
CS 262a 
Advanced Topics in Computer Systems

Lecture 2

End-to-End / System R
August 28, 2023

John Kubiatowicz
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~kubitron/cs262

8/28/2023 2cs262a-F23 Lecture-02

Today’s Papers
• End-To-End Arguments in System Design

J. H. Saltzer, D. P. Reed, D. D. Clark. Appears in ACM Transactions on Computer Systems,Vol
2, No. 4, November 1984, pp 277-288.

• A History and Evaluation of System R
Donald D. Chamberlin, Morton A. Astrahan, Michael W. Blasgen, James N. Gray, W. Frank 
King, Bruce G. Lindsay, Raymond Lorie, James W. Mehl, Thomas G. Price, Franco Putzolu, 
Patricia Griffiths Selinger, Mario Schkolnick, Donald R. Slutz, Irving L. Traiger, Bradford W. 
Wade and Robert A. Yost. Appears in Communications of the ACM, Vol 24, No. 10, October 
1981, pp 632-646 

• Both papers represented significant (controversial) paradigm shifts
• Changing the design elements

– E2E: Where to place functionality
– System R: Data independence from physical representation

• Contrasting top-down vs. bottom-up views

8/28/2023 3cs262a-F23 Lecture-02

The Internet Hourglass

Data Link

Physical

Applications

The Hourglass Model

Waist

There is just one network-layer protocol, IP.
The “narrow waist” facilitates interoperability.

SMTP HTTP NTPDNS

TCP UDP

IP

Ethernet SONET 802.11

Transport

FiberCopper Radio

8/28/2023 4cs262a-F23 Lecture-02

Implications of Hourglass

Single Internet-layer module (IP):
• Allows arbitrary networks to interoperate

– Any network technology that supports IP can exchange packets

• Allows applications to function on all networks
– Applications that can run on IP can use any network

• Supports simultaneous innovations above and below IP
– But changing IP itself, i.e., IPv6, very involved (IPng proposed in 9/93)



8/28/2023 5cs262a-F23 Lecture-02

Drawbacks of Layering
• Layer N may duplicate layer N-1 functionality 

– E.g., error recovery to retransmit lost data
• Layers may need same information

– E.g., timestamps, maximum transmission unit size
• Layering can hurt performance

– E.g., hiding details about what is really going on
• Some layers are not always cleanly separated

– Inter-layer dependencies for performance reasons
– Some dependencies in standards (header checksums)

• Headers start to get really big
– Sometimes header bytes >> actual content

8/28/2023 6cs262a-F23 Lecture-02

Placing Network Functionality
• Hugely influential paper: “End-to-End Arguments in System Design” by 

Saltzer, Reed, and Clark (‘84)

• “Sacred Text” of the Internet
– Endless disputes about what it means
– Everyone cites it as supporting their position

8/28/2023 7cs262a-F23 Lecture-02

Basic Observation
• Some types of network functionality can only be correctly implemented 

end-to-end
– Reliability, security, etc

• Because of this, end hosts:
– Can satisfy the requirement without network’s help
– Will/must do so, since can’t rely on network’s help

• Therefore don’t go out of your way to implement them in the network

8/28/2023 8cs262a-F23 Lecture-02

Example: Reliable File Transfer

• Solution 1: make each step reliable, and then concatenate them

• Solution 2: end-to-end check and try again if necessary

OS

Appl.

OS

Appl.

Host A Host B

OK



8/28/2023 9cs262a-F23 Lecture-02

Discussion
• Solution 1 is incomplete

– What happens if memory is corrupted?
– Receiver has to do the check anyway!

