, the verifier includes sup-
port for manipulating linear equalities and inequalities.

4.4 Inline Guards

Many considerations influence the choice of the exact
machine-code sequences for XFI mechanisms such as
the inline guards. Finding suitable, efficient guards can
be particularly challenging for the x86, because of its
complex, non-uniform instruction set, and dearth of reg-
isters. In our XFI implementation, we address these x86
kinks partly through a register-liveness analysis that the
rewriter employs to discover or make available free reg-
isters or x86 condition flags. We also use the following
specific code sequences for each type of guard.

CFI Guards Our x86 CFI guards are implemented in
much the same manner as shown in Figure 2, and detailed
in [2]. Instead of having identifiers precede valid destina-
tions, we embed callee identifiers within an instruction,
prefetchnta , that has few side effects.

EAX := SSP - L - K

if EAX < Mem[FS + 8], goto SSPERR

C: SSP := SSP - L # Lower SSP by L

Figure 5: Scoped-stack overflow guard on Windows.

Stack-Overflow Guards We employ memory-range
guards in order to prevent allocation-stack overflow: if
ASP is to be lowered byL, the range[ ASP-L , ASP)
must lie within an accessible region.

Our guard against scoped-stack overflow exploits a
particular property of x86 Windows: the bottom of the
current stack is held in directly accessible, thread-local
storage pointed to by theFS segment register. (Future,
Windows-specific implementations might usefully keep
XFI-specific data in this thread-local storage.)

Figure 5 shows an x86 scoped-stack guard; it com-
pares a proposedSSPvalue with the stack limit atFS+8
in the thread control block. Our guards ensure that free
space always remains at the bottom of the scoped stack
(e.g., for interrupt state). Thus, in the figure, code at la-
bel C lowersSSPby L, but our overflow guard ensures
thatK more space is available, whereK is a constant.

Allocation-stack overflow guards can also be imple-
mented in a host-specific manner. For instance, for
single-page allocation stacks (such as may be used in
the Windows kernel), an invariant on the top bits of
ASPcould allow for a fast guard—even when allocation
stacks are placed in slowpath memory.

Memory-Range Guards Our implementation uses a
fastpath memory region whose endpointsA and B are
embedded in the memory-range guards. This region lies
within the XFI module, as suggested in Section 4.1; its
endpoints are relocation constants set during loading. In
theory, the endpoints could be fairly arbitrary, even val-
ues held in reserved registers—although our implemen-
tation does not spend x86 registers for this purpose.

Our x86 memory-range guard is like that shown in
Figure 3 of Section 3. The slowpath call is not placed
inline, both because it would waste code cache and also
because the x86 predicts forward branches as not taken,
by default. We have considered having our guards raise
exceptions, caught by a slowpath guard provided by the
host system; however, this approach is likely to be less
efficient than guards that call slowpaths. In particular,
our implementation cannot use the x86BOUNDinstruc-
tion because hardware bounds exceptions are treated as
fatal conditions in the Windows kernel.

4.5 Host-System Support
Most XFI modules need runtime support from their host
system, as discussed above. This section describes the
support components that host systems must implement
in order to make use of XFI protection.



As an alternative, instead of the host system imple-
menting them separately, these support components may
be included with XFI modules, for instance in a distinct
library-code section. Such library code may be trusted
because of cryptographic signatures or for other reasons;
therefore, this code may even include the XFI verifier.

Slowpath Permission Tables When executing their
slowpath, memory-range guards must search permission
tables: runtime data structures, maintained by the host
system, that hold the set of accessible memory regions.
There may be multiple such tables, one for each type of
slowpath access. Each search checks whether a range
[ R-L , R+H) lies within a contiguous memory region to
which the host system has granted access.

Searching these tables must be fast, as some software
will access memory in a manner that frequently calls the
slowpath of memory-range guards. Fortunately, fast per-
mission tables can be implemented in several ways. In
particular, by using tables similar to page tables, searches
can use known, efficient techniques for software-filled
translation lookaside buffers, or TLBs [43].

