
CS162
Operating Systems and
Systems Programming

Lecture 25

Extra Topics:
IoT, Quantum Computing

May 4th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 24.24/29/15 Kubiatowicz CS162 ©UCB Spring 2015

1997 - The Internet of Every Computer

Lec 24.34/29/15 Kubiatowicz CS162 ©UCB Spring 20155/4/2015 3

2007 - The Internet of Every Body

Lec 24.44/29/15 Kubiatowicz CS162 ©UCB Spring 2015

2017 - The Internet of Everyday Things

0 2 4 6 8 10 12 14 16 18

-1

-0.5

0

0.5

1

Low resolution Sensor, Test4, Increasing frequency

Time (sec)

A
cc

el
er

at
io

n
(g

)

Lec 24.54/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Why “Real” Information is so Important

Improve Productivity

Protect Health
High-Confidence Transport

Enhance Safety & Security

Improve Food & H20

Save Resources

Preventing Failures

Increase
Comfort

Enable New Knowledge

Lec 24.64/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Resources in a Smart Space (2011)

• Potential Displays Everywhere
– Walls, Tables, Appliances, Smart Phones, Google
Glasses….

• Audio Output Everywhere
• Inputs Everywhere

– Touch Surfaces
– Cameras/
Gesture Tracking

– Voice
• Context Tracking

– Who is Where
– What do they want
– Which Inputs map to which applications

Lec 24.74/29/15 Kubiatowicz CS162 ©UCB Spring 2015

2013

Lec 24.84/29/15 Kubiatowicz CS162 ©UCB Spring 2015

2014

Lec 24.94/29/15 Kubiatowicz CS162 ©UCB Spring 2015

2013

The Nest makes headlines!

Lec 24.104/29/15 Kubiatowicz CS162 ©UCB Spring 2015

2014

Lec 24.114/29/15 Kubiatowicz CS162 ©UCB Spring 2015

2014

Lec 24.124/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Broad Technology Trends

Today: 1 million transistors per $

Moore’s Law: # transistors
on cost-effective chip doubles
every 18 months

Mote!years

Computers
Per Person

103:1

1:106

Laptop
PDA

Mainframe

Mini
Workstation

PC

Cell

1:1

1:103

Bell’s Law: a new computer
class emerges every 10 years

Same fabrication technology provides CMOS
radios for communication and micro-sensors

Lec 24.134/29/15 Kubiatowicz CS162 ©UCB Spring 2015

‘Low-Tech’ Enabling Technology

Microcontroller Radio
Communication

Flash
Storage

Sensors

IEEE 802.15.4

Network

Lec 24.144/29/15 Kubiatowicz CS162 ©UCB Spring 2015

The Systems Challenge

applications

service

network

system

architecture

data
mgmt

Monitoring & Managing Spaces and Things

technology

sensing
Power

Comm. actuate

Miniature, low-power connections to the physical world

Proc
Store

Lec 24.154/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Key WSN Research Developments
• Event-Driven Component-Base Operating System

– Framework for building System & Network abstractions
– Low-Power Protocols
– Hardware and Application Specific

• Idle listening
– All the energy is consumed by listening for a packet to receive
=> Turn radio on only when there is something to hear

• Reliable routing on Low-Power & Lossy Links
– Power, Range, Obstructions => multi-hop
– Always at edge of SNR => loss is common
=> monitoring, retransmission, and local rerouting

• Trickle – don’t flood (tx rate < 1/density, and < info
change)

– Connectivity is determined by physical points of interest, not
network designer.

– never naively respond to a broadcast
– re-broadcast very very politely

Lec 24.164/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Internet of Every Thing – Realized 2008

• Footprint, power, packet
size, & bandwidth

• Open version 27k / 4.6k

ROM RAM
CC2420 Driver 3149 272

802.15.4 Encryption 1194 101
Media Access Control 330 9

Media Management Control 1348 20
6LoWPAN + IPv6 2550 0

Checksums 134 0
SLAAC 216 32

DHCPv6 Client 212 3
DHCPv6 Proxy 104 2

ICMPv6 522 0
Unicast Forwarder 1158 451

Multicast Forwarder 352 4
Message Buffers 0 2048

Router 2050 106
UDP 450 6
TCP 1674 50

(including runtime)

* Production implementation on TI msp430/cc2420

24038 ROM
3598 RAM

Lec 24.174/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Internet of Every Thing – standardized 2010