• Solution 2 is complete
– Full functionality can be entirely implemented at application layer with no need for 

reliability from lower layers

• Is there any need to implement reliability at lower layers?
– Well, it could be more efficient or more problematic 

8/28/2023 10cs262a-F23 Lecture-02

End-to-End Principle
Implementing this functionality in the network:
• Doesn’t reduce host implementation complexity
• Does increase network complexity
• Probably imposes delay and overhead on all applications, even if 

they don’t need functionality

• However, implementing in network can enhance performance in 
some cases

– E.g., very lossy links such as wireless

• It may also help mitigate denial of service and/or privacy

8/28/2023 11cs262a-F23 Lecture-02

Conservative Interpretation of E2E

• Don’t implement a function at the lower levels of the system 
unless it can be completely implemented at this level

• Unless you can relieve the burden from hosts, don’t bother

8/28/2023 12cs262a-F23 Lecture-02

Moderate Interpretation

• Think twice before implementing functionality in the network

• If hosts can implement functionality correctly, implement it in a lower 
layer only as a performance enhancement

• But do so only if it does not impose burden on applications that do not 
require that functionality

• This is the interpretation I use



8/28/2023 13cs262a-F23 Lecture-02

Older Research Example
• Goal: Flexible networking protocols in support of error resilient video 

codecs

• Target domain: Live video streaming over 2G GSM cellular network

• Environment: Low-bit rate video codecs that are highly tolerant of errors 
in the byte stream

– H.263++: Motion vectors, prediction, error/loss concealment

• What is the role of reliability in the network?

8/28/2023 14cs262a-F23 Lecture-02

Fixed Host

Unix BSDi 3.0
GSM

Basestation

GSM 
Network PSTN

Mobile Host

Unix BSDi 3.0

Live Video Streaming over Cellular

Socket Interface
RTP

Packetization
H.263+ Encoder

UDP / UDPLite
IP

PPP / PPPLite

RTP
De-Packetization
H.263+ Decoder

UDP / UDPLite
IP

PPP / PPPLite

Socket Interface

Radio Link Protocol Radio Link Protocol

8/28/2023 15cs262a-F23 Lecture-02

Wireless Video Streaming
• GSM Radio Link Protocol: reliable data delivery on radio link

– Issue: reliability versus delay – do you need reliability when you have an error tolerant 
video codec?

• Solution #1: turn off reliability in RLP and PPP
– Fewer video packets delivered!
– UDP checksums caused “damaged” packets to be dropped

8/28/2023 16cs262a-F23 Lecture-02

Need Variable Degrees of Reliability
• Protect headers (need for routing/delivery), not data!
• Solution #2:

– UDP Lite (Larzon, Degemark, and Pink)
» Flexible checksum only protects packet headers and allows apps to receive 

corrupted data
– RLP Lite / PPP Lite (new protocols)

» Same as UDP Lite, but for radio link / link layer

• Simulation/experiments: UDP Lite/RLP Lite/PPP Lite
– Collected 4480 min of wireless video traces, (~4 min per video)
– Bad channel conditions (signal strength ~2-3), BLER ~ 1.5%
– Used simulation to repeat experiments

• Results
– Less E2E delay, constant jitter, higher throughput, lower packet loss 

… than UDP (with or without RLP)



8/28/2023 17cs262a-F23 Lecture-02

End to End Delay 
Mean & Min/Max

1.726

0.511
0.377

0.0

0.5

1.0

1.5

2.0

2.5

UDP, RLP UDP, RLP Lite* UDP Lite, RLP Lite*

En
d-

to
-E

nd
 D

el
ay

 (s
)

8/28/2023 18cs262a-F23 Lecture-02

Packet Loss 
Mean & Min/Max

0.00%

1.05%

2.09%

0%

1%

2%

3%

UDP, RLP UDP, RLP Lite* UDP Lite, RLP Lite*

Pa
ck

et
 L

os
s 

(%
)