In our implementation, permission tables are very sim-
ple: a null-terminated list of address pairs, of the start and
end of regions. Even though there are faster alternatives,
we chose this representation not only because it is simple
to maintain and search, but also because our experiments
indicated that more complex tables would be of limited
benefit.

Allocation-Stack Manager A host system must prop-
erly associate an allocation stack with each thread that
executes in an XFI module. Allocation-stack manage-
ment must consider both performance and resource con-
sumption. For instance, a thread can keep using the same
allocation stack if it calls an XFI module reentrantly; al-
ternatively, it may adopt a new allocation stack on each
entry.

Our implementation uses a pool from which host-
system threads draw allocation stacks when they call XFI
modules. The size of the pool is adjusted on the basis
of the concurrency in the XFI module. The pool’s data
structure is a simple array, guarded by a single lock; this
array is consulted in order to acquire and release alloca-
tion stacks, as threads go through software call gates.

Software Call Gates An important component of XFI
is the software that mediates calls to entry points and sup-
port routines, in particular to map to and from the two-
stack model used by XFI module execution. These wrap-
pers are a software form of call gates, as found in some
hardware architectures [43]. They will typically be im-
plemented by the host system, and may perform all the
work necessary to manage stacks and to maintain per-
mission tables. Our wrappers, in addition, resolve com-
plications such as the multiple calling conventions of x86

Windows and variable-argument support routines.
Instead of copying arguments and results, as in com-

ponent systems [7], our wrappers can edit the slowpath
permission tables to marshal access rights on calls and
returns. This alternative is important when it is not desir-
able to copy into and out of XFI module fastpath mem-
ory, such as for large, infrequently used data buffers. De-
vice drivers may be good candidates for this optimiza-
tion, as they often manage large buffers, while perform-
ing little processing of those buffers. (For example, a
storage driver may never examine the data being read or
written.)

Windows Exception Dispatcher The Windows soft-
ware execution model includes a unified mechanism for
handling software and hardware exceptions, both syn-
chronous and asynchronous. This Structured Exception
Handling (SEH) [31, 34] applies both in user mode and
in the kernel; it generalizes Unix signals and C++ excep-
tions, and can be used to implement both. On the x86,
SEH requires functions that catch exceptions to place rel-
evant SEH metadata on the stack, including the address
of a catch expression and a catch handler. (On the other
hand, 64-bit Windows places the metadata for all func-
tions in a static, read-only table.) Function prologues
and epilogues link this metadata into a chain of handlers,
whose head is atFS+0 in the thread control block. Upon
an exception, catch expressions along this chain are eval-
uated, determining which catch handler is used. Multi-
ple, strong invariants apply to this metadata, as well as to
the handler chain.

XFI protection for Windows must consider SEH, both
to enforce policies (e.g., P6), and to support correct ex-
ecution of Windows software, which often makes use of
SEH. In particular, XFI should allow both catch expres-
sions and catch handlers to run on both XFI stacks, and
(possibly) allow control to resume at the faulting instruc-
tion. Fortunately, XFI mechanisms such as virtual reg-
isters enable SEH integrity to be fully maintained. This
integrity results in important security benefits: SEH cor-
ruption is a favorite means of attack on Windows [32].

We have designed support for SEH in our XFI imple-
mentation; we outline it next (omitting details because
of space constraints). We have not yet fully built this
support, but our implementation does handle Unix-style
signals. The support includes both the necessary host-
system components and what conditions are checked
by the XFI verifier. All exceptions are directed to our
exception-dispatcher implementation in the host system;
it saves registers, and invokes the XFI module’s SEH
code in the proper order, and using the right context (e.g.,
for the ASP register). The XFI verifier ensures each func-
tion’s SEH metadata is well formed, and used appropri-
ately; it also restricts catch expressions so they properly
access stacks via a base pointer.



