Enforcing Resource Bounds via
Static Verification of Dynamic Checks

AJAY CHANDER, DAVID ESPINOSA, and NAYEEM ISLAM
DoCoMo Labs USA

PETER LEE

Carnegie Mellon University

and

GEORGE C. NECULA

University of California, Berkeley

We show how to limit a program’s resource usage in an efficient way, using a novel combination of
dynamic checks and static analysis. Usually, dynamic checking is inefficient, due to the overhead
of checks, while static analysis is difficult and rejects many safe programs. We propose a hybrid
approach that solves these problems. We split each resource-consuming operation into two parts.
The first part is a dynamic check, called reserve. The second part is the actual operation, called
consume, which does not perform any dynamic checks. The programmer is then free to hoist and
combine reserve operations. Combining reserve operations reduces their overhead, while hoisting
reserve operations ensures that the program does not run out of resources at an inconvenient
time. A static verifier ensures that the program reserves resources before it consumes them. This
verification is both easier and more flexible than a priori static verification of resource usage. We
present a sound and efficient static verifier based on Hoare logic and linear inequalities. As an
example, we present a version of tar written in Java.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Program Verification—
Assertion Checkers; D.3.3 [Programming Languages|: Language Constructs and Features—
Dynamic Storage Management; D.4.6 [Operating Systems]: Security and Protection— Verifi-
cation

General Terms: Languages, Security, Verification

Additional Key Words and Phrases: Resource bounds, Static, Dynamic

1. INTRODUCTION

Users are downloading code to run on their devices — computers, PDAs, cell
phones, etc — with increasing frequency. Examples of downloaded code include
software updates, applications, games, active web pages, proxies for new protocols,
codecs for new formats, and front-ends for distributed applications. At the same
time, viruses, worms, and other malicious agents have also become common, result-
ing in attacks that include data corruption, privacy violation, and denial of service
based on overuse of system resources. The latter problem is particularly relevant

Author’s address: Ajay Chander, DoCoMo Labs USA, 3240 Hillview Ave, Palo Alto, CA, 94304.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1-18.

2 : Ajay Chander et al.

for small devices such as PDAs and cell phones. The state of the practice in mo-
bile code execution includes powerful techniques that prevent data corruption (e.g.,
bytecode verification), but the enforcement of resource quotas is comparatively less
developed. In this paper, we provide an efficient and flexible approach to limiting
the resource usage of untrusted code. By flexible, we mean that our method ap-
plies to all sequential computer programs, including those where resource usage is
not known until runtime. By efficient, we mean that it enforces resource quotas
with significantly fewer runtime checks than previous methods based exclusively on
dynamic checking.

In our scenario, the code consumer runs an untrusted program created by a code
producer. This program interfaces to the code consumer’s computer via a trusted
runtime library that provides functions to access resources. We consider both phys-
ical resources such as CPU, memory, disk, and network, as well as virtual resources
such as files, database connections, and processes. Our goal is to limit resource use
according to the code consumer’s security policy. This policy specifies a quota for
each resource that the program can use.

Our technique enforces resource quotas with a combination of static and dynamic
checks. More precisely, we verify statically that a program’s dynamic checks are
sufficient to ensure that the quota is not exceeded. To support such hybrid checking,
we split each resource-using operation into two separate operations, reserve and
consume. Reserve performs a dynamic check against the quota, and consume
actually uses the resource. If reserve succeeds, it guarantees that the resource is
available, so that consume does not need to perform any dynamic checks.

For example, suppose that a runtime library has a function readNetworkBytes
that reads bytes from the network. We replace it with reserveNetworkBytes and
readNetworkBytes. The former reserves the right to read bytes from the network,
while the latter actually performs the I/O.

In this paper, without loss of generality, we consider a single resource, whose
reservation operation is called reserve and whose consumption operation is called
consume. In general, the runtime library has several types of resources, and each
resource type has several operations that consume it. We assume that the runtime
library is part of the trusted computing base (TCB), including the implementations
of reserve and consume.

Current libraries perform reserve and consume together when a resource is used.
It is easy to replace these calls automatically by pairs of separate calls to reserve
and consume. It is also easy to verify statically that the result of this transformation
never uses more resources than have been reserved.

The advantage of this separation is that the programmer, or appropriate opti-
mization tools, can combine multiple reserves into one and can hoist reserve out
of a loop whose body consumes resources. In this paper, we describe a static analy-
sis that verifies that a program’s placement of reserves is sufficient. If the resource
expressions that occur in the reserve and consume expressions are linear, then the
analysis is decidable and efficient, and our experiments show that it succeeds even
in the presence of aggressive optimizations.

Moving reserve out of a loop can yield an arbitrary improvement in the number
of dynamic checks. This improvement results in significant performance gains if the
reserve consults a complex or remote resource manager.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Program Dynamic
while read() # 0
consume 1

Program Mizedl

Enforcing Resource Bounds

Program Static
i :=0
while ¢ < 10000
consume 1
i =141

Program Mized2

N := read() while read() # 0

i :=0 i =0

while i < N while ¢ < 100
consume 1 consume 1
ii=i41 i =441

Fig. 1. Example programs

Also, moving checks earlier can guarantee that no resource errors occur in critical
code fragments such as atomic transactions. A standard compiler cannot perform
this optimization, because it changes the semantics of the program.