8/28/2023 19cs262a-F23 Lecture-02

Factory

Home

Warehouse/Cloud

Clusters
g

• Smart Manufacturing
• Smart Contracts
• Data Analytics
• Machine Learning

A Physical View of modern Applications:
Distributed, Ad Hoc, and Vulnerable

8/28/2023 20cs262a-F23 Lecture-02

Anti End-to-End Arguments for Edge Compute?
Reasoning about the infrastructure

• Trust Domains: Groups of Resources owned by single entity
– Reflect the ownership, trustworthiness, and degree of maintenance 
– Carry unique economic, political, or incentive structure of the owner
– Pay-for-service, federated utility model

• Trust for: 
– Message Transport, Location Resolution, DataCapsule Service, Secure Enclave Service (SES)
– Insulation from denial of service attacks
– Conversations routed according to DataCapsule owner’s Trust Preferences

Global (Tier-1) Domain
(Trusted Service Provider)

Edge Domain #2
(e.g. Remote Status/CTRL)Edge Domain #1

(e.g. Factory)
SES

SES
SES

Location
Services

Location
Services

Global
Location
Services

GDP Peering

Mobile Domain

Location
Services

SES



8/28/2023 21cs262a-F23 Lecture-02

Summary

• E2E argument encourages us to keep IP simple

• If higher layer can implement functionality correctly, implement it in 
a lower layer only if

– it improves the performance significantly for application that need that functionality, 
and

– it does not impose burden on applications that do not require that functionality

• Principle is broadly applicable to other systems domains
– Storage, architecture, …

8/28/2023 22cs262a-F23 Lecture-02

Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time” challenge?
• How would you review this paper today?

BREAK

8/28/2023 24cs262a-F23 Lecture-02

DataBase Management Systems History
• Late 60’s: network (CODASYL) & hierarchical (IMS) DBMS

– IMS built for Apollo program
– Charles Bachman: father of CODASYL predecessor IDS (at GE in early 1960’s), 

Turing award #8 (1973, between Dijkstra and Knuth) 



8/28/2023 25cs262a-F23 Lecture-02

Network Model Example

8/28/2023 26cs262a-F23 Lecture-02

IMS Model

• IMS Example: 
– One is parent, one is child
– Problems include redundancy and requirement of having a parent 

(deletion anomalies) 
– Low-level “record-at-a-time’” data manipulation language (DML), 

i.e., physical data structures reflected in DML (no data 
independence)

8/28/2023 27cs262a-F23 Lecture-02

1970: Edgar Codd’s Paper
• The most influential paper in DB research

– Set-at-a-time DML with the key idea of “data independence”
– Allows for schema and physical storage structures to change under the covers
– Papadimitriou: “as clear a paradigm shift as we can hope to find in computer science”
– Edgar F. Codd: Turing award #18 (1981, between Hoare and Cook)

8/28/2023 28cs262a-F23 Lecture-02

Data Independence – both logical and physical 

• What physical tricks could you play under the covers? Think about 
modern HW! 

• “Hellerstein’s Inequality”: 
– Need data independence when dapp/dt << denvironment/dt
– Other scenarios where this holds? 
– This is an early, powerful instance of two themes: levels of indirection and adaptivity



8/28/2023 29cs262a-F23 Lecture-02

“Modern” DBMS Prototypes

• Mid 70’s: 
– Wholesale adoption of Codd’s vision in 2 full-function (sort of) prototypes
– Ancestors of essentially all today’s commercial systems 

• Ingres and System R

8/28/2023 30cs262a-F23 Lecture-02

Ingres : UCB 1974-77 
• An early and pioneering “pickup team’”, including Stonebraker & Wong

• Begat Ingres Corp (CA), CA-Universe, Britton-Lee, Sybase, MS SQL 
Server, Wang’s PACE, Tandem Non-Stop SQL 

8/28/2023 31cs262a-F23 Lecture-02

System R : IBM San Jose (now Almaden) 
• 15 PhDs 

• Begat IBM's SQL/DS & DB2, Oracle, HP’s Allbase, Tandem Non-Stop 
SQL

• Jim Gray: Turing Award #22 (1998, between Englebart and Brooks) 

• Lots of Berkeley folks on the System R team
– Including Gray (1st CS PhD @ Berkeley), Bruce Lindsay, Irv Traiger, Paul McJones, Mike 

Blasgen, Mario Schkolnick, Bob Selinger , Bob Yost. See 
http://www.mcjones.org/System_R/SQL_Reunion_95/sqlr95-Prehisto.html#Index71.