4.6 Possible Architecture Support
The specifics of XFI mechanisms and their behavior de-
pend on hardware characteristics. In particular, the code
and the cost of software guards will vary across plat-
forms. Therefore, we have designed and evaluated rel-
atively straightforward hardware support for CFI guards
and memory-range guards in an Alpha simulator. (No
precise x86 simulator is available.) This support extends
the Alpha instruction set with a few, new register-based
comparisons instructions.

We implemented CFI guards with four new instruc-
tions: acfilabel instruction and a variant of each
of the Alpha computed transfer instructions (“indirect
jump”, “return”, and “jump to subroutine”). The instruc-
tions contain 16-bit, immediate identifiers. After a CFI
transfer instruction with identifierID , acfilabel with
ID must be executed before any other type of instruction;
otherwise, a hardware exception is triggered. Between
these instructions, the valueID is stored in a normal, re-
named register, so multiple CFI guards can be in flight si-
multaneously. To avoid reads of this CFI register at each
instruction, it is monitored with a two-state automaton in
the commit stage of the pipeline. An x86 implementation
could be similar, except that it might use instructions up
to six bytes long (e.g., in order to allow larger identifiers)
and an explicit CFI register.

We implemented memory-range guards with three
new instructions, one for each type of access (read, write,
and execute). Each instruction takes the formmrguard
R, L, H , naming a registerR, and providingL andH
as 10-bit immediate constants. The instructions compute
valuesR-L and R+H and compare them with registers
that holdA andB, using the regular, scheduled arithmetic
units of the processor. (Thus, the instructions implement
mrguard as defined in Figure 3.) On fastpath failure,
our instructions (like the x86BOUNDinstruction) throw
a hardware exception that providesR, L, andH only as
implicit arguments via the faulting instruction. An x86
mrguard instruction could perform a real call, and push
arguments onto the stack, with accordingly higher per-
formance; it could be implemented in microcode, with
the address of the slowpath function to call in a machine-
specific register.

We studied these new instructions for XFI guards in
a validated, cycle-accurate Alpha EV6 simulator [14];
the details are in a companion report [9]. Our results
indicate that hardware-supported XFI can be quite effi-
cient: adding effect-freeNOPinstructions instead of XFI
guards leads to virtually identical overhead as using the
new instructions. In part, these results reflect that our
XFI instructions introduce no new dependencies, and can
leverage unused processor units; they also reflect cache
pressure due to increased code size. These results are
likely to carry over to the x86 architecture. Section 6.2

gives measurements of the overhead of using x86NOPs
in place of XFI guards.

5 Applications
XFI has a wide range of potential applications. To
date, we have applied our XFI implementation to dy-
namic libraries, device drivers, and multimedia codecs.
In this section we describe some of these applications;
for brevity, we focus on device drivers.

Device drivers are a prime application domain for XFI
protection, both because they should comply with XFI
policy and also because their failure to do so has serious
consequences.

We have implemented XFI for kernel-mode device
drivers developed using the Windows Driver Foundation
(WDF)—a new-generation framework, designed to sim-
plify the development of correct drivers for all versions
of Windows [26]. With WDF, a device driver no longer
has direct access to kernel abstractions, such as work-
item queues, request packets, or device objects; rather,
these are opaque to the driver, and WDF performs all
modification and synchronization on the driver’s behalf.
In addition to holding abstract such critical state, WDF
validates that drivers comply with contracts, even on pro-
duction systems. Thus, WDF represents a significant
advance in interface safety over previous driver support
frameworks [30].

XFI protection can isolate device drivers in a WDF
host system. Without this isolation, despite all its
interface-safety checks, it is impossible for WDF to con-
tain driver faults (or exploits) fully, or even to detect them
in all cases. Since WDF mediates on all interactions with
the kernel, device drivers interact with their host system
frequently; therefore, XFI protection is more attractive
than potential alternatives with higher context-switch la-
tency.