Section 2 introduces an imperative language with resource-aware constructs and
illustrates the benefits of our method over purely static or dynamic approaches.
Section 3 presents an operational semantics for our language and precisely charac-
terizes resource-use safety. Section 5 describes the safety condition generator (SCG)
(Section 5) and proves that it is sound. Section 6 shows how to construct a prover
that efficiently discharges the safety conditions. Section 7 presents our experience
using ESC/Java to check a Java implementation of tar. Section 8 positions this
paper with respect to relevant work in a few areas, Section 9 mentions ongoing ef-
forts and future work, and Section 10 concludes. The appendices present additional
technical information.

2. CONCEPT

Figure 1 shows four programs that use resources. Program Dynamic reads a se-
quence of numbers until it sees a zero. It consumes one resource unit for each
number that it reads. Note that read does not consume resources; only consume
does. Program Static takes no input and consumes exactly 10000 resource units.
Program Mizedl reads a number n, then consumes n resource units. Program
Mixed?2 reads a sequence of numbers until it sees a zero. It consumes 100 resource
units for each number that it reads.

A standard dynamic checking approach performs one check for each consume. It
executes all four programs safely but adds unnecessary overhead to the Static and
Mized programs. A typical static analyzer adds no overhead to the Static program
but cannot execute the other three safely.

We present a method that has the advantages of both static and dynamic check-
ers. Like the dynamic checker, it safely executes all four programs. Like the static
checker, it uses the static information available in each program to run more effi-
ciently.

Figure 2 shows the same four programs with reserve operations added. Each
reserve reserves resources from the runtime system, for later use by consume.
The reserve performs a dynamic check and debits the program’s resource quota,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Ajay Chander et al.

Program Dynamic
while read() # 0
reserve 1
consume 1
inv (true, 0)

Program Mized1

N := read()

reserve N

1 :=0

while 1 < N
consume 1
i =141

inv (<N, N —1)

Program Static
reserve 10000
i =0
while ¢ < 10000
consume 1
i =341
inv (¢ < 10000, 10000 — %)

Program Mized2
while read() # 0
reserve 100
i :=0
while ¢ < 100
consume 1
o=+ 1
inv (¢ <100, 100 — %)

Fig. 2. Example programs with reservations.

while consume simply performs a resource-using operation; it does not perform any
dynamic checks. For example, if the resource is file I/O, then reserve n checks
that the program can write n bytes to the file system, and consume actually writes
the bytes.

Note that we annotate each while loop with an invariant (A, e), which indicates
that the predicate A holds and at least e resources have been reserved but not yet
consumed. The invariant must hold before the loop test on every iteration. The
invariants are necessary to support our static checker. As the Dynamic program
suggests, non-trivial invariants are only necessary when hoisting reservations out of
loops. When we statically check the program’s resource use, we also check that its
invariants hold.

Note that all four programs reserve enough resources. Dynamic performs exactly
the same checks that it would in a dynamic system by acquiring each resource just
before using it. Static performs exactly one check at the very beginning of execution.
Mized!l and Mized2 perform far fewer checks than they would in a dynamic system
by reserving resources as early as possible; for example, Mized! performs N fewer
checks and Mized?2 performs 100 times fewer checks.

Note also that program Dynamic can run out of resources at any point during its
execution. Thus, it must be prepared to handle errors at all intermediate states.
On the other hand, program Mized! can only run out of resources at the very
beginning. Once it enters the main loop, it is guaranteed to succeeed. Thus, it only
needs to handle errors at the beginning, where error recovery is simpler.

To ensure that a program is safe, we need to prove that its resource consump-
tion is less than the quota imposed by the runtime system. Stated informally, we
need to prove consumption < quota. Using reserve, we factor this condition as
consumption < reservation, which we check statically, and reservation < quota,
which we check dynamically.

If the resource is reusable, then the arguments to reserve and consume are
allowed to be negative. A negative consume frees resources for later use. For
example, malloc has positive consumption, but free has negative consumption. A

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Enforcing Resource Bounds : 5

negative reserve returns resources to the runtime system when the program no
longer needs them.

This paper focuses on manual resource management, where the programmer man-
ually obtains resources, and manually returns them, if they are reusable. A garbage
collector can perform automated reclamation, but most collectors are dynamic, and
thus do not benefit from the static aspects of our technique. However, an auto-
mated annotator can statically insert reserve where necessary, so that the resulting
program successfully passes the verifier.

3. LANGUAGE

To formalize the static checking procedure, we use a simple imperative program-
ming language that computes with integer values. We assume that there is one
resource of interest whose amount is measured in some arbitrary unit. The com-
mand consume e models any runtime operation that consumes e resource units,
where e is an expression in the language. The command reserve e reserves e re-
source units from the runtime system. The reservation may fail, but if it succeeds,
we know that e resource units have been reserved.

Figure 3 shows the syntax of the full language. We assume that the variables
z take only integer values. Expressions are linear in their variables, since we can
multiply an expression by a constant but not by another expression.

The expression cond(b, e1,es) has value e; if b has value true and ey if b has
value false. The predicate cond(b, Py, P,) has value P; if b has value true and P,
if b has value false. The propositional connectives A, V, and = have their usual
meanings.

In addition to the structured control provided by while, we provide unstructured
control via functions. We assume that functions pass arguments and return results
in global variables. We annotate each function with a pre condition labelled req
(“requires”) and a post condition labelled ens (“ensures”). These conditions pro-
vide an interface between the caller and callee. At a function call, we prove the pre
condition and assume the post condition. In the function body, we assume the pre
condition and prove the post condition.