8/28/2023 32cs262a-F23 Lecture-02

Discussion
• System R arguably got more stuff “right”, though there was lots of 

information passing between both groups 

• Both were viable starting points, proved practicality of relational 
approach

– Direct example of theory --> practice! 
– ACM Software Systems award #6 shared by both 
– Stated goal of both systems was to take Codd’s theory and turn it into a workable 

system as fast as CODASYL but much easier to use and maintain

– Interestingly, Stonebraker received ACM SIGMOD Innovations Award #1 (1991), 
Gray #2 (1992), whereas Gray got the Turing first. 



8/28/2023 33cs262a-F23 Lecture-02

Commercial RDBMS
• Early 80’s: commercialization of relational systems 

– Ellison’s Oracle beats IBM to market by reading white papers
– IBM releases multiple RDBMSs, settles down to DB2
– Gray (System R), Jerry Held (Ingres) and others join Tandem (Non-Stop SQL)
– Kapali Eswaran starts EsVal, which begets HP Allbase and Cullinet
– Relational Technology Inc (Ingres Corp), Britton-Lee/Sybase, Wang PACE grow out of 

Ingres group 
– CA releases CA-Universe, a commercialization of Ingres 
– Informix started by Cal alum Roger Sippl (no pedigree to research) 
– Teradata started by some Cal Tech alums, based on proprietary networking technology (no 

pedigree to software research, though see parallel DBMS discussion later in semester!) 

8/28/2023 34cs262a-F23 Lecture-02

The Rise of SQL
• Mid 80’s: SQL becomes “intergalactic standard”

– DB2 becomes IBM’s flagship product
– IMS “sunseted”

8/28/2023 35cs262a-F23 Lecture-02

Today
• Network & hierarchical are legacy systems (though commonly in use!) 

– IMS still widely used in banking, airline reservations, etc. (remains a major IBM cash cow)

• Relational market commoditized
– Microsoft, Oracle and IBM fighting over bulk of market
– NCR Teradata, Sybase, HP Nonstop and a few others vying to survive on the fringes
– OpenSource coming of age, including MySQL, PostgreSQL, Ingres (reborn)
– BerkeleyDB is an embedded transactional store that is widely used as well, but now owned 

by Oracle
– XML and object-oriented features have pervaded the relational products as both interfaces 

and data types, further complicating the “purity” of Codd’s vision

8/28/2023 36cs262a-F23 Lecture-02

Database View of Applications
• Big, complex record-keeping applications like SAP and PeopleSoft, 

which run over a DBMS
• “Enterprise applications” to keep businesses humming

– ERP: Enterprise Resource Planning (SAP, Baan, PeopleSoft, Oracle, IBM, etc.) 
– CRM: Customer Relationship Management (E.phiphany, Siebel, Oracle, IBM, Salesforce, 

etc.) 
– SCM: Supply Chain Management (Trilogy, i2, Oracle, IBM, etc.) 
– Human Resources, Direct Marketing, Call Center, Sales Force Automation, Help Desk, 

Catalog Management, etc. 