We have added to WDF the necessary components for
XFI protection. These include the machinery described
in Section 4, as well as some WDF-specific machinery.
In particular, this machinery enforces the assured self-
authentication policy (described in Section 3), as fol-
lows. Since WDF can serve multiple drivers simultane-
ously, drivers pass along a pointer to their WDF control
block when they call support routines. A driver may at-
tempt to spoof this value in order to call WDF as another
driver. We thwart such impersonations by requiring the
first argument to each WDF support routine to be a spe-
cific, read-only variable in the XFI module of the calling
driver. WDF has write access and sets this variable as it
loads the driver.

It is simple to determine the set of memory regions that
a WDF driver should be allowed to access. A driver gains
access to memory either through explicit allocation—a
call to a WDF support routine—or implicitly, such as



when an I/O buffer is passed to the driver for process-
ing. In all cases, WDF has the information necessary to
grant (and later revoke) access to those memory regions,
by modifying the slowpath permission tables.

We have applied XFI to some WDF drivers, including
a RAM disk driver and a benchmark driver used by the
WDF team to measure performance. Section 6 gives the
results of these experiments.

Multimedia codecs are another attractive application
domain for XFI protection. They are typically exten-
sions (often downloaded, untrusted code) that operate on
data at the request of their host system. Furthermore,
they have been the subject of many successful attacks.
As described in Section 2, we have turned the standard
JPEG implementation of image decoding [20] into an
XFI module. Section 6 gives the results of these experi-
ments as well.

6 Evaluation

We have performed a number of experiments and analy-
ses in order to evaluate the benefits and overheads of XFI
protection. This section summarizes our results.

6.1 Protection Benefits

XFI protection against faults such as spurious writes
to memory is similar to the protection of hardware-
supported address spaces (e.g., processes). However,
some aspects of XFI protection do not lend themselves
to simple comparisons; for instance, XFI enforces in-
tegrity guarantees that protect against security exploits.
We have validated these XFI benefits, in part by experi-
menting with actual exploits.

We have established that CFI guards alone are suffi-
cient to prevent a wide variety of attacks that follow de-
viant machine-code execution paths and thereby violate
XFI policy. In particular, CFI blocks the exploits used by
Blaster and Slammer and those in a test suite of 18 other
attack vectors; CFI also thwarts the published exploits of
a heap overflow in the widespread software used in our
JPEG module. More details can be found in [2].

XFI also helps defend against data-corruption exploits
For example, in an XFI module, if a global configura-
tion variable does not reside in a region that is subject to
computed memory access, then that variable can be mod-
ified only by those instructions that refer to it by name;
similarly, access to function-local variables is limited. In
this manner, XFI program-data integrity can effectively
thwart exploits described in a recent paper on data-only
attacks [12].

Unfortunately, some attacks still succeed, despite XFI
protection. Most notably, these include Nimda-like at-
tacks that abuse over-permissive support routines. De-
fense against such attacks remains an open problem.

6.2 Enforcement Overhead
We applied our x86 XFI implementation to WDF device
drivers, SFI benchmarks [36], the JPEG decoder [20],
and Mediabench kernels [22], all compiled using Mi-
crosoft VC++ 8.0, with optimizations. Rewriting each
module took a few seconds; verification is linear in
the module size and typically takes a few milliseconds.
We made elapsed-time measurements for a Pentium M
1.5GHz processor, on an idle system with daemon ser-
vices disabled. The processor was fully utilized in all
runs. (For drivers, 90% of the time was in the kernel.)

Tables 1, 2, and 3 summarize the results of our mea-
surements; the tables report overheads relative to mod-
ules before XFI rewriting. Overheads are the average of
five runs of more than ten seconds, with standard devia-
tion less than 1.5%. Overheads are shown forwrite pro-
tection, which restricts only writes, and (between paren-
theses) forread-write protection, which also restricts
reads. We emphasize write protection because integrity
(rather than confidentiality) is usually the central goal of
protection.