We syntactically distinguish the annotations A, a subset of the predicates P.
Annotations are conjunctions of equalities and inequalities between expressions.

p == f*c Programs
f = fun f req (Ao, eo0) ens (A1, e1) ¢ end Functions
¢ == skip|z:=e|ci;c2 |
consume e | reserve e
if b then ¢; else c¢2 |
while bdo c inv (A,e) |
call f Commands
e = x|nl|er+ea|nxe|cond(b, er,ez) Integer expressions
b 1= true|e; >ea|er =e2 Boolean expressions
P :=b|PINP|A= P
Vz.P | cond(b, P1, P2) Predicates
A = b| AL A A Annotations

Fig. 3. Simple imperative language definition.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 : Ajay Chander et al.

Program Nonlinearl Program Nonlinear2
N := read() N := read()
reserve N x N i :=0
i:=0 while ¢ < N
while i < N reserve N

J =0 J =0
while 7 < N while 7 < N
consume 1 consume 1
joi= g4l joi= g1
inv (j <N, N*N—ixN —j) inv (j < N, N—7
i =141 i =141
inv (i< N, NxN —i%xN) inv (true, 0)

Fig. 4. Example nonlinear programs.

The predicates P also allow universal quantification, conditionals, and implication,
but the left side of an implication is an annotation. These restrictions allow us
to define a simple prover based on a standard decision procedure for equality and
linear arithmetic (see Section 6).

Loop invariants and function pre and post conditions are annotations, not full
predicates. Since the scg only assumes pre conditions (at the start of a method),
post conditions (at function call return), loop invariants (at the start of the loop
body), and conditional tests (in each branch of the conditional), it is clear that the
left side of each implication is an annotation.

We can generalize the language in several ways. First, we can distinguish pro-
gram expressions from resource expressions and allow program expressions to be
nonlinear. Second, we can strengthen the prover to include quadratic or higher
polynomial resource expressions. In Figure 4, we could then write program Nonlin-
ear] instead of program Nonlinear2. Third, we can add negation and disjunction
to the P predicates with only a small loss in efficiency.

Our earlier paper [Chander et al. 2005] describes how to write an SCG for Java
bytecode. To handle unstructured code, we require the programmer to supply
an invariant at the target of each backward branch. We verify each code path
separately, where a code path begins at an invariant (or the start of a method)
and ends at an invariant (or the end of a method). Along each code path, we use
essentially the same technique described here.

Our language does not include parallelism or multiple threads. Addding these
features complicates the verifier considerably, since it has to account for all possible
interleaved thread executions. This complexity distracts from our main point, the
flexible combination of static and dynamic resource management.

4. SEMANTICS

This section formalizes the meaning of expressions and commands using a standard
operational semantics [Mitchell 1996]. The execution state is a pair (o,n) of an
environment o that maps variable names to integer values and a natural number n
that represents the amount of available resources, that is, resources that have been
reserved but not yet consumed. When we modify n, we carefully ensure that it is
non-negative.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Enforcing Resource Bounds . 7

<c/7 U7 n> U <a-l7 n/> <C//7o.l7nl> U R

SKIP — SEQ
(skip, o, n) | (o,n) (;,0,n) 4 R
(c',o,n) | Error
SEQE ASSIGN
(", o,n) | Error (z:=e,0,n) || (o]z := [e]o], n)
(o,n) Ee (o,n) Ee
C-OK C-FAIL
(consume e,0,n) | (o,n — [e]o) (consume e, o, n) |} ReservationExceeded
(o,n) = —e (o,n) F —e
R-OK R-FAIL1
(reserve e,o,n) |} (o,n + [e]o) (reserve e,0,n) || ReservationExceeded
R-FAIL2

(reserve e,0,n) || ReserveFailed

cEb {(c,o,n) | R ckEb (c,o,n) | R
IFT IFF
(if bthencelse d,o,n) | R (if bthencelse c,o,n) | R

cFb
(while bdo c inv (A, e),0,n) | (o,n)

WHILEF

ocE=b (cwhilebdo cinv (A,e),o,n) | R
(while bdo c inv (4,e),0,n) 4 R

WHILET

fun f req (Ao, eo) ens (A1,e1) cend {c,o,n) | R
(call f,o,n) 4 R

FUN

Fig. 5. Operational semantics

We write [e]o, [b]o, [A]o, and [P]o for the values of e, b, A, and P in the
environment . For example,

[ei]o if [b]o = true

feonatber.e2)le = { 1} 172 i,

We use the notation oz := n] to denote the environment that is identical to o
except that z is set to n. We write o = P if [P]o = true, and similarly for o = A
and o = b. We write (o,n) = e if n > [e]o. We write (o,n) = (P,e) if o = P and
(o,n) E e, and similarly for (o,n) | (A,e). In general, we write z ¥ y if it is not
the case that z = y.

We define the operational semantics of our language in terms of the judgment
(¢,0,n) | R, which means that the evaluation of command ¢ starting in state (o, n)
terminates with result R. The result R can be one of the following types of values.
If the command terminates normally, then R is a new state (¢, n’). If a reservation
fails, then R is the error ReserveFailed. If the program uses more resources than it
has reserved, then R is the error ReservationExceeded. We use the meta-variable
Error to stand for one of these two errors.