• Typically client-server (a Sybase “invention”) with a form-based API
– Focus on resource management secondary to focus on data management

• Traditionally, a main job of a DBMS is to make these kinds of apps easy 
to write



8/28/2023 37cs262a-F23 Lecture-02

Relational System Architecture
• RDMBS are BIG, hard to modularize pieces of software

– Many macro and micro scale system design decisions 
– We’ll focus on macro design issues today (micro in future lectures)

• Disk management choices: 
– file per relation 
– big file in file system 
– raw device 

• Process Model: 
– process per user 
– server 
– multi-server 

• Hardware Model: 
– shared nothing 
– shared memory 
– shared disk 

8/28/2023 38cs262a-F23 Lecture-02

Relational System Architecture
• Basic modules: 

– parser 
– query rewrite 
– optimizer 
– query executor 
– access methods 
– buffer manager 
– lock manager 
– log/recovery manager 

8/28/2023 39cs262a-F23 Lecture-02

Notes on System R
• Some “systems chestnuts” seen in this paper:

– Expect to throw out the 1st version of the system 
– Expose internals via standard external interfaces whenever possible (e.g. catalogs as tables, 

the /proc filesystem, etc.) 
– Optimize the fast path 
– Interpretation vs. compilation vs. intermediate “opcode” representations 
– Component failure as a common case to consider 
– Problems arising from interactions between replicated functionality (in this case, scheduling) 

8/28/2023 40cs262a-F23 Lecture-02

Some important points of discussion 
• Flexibility of storage mechanisms: 

– Domains/inversions vs. heap-files/indexes

• Use of TID-lists common in modern DBMS so be doctrinaire? What 
about Data Independence?

– One answer: you have to get transactions right for each “access method”



8/28/2023 41cs262a-F23 Lecture-02

Some important points of discussion 
• System R was often CPU bound (though that’s a coarse-

grained assertion -- really means NOT disk-bound)
– This is common today in well-provisioned DBMSs as well. Why?

• DBMSs are not monolithic designs, really
– The RSS stuff does intertwine locking and logging into disk access, indexing and 

buffer management. But RDS/RSS boundary is clean, and RDS is 
decomposable. 

8/28/2023 42cs262a-F23 Lecture-02

Some important points of discussion 
• Access control via views: a deep application of data independence?!

• Transactional contribution of System R (both conceptual and 
implementation) as important as relational model, and in fact should be 
decoupled from relational model. 

8/28/2023 43cs262a-F23 Lecture-02

The “Convoy Problem”
• A classic cross-level scheduling interaction

– We will see this again! 

• Poorly explained in the paper, three big issues
• Two interactions between OS and DB scheduling: 

– #1: OS can preempt a database “process” even when that process is holding a high-traffic 
DB lock 

– #2: DB processes sitting in DB lock queues use up their OS scheduling quanta while waiting 
(poorly explained in text), then are removed from the “multiprogramming set” and go to 
“sleep” – and an expensive OS dispatch is required to run them again 

8/28/2023 44cs262a-F23 Lecture-02

Convoy Problem (Con’t)
• Last issue is DBMS uses a FCFS wait queue for lock 

– For a high-traffic DB lock, DB processes will request it on average every T timesteps
– If the OS preempts a DB process holding that high-traffic DB lock, the queue behind the 

lock grows to include almost all DB processes
– Moreover, the queue is too long to be drained in T timesteps, so it’s “stable” -- every DB 

process queues back up before the queue drains, and they burn up their quanta pointlessly 
waiting in line, after which they are sent to sleep

– Hence each DB process is awake for only one grant of the lock and the subsequent T 
timesteps of useful work, after which they queue for the lock again, waste their quanta in the 
queue, and are put back to sleep

• The result is that the useful work per OS waking period is about T 
timesteps, which is shorter than the overhead of scheduling – hence the 
system is thrashing



8/28/2023 45cs262a-F23 Lecture-02

“Solution” 
• Attacks the only issue that can be handled without interacting with the 

OS: #3 the FCFS DB lock queue
– Paper’s explanation is confusing

• Point is to always allow any one of the DB processes currently in the 
“multiprogramming set” to immediately get the lock without burning a 
quantum waiting on the lock

– Hence no quanta are wasted on waiting, so each process spends almost all of its allotted 
quanta on “real work”

– Technically, this is not “fair”, however, it is “efficient”!