Our tables have three columns of results. The slowpath
column shows overhead when memory-range guards
have to consult permission tables for access to the data
processed by the XFI module. The fastpath column
shows results when data already resides within the mod-
ule’s fastpath region—for instance, because the host sys-
tem passed a copy of the data when it called the module
entry point. Both columns reflect the case where XFI
modules have a private, fastpath memory. Memory-to-
memory copies are fast on modern processors, and fast-
path regions can be large (as discussed in Section 4.1), so
host systems may find it most convenient to copy argu-
ments to and from XFI modules; in this case, only fast-
path overheads apply. Slowpath memory, and the tech-
niques of Section 4.5, may be used only rarely, in partic-
ular when state truly needs to be shared.

TheNOPcolumn shows the measured overhead when
each inline guard is replaced with a six-byte x86NOP
instruction. Therefore, it gives a baseline for the cost
of structuring binaries as XFI modules, and of includ-
ing guards in the appropriate places. In particular, the
NOPcolumn shows overheads that results from increased
cache pressure and from additional instruction decoding.
As discussed in Section 4.6,NOPoverheads may also
be indicative of the overheads that would be seen with
hardware-supported XFI: on the x86, six bytes are a rea-
sonable size for new XFI guard instructions.

Each table also shows the code size of each XFI mod-
ule as a multiple of the code size of the original binary.
The size increase results from inline guards, and is of-
ten substantial; however, the added code is often not ex-
ecuted, since our x86 guards are implemented with an
out-of-band slowpath (as shown in Figure 3).



NOP fastpath slowpath
∆ sz 2.1x (2.6x) 2.5x (4.1x) 3.9x (8.3x)

hotlist % 1% (5%) 4% (94%) 5% (798%)
∆ sz 1.2x (1.3x) 1.5x (1.8x) 1.7x (2.3x)

lld % 10% (28%) 27% (60%) 93% (346%)
∆ sz 1.1x (1.1x) 1.2x (1.3x) 1.3x (1.5x)

MD5 % −1% (2%) 3% (7%) 27% (101%)

Table 1: Code-size increase and slowdown of SFI benchmarks,
with XFI. The % rows show slowdown.

Kt/s NOP fastpath slowpath
∆ sz 1.3x (1.3x) 1.3x (1.4x) 1.4x (1.6x)

1 193 5.0% (4.8%) 6.8% (6.1%) 5.9% (13.4%)
512 151 4.7% (3.9%) 5.3% (4.7%) 4.8% (10.6%)
4K 71 1.7% (1.7%) 2.7% (2.9%) 2.6% (5.0%)

64K 5 1.2% (1.9%) 1.4% (0.4%) 1.7% (1.8%)

Table 2: Code-size increase and slowdown for different kernel
buffer sizes for a WDF benchmark, with XFI. The unprotected
driver is 11KB of x86 machine code; its transactions per sec-
ond (shown in thousands) form the baseline for the slowdown
percentages.

Table 1 shows numbers for well-established bench-
marks for SFI performance [16, 25, 36]; each is less than
3K of machine code. Unlike XFI, SFI supports only one
accessible memory region, so only XFI fastpath over-
head is directly comparable with published SFI measure-
ments. This overhead is either similar to that of SFI or
significantly lower. For instance, XFI fastpath overhead
on MD5 is only 3%; for SFI, the corresponding num-
bers range from 23% [36] to 47% [25]. XFI can have
lower overhead than SFI because, with XFI, a single
memory-range guard can suffice for multiple memory-
access instructions. The hotlist benchmark searches a
linked list, in a tight loop; each pointer must be checked
separately. Therefore, its read-write slowdown (up to
nine-fold) reflects the use of a memory-range guard every
few instructions.

Table 2 gives the results of running a WDF bench-
mark with XFI protection, using KMDF 1.0 [26]. In
the benchmark, a user-mode program stores in a kernel-
mode driver a data buffer of a certain size; this buffer is
then retrieved and validated. Table 2 exhibits clear, un-
derstandable trends: enforcement overhead is reduced by
using either a larger buffer per transaction, or faster and
fewer guards. (The table also exhibits small anomalies:
sometimes the use of more, slower guards slightly im-
proves performance, possibly because of cache effects.)
For this benchmark it was important that XFI is able to
guard use of the x86REPinstructions; otherwise, a guard
might have to be executed for every buffer byte, resulting
in up to three-fold slowpath overhead.