Figure 5 shows the operational semantics for our language. The consume and
reserve operations maintain the invariant that the amount n of available resources

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 : Ajay Chander et al.

is non-negative. The program can potentially violate this invariant when allocating
resources by calling consume with a positive argument or when returning resources
to the runtime system by calling reserve with a negative argument. In both
cases, we generate the ReservationExceeded error if the available resources would
otherwise become negative.

The reserve operation can also nondeterministically yield a ReserveFailed er-
ror. This behavior models the case when the program’s runtime quota is exceeded.
A deterministic semantics could add an explicit counter for the resources available
in the runtime system.

5. SAFETY CONDITION GENERATOR

This section defines the safety condition generator scg and proves a soundness the-
orem, which says that if the safety condition is valid, then the program is actually
safe. The scg uses a variant of Dijkstra’s weakest precondition calculus [Dijkstra
1976]. We adapt the calculus to use “generalized predicates” (P, e), which abbrevi-
ate PAn > e, meaning that P holds and at least e resource units have been reserved
but not yet consumed. The generalized predicate notation lets us increment and
decrement e explicitly, instead of using substitution on P.

The scg takes a command and a post condition and produces a pre condition.
The pre and post conditions are both generalized predicates. The soundness theo-
rem shows that if the pre condition produced by scg holds before ¢ runs, and the
ReserveFailed error does not occur, then the post condition holds after. It also
shows that the ReservationExceeded error cannot occur.

To show that a program p = f; ... f,c is safe to execute, we prove its verification
condition scg,,,,,(p), which is the conjunction of scg,.,,,(c) with scgy,,,, (f;) for each
fi- The function scg fun(f) verifies f with respect to its specified pre and post con-
ditions. The function scg,,, ,(c) verifies ¢ with respect to the pre condition (true, 0)
and the post condition (true,0). Since all states satisfy the generalized predicate
(true,0), the actual point is to ensure that the error ReservationExceeded does
not occur. Thus, the runtime system does not check for it, nor does it maintain the
counter n. Note that the runtime system does check for the ReserveFailed error,
which indicates that the program has dynamically exceeded its resource quota.

As Figure 6 shows, we define scg by induction on the syntax of commands. If we
interpret the generalized predicate (P, e) as the standard predicate PAn > e, where
n is the amount of resources reserved but not yet consumed, then our definition
matches the standard definition of weakest precondition for assignment, sequencing,
conditionals, loops, and functions.

We computed the scg for reserve and consume from the proof of the soundness
theorem (see the Appendix). However, we can think of reserve and consume as
the following commands:

reserve ¢ = if n+ e > 0thenn :=n -+ ¢’ else ReservationExceeded
consume ¢/ = if n —¢’ > 0thenn :=n — e’ else ReservationExceeded

where n is the amount of resources reserved but not consumed. Soundness means
that if the initial state satisfies scg(consume ¢')(P,e), then no errors occur in
consume €', and the final state satisfies (P, e). If we have ng resources initially, then
after consume €', we have ng —e’. According to the above definition of consume, no

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Enforcing Resource Bounds : 9

5C8r0q(f1- - fne) = 8C8run(f1) A Ascgry,(fn) Ascgemalc)

5C8emalc) = VZ.true = (PAO0>e¢)
where (P, e) = scg(c)(true,0)
and Z are the variables in ¢

SCgyy, (fun f req (Ao, eo) ens (A1, e1) cend) = VZ.Ag = (P Aeg > e)
where (P, e) = scg(c)(A1,e1)
and & are the variables in ¢

scg(skip)(Pe) = (Pye)

scg(cr;c2)(Pe) = scg(e1)(scg(c2)(Pe))

scg(z :=¢€')(P,e) = ([¢'/z]P, e’ /z]e)

scg(consume €')(P,e) = (P,cond(e > 0,e,0) +¢€')
scg(reserve ') (P, e) = (P, cond(e > 0,e,0) —€)
scg(if b then c; else c2)(P,e) = (cond(b, P1, P2), cond(b,e1,e2))

where (Pi,e1) = scg(c1)(P,e)

and (P2,e2) = scg(c2)(P,e)
scg(while bdo c inv (Aj,er))(P,e) = (A ANVZ. A = cond(b,Q’,Q), er)

where (P’,e’) = scg(c)(Ar,er)

and Q' =P Aer>¢€

and Q=PAer>e

and & are the variables modified in ¢
scg(call f)(P,e) = (A AVZ.A1 = (PNep >e€),e)

where fun f req (Ao, ep) ens (A1,e1) c end

and & are the variables modified in ¢

Fig. 6. Definition of scg

VN.true =
Vii < N =
cond(i < N,
i+1<NAN—i>cond(N—i—1>0N—i—1,0)+1,
true AN —¢>0) A
0>cond(N—-0>0,N—-0,0)— N

Fig. 7. scg of Mized! from Figure 2

errors means that ng — e’ > 0. And the final state satisfies (P, e) if ngp — e’ >e. So
we have ng — e’ > cond(e > 0,¢,0). The scg clause for consume €’ places exactly
this requirement on ng.

As an example of the scg in practice, Figure 7 shows the verification condition
for the program Mized! of Figure 2.