• Note that the proposed policy achieves this without needing to know 
which processes are in the OS’ multiprogramming set 

8/28/2023 46cs262a-F23 Lecture-02

System R and INGRES
• The prototypes that all current systems are based on
• Basic architecture is the same, and many of the ideas remain in today’s 

systems: 
– Optimizer remains, largely unchanged 
– RSS/RDS divide remains in many systems 
– SQL, cursors, duplicates, NULLs, etc. 

» the pros and cons of duplicates. Alternatives? 
» pros and cons of NULLs. Alternatives? 
» grouping and aggregation 

– updatable single-table views 
– begin/end xact at user level, savepoints and restore, catalogs as relations, flexible security 

(GRANT/REVOKE), integrity constraints 
– triggers (!!), clustering, compiled queries, B-trees 
– Nest-loop & sort-merge join, all joins 2-way 
– dual logs to support log failure 

8/28/2023 47cs262a-F23 Lecture-02

Stuff they got wrong: 
• Shadow paging 

• Predicate locking 

• SQL language 
– Duplicate semantics 
– Subqueries vs. joins 
– Outer join 

• Rejected hashing

8/28/2023 48cs262a-F23 Lecture-02

OS and DBMS: Philosophical Similarities
• UNIX paper: “The most important job of UNIX is to provide a file system” 

– UNIX and System R are both “information management” systems! 
– both also provide programming APIs for code 

• Both providing what they think are crucial APIs for applications



8/28/2023 49cs262a-F23 Lecture-02

Difference in Focus between OS view and DB view?
• Bottom-Up (elegance of system) vs. Top-Down (elegance of semantics) 

– main goal of UNIX: provide a small elegant set of mechanisms, and have programmers (i.e. C 
programmers) build on top of it.

» They are proud that “No large ‘access method’ routines are required to insulate the 
programmer from system calls”. OS viewed its role as presenting hardware to computer 
programmers.

» No native locking mechanisms!
– main goal of System R and Ingres: provide a complete system that insulated programmers (i.e. 

SQL + scripting) from the system
» Guarantee clearly defined semantics of data and queries. After all, DBMS views its role as 

managing data for application programmers.

• Affects where the complexity goes! 
– to the system, or the end-programmer? 
– question: which is better? in what environments? 
– follow-on question: are internet systems more like enterprise apps (traditionally built on DBMSs) 

or scientific/end-user apps (traditionally built over OSes and files)? Why? 

8/28/2023 50cs262a-F23 Lecture-02

Achilles’ Heel
• Achilles' heel of RDBMSs: a closed box 

– Cannot leverage technology without going through the full SQL stack 
– One solution: make the system extensible, convince the world to download code into 

the DBMS 
– Another solution: componentize the system (hard? RSS is hard to bust up, due to 

transaction semantics) 

• Achilles' heel of OSes: hard to decide on the "right" level of 
abstraction 

– As we'll read, many UNIX abstractions (e.g. virtual memory) hide too much detail, 
messing up semantics. On the other hand, too low a level can cause too much 
programmer burden, and messes up the elegance of the system 

– One solution: make the system extensible, convince the fancy apps to download code 
into the OS 

– Another solution: componentize the system (hard, due to protection issues) 

8/28/2023 51cs262a-F23 Lecture-02

Communities
• Traditionally separate communities, despite subsequently clear need to 

integrate 
– UNIX paper: "We take the view that locks are neither necessary nor sufficient, in our 

environment, to prevent interference between users of the same file. They are unnecessary 
because we are not faced with large, single-file data bases maintained by independent 
processes." 

– System R: "has illustrated the feasibility of compiling a very high-level data sublanguage, 
SQL, into machine-level code". 

8/28/2023 52cs262a-F23 Lecture-02

Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time” challenge?
• How would you review this paper today?



8/28/2023 53cs262a-F23 Lecture-02

Summary
• Main goal of this class is to work from both of these directions, cull the 

lessons from each, and ask how to use these lessons today both within 
and OUTSIDE the context of these historically separate systems.