In addition, we experimented with a WDF implemen-
tation of a RAM disk driver. We copied 8 megabytes

NOP fastpath slowpath
∆ sz 1.3x (1.6x) 1.7x (2.5x) 2.1x (3.7x)

4K 14% (34%) 18% (78%) 42% (112%)
14K 15% (36%) 18% (80%) 43% (116%)
63K 12% (31%) 17% (75%) 40% (108%)

229K 11% (28%) 15% (68%) 35% (98%)

Table 3: Code-size increase and slowdown for different-size
input data for JPEG decoding, with XFI. The unprotected de-
coder is 59KB of x86 machine code; the baseline for the slow-
down shown is decoding time.

NOP fastpath slowpath
adpcm encode 0% (4%) 2% (49%) 13% (149%)
adpcm decode −3% (2%) 3% (12%) 36% (112%)
gsm decode 3% (1%) 79% (97%) 125% (230%)
epic decode 3% (9%) 7% (19%) 119% (220%)

Table 4: Slowdown of Mediabench kernels, with XFI.

back and forth, between two directories on the RAM
disk, flushing the file cache after each copy. We repeated
these copies several thousand times, both using single-
byte files and files of varying sizes. The RAM disk did
not exhibit any measurable end-to-end slowdown, even
with slowpath guards. (Similarly, for many modules,
the overhead of XFI protection may be overshadowed by
other processing.)

Between the above drivers and the WDF, we measured
up to 900,000 transitions per second—but each had lit-
tle cost. In comparison, placing drivers in hardware-
supported address spaces causes overhead on each tran-
sition (because new page tables must be loaded), as
well as during code execution (because of higher TLB
miss rate). Such overhead is correlated with the rate
of transitions between the kernel and the driver, and at
23,000 transitions per second it can cause more than
three-fold slowdown of kernel processing, as reported
in [39]. Our experiments concern WDF drivers that have
a much higher transition rate; correspondingly, their pro-
cessing slowdown with hardware-based protection could
be much worse. With XFI protection, these hardware-
related overheads are fully eliminated.

Table 3 shows results for the JPEG decoder for in-
puts of four different sizes. Each of the inputs yields
an image about eight times larger. Although JPEG
processes images in 64-pixel blocks, overhead is some-
what smaller for larger images—again because of fast
guards forREP loops. Table 4 shows results for other
multimedia codecs, namely three Mediabench kernels
(defined as in [9]). Overall, the performance of these
XFI multimedia codecs seems acceptable, considering
that they are based on unmodified, standard C-language
sources, and that they can be used safely within any x86
hardware protection ring.



7 Related Work
Since there is a wealth of work on protection, we briefly
review the landscape and include details on only a few
specific pieces of related research.

Unfortunately, no single approach to protection will
be suitable for all scenarios in modern, commodity sys-
tems. Some approaches, like Nooks, are designed for
“fault resistance, not fault tolerance” and can be eas-
ily circumvented by malicious code [39]. Others, like
Mondrix, require sophisticated, new hardware support,
or changes to the system foundations for the inclusion of
a protection supervisor [4, 23, 44]. In its published incar-
nations, SFI [16, 25, 36, 41] has enforced a policy more
basic than that of hardware-supported address spaces,
yet placed hard-to-meet constraints on memory layout
and other system aspects, such as signals and multi-
threading. Language-based approaches [5, 19, 24, 28]
usually require re-writing software; they can also require
elaborate runtime support that may be difficult to include
at all levels of a system.

XFI is founded on the view that protection should be
mostly a software issue [6] (cf. [42]). In comparison
with traditional hardware-supported address spaces, soft-
ware machinery can offer almost arbitrary expressive-
ness. It may also be easier to deploy than new architec-
tures (e.g., [44]). Finally, it can make it efficient to switch
protection domains, and it avoids technical difficulties
such as the efficient hardware implementation of permis-
sion tables. Of course, even software-based approaches
require appropriate hardware support [6], sometimes to
a non-trivial extent (e.g., x86 segments for protecting a
call stack in our previous work on SMAC [2]).