5.1 Soundness

The soundness theorem is:
THEOREM 1. For all o,n,c, P,e, R,c’,n’, if

(o,n) = scg(c)(P,e) and
(c,o,n) I R

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 : Ajay Chander et al.

then

R # ReservationExceeded and
If R ={(d',n), then R = (P,e)

Proof: By induction on the command c. See the Appendix for details.

5.2 Annotator

As it stands, our approach requires the programmer manually to insert calls to
reserve, write loop invariants, and add function pre and post conditions. We
are currently working on an annotation tool that automatically and correctly adds
these assertions, similar in spirit to Houdini [Flanagan and Leino 2001]. Although
finding optimal annotations is undecidable, the tool can “fall back” to inserting
a reserve before each consume. This annotation scheme is verifiable using the
trivial loop invariant true, and it removes the need for hand annotation when the
programmer does not care about efficiency. Beyond this “base line” performance,
we plan to include a knowledge base of common loop idioms and their invariants.

One advantage of manual annotation is that the programmer can decide how
early to reserve resources. It is less costly to reserve all resources at once, but it is
also “anti-social” to hold unused resources, preventing other concurrently running
programs from using them. The programmer can also decide whether to reserve
exactly the right amount of resources, which may be difficult to determine, or
whether to over-estimate.

6. PROVER

This section describes how to efficiently prove the safety conditions. We observe
that the grammar for predicates restricts the left side of implications to annotations,
not full predicates. Annotations are conjunctions of boolean expressions that are
equalities or comparisons between integer expressions.

We also observe that the our definition of scg respects this restriction. In partic-
ular, all formulas on the left side of an implication arise from loop invariants and
pre and post conditions.

Thus, we can use a simple theorem prover prove : axp — Bool where prove(A, P)
holds if and only if A = P is valid. Valid means that the formula is true for all val-
ues of the global variables and fresh constants introduced by the rule for universal
quantification. Figure 8 shows the definition of prove.

To prove A = P, prove recursively decomposes P until it reaches a boolean
expression b. Note that it only decomposes the right side of the implication; it leaves
the left side alone. It then uses a satisfiability procedure sat to check whether A = b
is valid. As usual, A = b is valid if and only if its negation A A —b is unsatisfiable.
Since the form of A is restricted, we only call sat on a conjunction of (possibly

prove(A,b)

prove(A, P A Po)
prove(A, Ay = P)
prove(A,Vz.P)
prove(A, cond(b, P1, P2))

—sat(A A —b)

prove(A, P1) A prove(A, Py)
prove(A A A1, P)

prove(A, [a/z]P) (a is fresh)
prove(A A b, P1) A prove(A A —b, P2)

Fig. 8. Definition of prove

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Enforcing Resource Bounds . 11

negated) boolean expressions. Since prove decomposes P using invertible rules, it
is sound and complete if and only if sat is sound and complete.

We can implement sat by combining decision procedures for equality and linear
arithmetic, as first described in [Nelson and Oppen 1979] and [Shostak 1984], and
more recently in [Shankar and Ruess 2002]. In our experiments, we used ESC/Java
[Flanagan et al. 2002] to generate and prove safety conditions from Java code.
ESC/Java uses the Simplify theorem prover [Detlefs et al. 2003], which is sound
and complete for our class of conditions.

Although we can probably trust our simple recursive prover, we may not want
to trust the more complex satisfiability procedure at its core. To address this
problem, we can use proof-carrying code [Necula 1997] and require the program
producer to send a safety proof to the program consumer. If the satisfiability
procedure generates verifiable proofs, then the producer can create a safety proof
by running the prove procedure and collecting all the satisfiability proofs. The
program consumer can check the proof by running the prove procedure, just as the
producer did, and checking each of the satisfiability proofs. We may also choose to
use PCC if we enrich the language of invariants and replace our simple prover with
a more complex first-order prover.

7. TAR EXAMPLE

This section describes our experience with a version of tar written in Java. We
wanted to see how hard it would be to annotate a “real” program, whether we could
report policy violations earlier, and whether we could reduce the cost of dynamic
checks. We chose a security policy with two quotas, one to limit the number of
bytes read from the file system, and one to limit the number of bytes written. In
this example, we leave memory management to Java’s garbage collector. If we were
verifying a C program, we would be more inclined to manage memory explicitly.

We began with a Java tar program from ICE Engineering [Endres 2003] but
removed some features to simplify the annotation process. The final program has
1700 lines of code, of which 577 lines are relevant to I/O.

We prototyped our ideas using ESC/Java [Flanagan et al. 2002], which checks
pre and post conditions for Java code using the Simplify theorem prover [Detlefs
et al. 2003]. Using the implementation of reserve and consume shown in Figure 9,
ESC/Java generates essentially the same verification condition as the scg function.
Note that this code is trusted, while the code for tar itself is untrusted.

Although ESC/Java was excellent for prototyping our ideas, it is not suitable for
verifying code safety. First, it is unsound, because it does not throughly check loop
invariants and side-effect assertions (modifies). Thus, it cannot form the basis
for a secure system. Second, it does not generate certificates for later verification.
Third, it is too large to run on mobile devices. For these reasons, we are developing
a lightweight implementation based on a certificate-generating prover [Necula and
Rahul 2001].

The implementation of our ideas in ESC/Java is straightforward. We maintain
two pools, a static pool and a dynamic pool. The static pool is the amount of
resources reserved but not yet consumed. In the operational semantics, it is repre-
sented by n. In ESC/Java, we represent it using a ghost variable that exists only
at verification time.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 Ajay Chander et al.

1 private static long dynamicPoolRead = 0;

2 //@ ghost public static long staticPoolRead = 0;

8 //@ invariant staticPoolRead >= 0;

4 //@ invariant dynamicPoolRead >= 0;

5

6 //@ requires n >= 0;

7 //@ ensures staticPoolRead == \old(staticPoolRead) + n;
8 //@ modifies dynamicPoolRead, staticPoolRead;

9 public static void reserveRead (long n) {

10 if (dynamicPoolRead >= n) {

11 dynamicPoolRead -= n;

12 //@ set staticPoolRead = staticPoolRead + n;
18} else {

14 System.out.println ("Read quota exceeded!\n");
15 System.exit (1);

16}

17 }

18

19 //@ requires n >= 0 && staticPoolRead >= n;

20 //@ ensures staticPoolRead == \old(staticPoolRead) - n;
21 //@ modifies staticPoolRead;

IS
IS

public static void consumeRead (long n) {
//@ set staticPoolRead = staticPoolRead - n;
}

SRS
N QL

Fig. 9. Trusted implementation of reserve and consume in ESC/Java.

The dynamic pool is difference between the program’s resource quota, determined
by the security policy, and the amount of resources the program has reserved. In
the operational semantics, the dynamic pool was not explicitly represented, and the
ReserveFailed error occured non-deterministically. In ESC/Java, we represent it
using a standard runtime global variable.

At the start of execution, the runtime system sets the dynamic pool to the pro-
gram’s resource quota. The reserve operation transfers resources from the dy-
namic pool to the static pool. The consume operation removes resources from the
static pool. The invariants ensure that neither pool drops below empty. Note that
ESC/Java verifies each method’s implementation against its specification using only
the specifications of the methods that it calls, not their implementations.

The naive tar implementation requires two dynamic checks for each 512-byte
block, one for read and one for write. Using reservations, our implementation
perform two checks per file rather than two checks per block. Figure 10 shows the
code to write a file to the archive. For verification to succeed, we replaced the usual
“while not EOF” loop with a for loop that counts a definite number of blocks.

Ideally, we would like to perform only two checks to create the entire archive. We
haven’t tried this experiment yet, but the code would need to prescan the directories
to build a table of file sizes. The prover would need to connect the loop that sums
the file sizes to the loop that reads the files.

We annotated each I/O method by computing its resource use in terms of the
resource use of its subroutines. If a method’s use was dynamic or difficult to state in
closed form, we added a dynamic check to stop its upward propagation (“the buck
stops here”). In general, the program can reserve more resources than it actually

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Enforcing Resource Bounds : 13

long size = file.length QO);
long q = size / recordSize;
long r = size ¥ recordSize;
long size2 = q * recordSize;
long size3 = size2 + (r > 0) ? recordSize : O0;

Resources.reserveWrite (size3 + recordSize);
Resources.reserveRead (size);
out.writeHeaderRecord (entry);

® QYD G A o

©

10

11 for (int i = 0; i < q; ++i) {

12 in.read (buffer, 0, recordSize);
18 out.writeRecord (buffer);

14}

15

16 if (r > 0) {

17 Arrays.fill (buffer, (byte) 0);
18 in.read (buffer, 0, r);

19 out.writeRecord (buffer);

20 }

Fig. 10. Untrusted Java tar code excerpt.

uses, but we found it unnecessary to overestimate, since precise accounting was
easy enough. In total, tar required 33 lines of annotation.

We tested tar on a directory containing 13.4 mb in 1169 files, for an average file
size of 11.7 kb. The unannotated program performed 57210 I/O operations on 512-
byte blocks. Since each operation requires a dynamic check, it also performed 57210
dynamic checks. The annotated program also performed 57210 I/O operations.
However, since it performed one dynamic check per file rather than per block, it
only performed 2389 dynamic checks. That is, it performed almost 24 times fewer
dynamic checks. Of course, this ratio is the average file size divided by 512.

Because block I/O operations are much more expensive than dynamic checks,
we did not obtain a corresponding decrease in overall run time. However, our
technique also applies to operations where the check is expensive relative to the
operation itself, such as instruction counting, where the limited resource is the
number of instructions the program executes, memory reference counting, where
the limited resource is the number of memory references the program makes, and
array bounds checking, where the static verifier checks that all array references are
in-bounds. Indeed, a simple experiment with gcc shows that removing an array
bounds check from a tight loop reduces runtime by 33%.

8. RELATED WORK

Our work combines ideas from several areas: Dijkstra’s weakest precondition com-
putation [Dijkstra 1976], Necula and Lee’s proof-carrying code [Necula 1997], par-
tial evaluation’s separation of static and dynamic binding times [Jones et al. 1993,
and standard compiler optimizations such as hoisting and array bounds check elim-
ination [Gupta 1993].

Since we combine static and dynamic checking, our work is only tangentially
related to purely static approaches such as Resource Bound Certification [Crary

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 : Ajay Chander et al.

and Weirich 2000] and Mobile Resource Guarantees [Hofmann and Jost 2003] or
purely dynamic approaches such as the Java security monitor [Gong 1999]. The
implementations based on bytecode rewriting [Czajkowski and von Eicken 1998;
Evans and Twyman 1999; Erlingsson and Schneider 1999; Colcombet and Fradet
2000; Pandey and Hashii 2000; Chander et al. 2001; Kim et al. 2001] are also purely
dynamic, since they add checks without performing significant static analysis.