Software protection systems vary widely in their con-
texts, goals, and techniques:

• Some systems address protection between kernel
environments (e.g., [4, 23, 39]), while others target
applications isolated by typing (e.g., [19]). XFI
aims to be applicable in a broad range of contexts.

• Inlined reference monitors [17] and PCC [29] aim
to support the enforcement of a large class of prop-
erties. More targeted systems include ours for CFI.
XFI leverages CFI in order to offer, systematically,
external properties and critical-state integrity. Go-
ing beyond protection, some software techniques
also address rollback and recovery (e.g., [38]); we
have not yet studied them in the context of XFI.

• Some systems rely on interpretation techniques;
program shepherding [8, 21] and the use of virtual
machine monitors [4, 23, 44] are examples of this
approach. Many others (including XFI) rely on lan-
guage constraints, static and dynamic typing, and
other kinds of analyses [15, 19, 27, 33]. Generally,
static analysis aims to verify that dynamic checks

are not necessary. In XFI and a few other recent
systems with other objectives (e.g., [2, 10, 18]), the
static analysis aims to ensure that dynamic checks
have been applied properly, and it is the responsi-
bility of an independent verifier.

XFI is most closely related to SMAC, mentioned
above, and to SFI implementations such as MiSFIT [36].
Indeed, one of the motivations for XFI was our desire
for a practical protection mechanism in the spirit of SFI.
Originally, SFI was a carefully designed system for en-
forcing a relatively basic protection policy, with impres-
sive performance [41]. Its RISC-based implementation
relied on several significant assumptions: fixed-length
instructions, several registers free for dedicated use, a
single aligned, contiguous block of memory, and system
support based on hardware protection. While these as-
sumptions can be easily satisfied in a new, 64-bit RISC
system, they are problematic in many other settings—
such as x86 commodity systems. Later SFI implemen-
tations have added further assumptions about memory
use and alignment, trusted compilers, and hardware sup-
port [16, 25, 36]; some maintain additional invariants on
certain state, in a limited fashion (e.g., on return ad-
dresses in single-threaded programs [36]). In particular
PittSFIeld [25] is an attractive, new SFI implementation
that applies to CISC architectures. PittSFIeld achieves
efficiency by using hardware support for guard pages,
reserving large, aligned regions of memory, and not han-
dling race conditions on function returns. Furthermore,
it offers limited protection for kernel-mode code (e.g., as
it pops the x86 flags register from arbitrary memory).

In comparison with SFI, XFI supports richer policies,
for instance for fine-grained access control and the lim-
ited, safe use of privileged instructions. Because it de-
pends on few assumptions, XFI is applicable to legacy
software, on commodity systems, and even despite vul-
nerabilities such as buffer overflows. While some SFI
performance improvements reduce fault isolation, XFI
guarantees protection even with optimizations. Finally,
XFI does well in terms of performance; for example, our
basic XFI implementation has lower overhead than PittS-
FIeld for JPEG, and it runs MD5 faster, even when inputs
are in slowpath memory.

8 Conclusions
XFI protection allows code to be executed with strong
safety and security guarantees, without the need for a
separate process or the creation of new software writ-
ten in a type-safe language. Like hardware protection,
however, XFI addresses low-level architectural features;
like language-based protection, it leverages static anal-
ysis and offers expressiveness. Thus, XFI inhabits an
interesting and practical middle ground. In this respect,
XFI has much in common with SFI and PCC. Building



on SFI, PCC, and related efforts, the design and imple-
mentation of XFI include a number of ideas and tech-
niques that contribute to its flexibility, completeness, ef-
ficiency, and wide applicability. As a result, XFI offers
protection even for legacy code that is run natively in the
most privileged ring of x86 systems.
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