Our approach is a non-trivial instance of Necula and Lee’s safe kernel extension
method [Necula and Lee 1996]. They show that the OS designer can export an
unsafe, low-level API if he provides a set of rules for its use, and a static analysis
that checks whether clients follow these rules. By contrast, most designers wrap the
low-level API in a safe but inefficient high-level API that clients can call without
restriction. For array bounds checking, the low-level API is the unguarded reference,
while the high-level API guards the reference with a bounds check. The usage rule
is that the index must be in bounds.

In our case, the low-level API is reserve and consume. The high-level API,
which we intentionally avoid, immediately prefixes consume by reserve, so that
each consume has enough resources. This high-level API provides pure dynamic
checking. The usage rule is that we reserve some time before we consume, but
not necessarily immediately before. We extricate this useful, low-level API from its
high-level wrapper and provide a flexible but safe set of usage rules, which we show
how to statically check efficiently. The end result is a novel combination of static
and dynamic checking.

On the surface, our work seems similar to approaches that place dynamic checks
according to static analysis, such as Wallach’s SAFKAST system [Wallach et al.
2000] and Gupta’s elimination and hoisting of array bounds checks [Gupta 1993].
These systems limit the programmer to the safe, high-level API, but they inline
and optimize calls to it according to the low-level API’s usage rules and seman-
tics. By contrast, like PCC, we separate verification from optimization, which is
untrusted and can be performed by the programmer or by an automated tool. The
programmer can also ignore the high-level API and call the low-level API directly.

The paper [Patel and Lepreau 2003] also describes a hybrid (mixed static and
dynamic) approach to resource accounting. They use static analysis of execution
time to reject some overly expensive active network router extensions. They use
dynamic checks to monitor other, unspecified resources. At this level of detail,
their static and dynamic checks are not tightly coupled. However, they also use
static analysis to locate dynamic network polling operations. They bind their ideas
closely to the complex active network setting and do not extract a simple, reuseable
API or a proof system for reasoning about it.

The TALT-R system [Vanderwaart and Crary 2005] statically verifies that a
program performs a yield operation after every Y instructions. Their language
appears similar to ours, but yielding twice does not allow a program to execute
2Y instructions. Thus, their language does not allow the programmer to hoist and
combine dynamic checks.

9. EXTENSIONS AND FUTURE WORK

We are currently engaged in future work in several different areas. First, due to
the limitations of existing tools, we are developing an SCG and prover that can

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Enforcing Resource Bounds : 15

prove resource-use safety for Java bytecode and produce proof witnesses. This
effort presents several engineering challenges, such as scaling our SCG to a larger
language, tracking source level annotations in bytecode, and building an efficient
proof checker that performs well on mobile devices. Second, we are designing a tool
that automatically and correctly annotates bytecode with resource reservations.
Third, we are applying our techniques to other security mechanisms such as stack
inspection and access control. Fourth, we are investigating situations where the
check is expensive relative to the operation itself, such as instruction counting and
memory reference sandboxing.

10. CONCLUSION

We have demonstrated a novel API for enforcing resource bounds that allows the
programmer to trade-off intelligently between the static and dynamic approaches.
In most of the program, the programmer places reserve immediately before consume.
However, in inner loops, the programmer works hard to hoist and combine reserve
operations. Thus, when intelligently applied, our approach offers the best of both
worlds. Like dynamic checking, it handles complex programs and is relatively easy
to apply. Like static checking, it is efficient and detects errors early.

By adapting ideas from weakest preconditions and proof-carrying code, we showed
how the code consumer can statically verify that programs do not exceed their re-
source bounds. We presented a practical language and showed how to implement a
sound but efficient verifier for it. Finally, we described our experience annotating
and verifying a Java version of tar for resource safety.

Furthermore, our approach generalizes to APIs other than resource checking. At
present, code consumers hide these APIs in high-level wrappers that are safe but
inefficient. Using our hybrid approach, code consumers can give code producers
direct access to efficient, low-level APIs without sacrificing safety.

APPENDIX

We show the proof of the soundness theorem for the safety condition generator scg.
THEOREM 1. For all o,n,c, P,e, R,c’,n’, if

(o,n) = scg(c)(P,e) and
(c,o,n) I R

then

R # ReservationExceeded and
If R=(o',n'),then R |= (P,e)

Proof: By induction on the command c¢. We show the cases for consume and
reserve. For consume, we want

(o,n) = scg(consume €')(P,e) A
(consume €¢’,0,n) || R

=

R # ReservationExceeded A
R={(o',n'y = RE(Pe)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 : Ajay Chander et al.

By the definition of scg, we want
(o,n) = (P,cond(e > 0,e,0) +€') A
(consume €¢’,0,n) | R
=

R # ReservationExceeded A
R={0o',n') = R (P,e)

Because (o,n) = e, only rule c-0K applies, so we want

(o,n) = (P,cond(e > 0,e,0) + ¢)
=
(o;n —[e']o) = (Pre)

By the definition of =, we want

n > [cond(e > 0,¢,0) + €¢'Jo
=
n— [e'lo > [e]o
which holds by arithmetic. For reserve, we want
(o,n) |= scg(reserve €¢')(P,e) A
(reserve ¢/,0,n) | R
=

R # ReservationExceeded A
R={o',n') = R E (P,e)

By the definition of scg, we want

(o,n) E (P,cond(e > 0,e,0) —¢') A
(reserve ¢/,0,n) | R

=

R # ReservationExceeded A
R={(d',n') = RE (Pe)

There are three rules for reserve, R-OK, R-FAIL1, and R-FAIL2. Rule R-FAIL1 does
not apply because (o,n) = —e. If rule R-FAIL2 applies, we want

ReserveFailed # ReservationExceeded
which holds trivially. If rule R-OK applies, we want

(o,n) = (P,cond(e > 0,¢,0) —¢)
=
(o:n+[e']o) = (Pre)

By definition of =, we want

=
+ [e']o > [e]o

which holds by arithmetic. [

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

n > [cond(e > 0,e,0) — e']o
n

Enforcing Resource Bounds . 17

REFERENCES

CHANDER, A., ESPINOSA, D., Is,am, N., LEE, P., AND NECULA, G. 2005. JVer: a Java verifier. In
Computer Aided Verification. Edinburgh, Scotland.

CHANDER, A., MITCHELL, J., AND SHIN, I. 2001. Mobile code security by Java bytecode instru-
mentation. In DARPA Information Survivability Confernce and Exposition.

CoOLCOMBET, T. AND FRADET, P. 2000. Enforcing trace properties by program transformation. In
Principles of Programming Languages. Boston, Massachusetts.

CRARY, K. AND WEIRICH, S. 2000. Resource bound certification. In Principles of Programming
Languages. Boston, Massachusetts.

CzAJKOWSKI, G. AND VON EICKEN, T. 1998. JRes: a resource accounting interface for Java. In
Object-Oriented Programming, Systems, Languages, and Applications. Vancouver, BC.

DeTLEFS, D., NELSON, G., AND SAXE, J. 2003. Simplify: a theorem prover for program checking.
Tech. Rep. HPL-2003-148, HP Laboratories. July.

DuKSTRA, E. 1976. A Discipline of Programming. Prentice-Hall.

ENDRES, T. 2003. Java Tar 2.5. http://www.trustice.com.

ERLINGSSON, U. AND SCHNEIDER, F. 1999. SASI enforcement of security policies: a retrospective.
In New Security Paradigms Workshop. Caledon, Canada.

EvANs, D. AND TWYMAN, A. 1999. Flexible policy-directed code safety. In Security and Privacy.
Oakland, California.

FranacaN, C. AND LEmNo, K. R. M. 2001. Houdini, an annotation assistant for ESC/Java. In
Formal Methods Europe (LNCS 2021). Berlin, Germany.

FrLAaNAGAN, C., LEINO, R., LILIBRIDGE, M., NELSON, G., SAXE, J., AND STATA, R. 2002. Extended
static checking for Java. In Programming Language Design and Implementation. Berlin, Ger-
many.

GoNG, L. 1999. Inside Java 2 Platform Security. Addison-Wesley.

GupTA, R. 1993. Optimizing array bound checks using flow analysis. ACM Letters on Program-
ming Languages and Systems 2, 1-4 (March—December), 135-150.

HorMANN, M. AND JOST, S. 2003. Static prediction of heap space usage for first-order functional
programs. In Principles of Programming Languages. New Orleans, Louisiana.

JONES, N., GOMARD, C., AND SESTOFT, P. 1993. Partial Evaluation and Automatic Program
Generation. Prentice-Hall.

Kim, M., KANNAN, S., LEE, 1., AND SOKOLSKY, O. 2001. Java-MaC: a run-time assurance tool for
Java programs. FElectronic Notes in Theoretical Computer Science 55, 2.

MITCHELL, J. C. 1996. Foundations for Programming Languages. MIT Press.

NEcULA, G. 1997. Proof-carrying code. In Principles of Programming Languages. Paris, France.

NEcCULA, G. AND LEE, P. 1996. Safe kernel extensions without run-time checking. In Operating
Systems Design and Implementation. Seattle, Washington.

NEcuULA, G. C. AND RAHUL, S. P. 2001. Oracle-based checking of untrusted software. In Principles
of Programming Languages. London, England.

NELsSON, G. AND OPPEN, D. 1979. Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems 1, 2 (Oct.), 245-257.

PANDEY, R. AND HasHil, B. 2000. Providing fine-grained access control for Java programs via
binary editing. Concurrency: Practice and FExperience 12, 1405—-1430.

PATEL, P. AND LEPREAU, J. 2003. Hybrid resource control of active extensions. In Open Archi-
tectures and Network Programming. San Francisco, California.

SHANKAR, N. AND RUESs, H. 2002. Combining Shostak theories. In Rewriting Techniques and
Applications. Copenhagen, Denmark.

SHOSTAK, R. E. 1984. Deciding combinations of theories. Journal of the ACM 31, 1 (Jan.), 1-12.

VANDERWAART, J. AND CRARY, K. 2005. Automated and certified conformance to responsive-
ness policies. In Workshop on Types in Language Design and Implementation. Long Beach,
California.

WALLACH, D., APPEL, A., AND FELTEN, E. 2000. SAFKASI: a security mechanism for language-
based systems. Transactions on Software Engineering 9, 4 (October), 341-378.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 : Ajay Chander et al.

Received September 2005; accepted 777

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