Lec 24.184/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Smart meter rollouts

http://www.edisonfoundation.net/iee/Documents/IEE_SmartMeterRollouts_0512.pdf

Proprietary / Zigbee

Open IPv6, …

Lec 24.194/29/15 Kubiatowicz CS162 ©UCB Spring 2015

The Mote/TinyOS revolution…

SmartDust
WeC Rene

Intel
rene’

9
9

9
8

0
0

0
1

0
3

0
2

0
4

0
6

0
5

0
7

SE
N

SI T
Ex

pe
di
ti
on

N
ES

T

N
ET

S/

N
O
SS

CE
N
S

ST
C

N
SF

Cy
be

r-
Ph

ys
ic
al

Mica

Intel/UCB
dot

Intel
iMOTE

XBOW
cc-dot

XBOW
mica2

XBOW
rene2

Intel
cf-mica

Bosch
cc-mica

Dust Inc
blue cc-TI

digital sun
rain-mica

XBOW
mica

zeevo BT

Telos

XBOW
micaZ

Intel
MOTE2

EyesBTNod
e

trio

8 kB rom
½ kB ram

48 kB rom
10 kB ram
802.15.4

Lo
W

PA
N
/I

Pv
6

Epic

1
1

IE
TF

 R
PL

1
0

Mote inside

• SOC from here

Mote inside
• uP => Arm Cortex
• Radio => 802.15.4g
narrow=band freq.
hopper
• TinyOS too
• SOC from here

Lec 24.204/29/15 Kubiatowicz CS162 ©UCB Spring 2015

CWSN'11

Storage ProcessingWireless Sensors
WSN mote platform

TinyOS – Framework for Innovation

Radio
Serial

Flash ADC,
Sensor
I/F

MCU,
Timers,
Bus,…

Link

Network
Protocols Blocks,

Logs,
Files

Scheduling,
Managemen

t

Streaming
drivers

Over-the-air
Programming

Applications and Services

Communication Centric
Resource-Constrained
Event-driven Execution

Lec 24.214/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Back to The Internet of Everything…?

0 2 4 6 8 10 12 14 16 18

-1

-0.5

0

0.5

1

Low resolution Sensor, Test4, Increasing frequency

Time (sec)

A
cc

el
er

at
io

n
(g

)

Lec 24.224/29/15 Kubiatowicz CS162 ©UCB Spring 2015

An More Global Application Model

• A Swarm Application is a
Connected graph of Components

– Globally distributed, but locality and QoS aware
– Avoid Stovepipe solutions through reusability

• Many components are Shared Services written by
programmers with a variety of skill-sets and motivations

– Well-defined semantics and a managed software version scheme
– Service Level Agreements (SLA) with micropayments

• Many are “Swarmlets” written by domain programmers
– They care what application does, not how it does it

Sensors
with

Aggregation

Distributed
Archival
Storage

Real-Time
Components

SwarmLet
(“The Application”)

Transform
and Archive

Channel

Lec 24.234/29/15 Kubiatowicz CS162 ©UCB Spring 2015

SWARMLETs

• SWARMLET: a software component written by
domain programmer that is easy to write but
exhibits sophisticated behavior by exploiting
services distributed within the infrastructure

• Swarmlets specify their needs in terms of human-
understandable requirements

– Necessary Services, Frame rates, Minimum
Bandwidths

– Locality, Ownership, and Micropayment parameters
for sensors and/or data

• Swarmlets may evolve into Shared Services
• Programmers of Services used by Swarmlets think

in terms of contracts provided to Swarmlets

Lec 24.244/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Meeting the needs of
the Swarm

• Discover and Manage resource
• Integrate sensors, portable devices, cloud components
• Guarantee responsiveness, real-time behavior, throughput
• Self-adapt to failure and provide performance predictability
• Secure, high-performance, durable, available information
• Monetize resources when necessary: micropayments

The FOG

Personal/Local
Swarm

Cloud Services

Lec 24.254/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Support for Swarm Applications

• Resource Discovery
– Which resources /services are available?
– What are these resources and what are their capabilities?
– Who owns them and how much do I need?

• Real Time Requirements
– Sophisticated multimedia interactions
– Control of/interaction with health-related devices

• Responsiveness Requirements
– Provide a good interactive experience to users

• Explicitly Parallel Components
– Components exploit parallelism when possible

• Direct Interaction with Cloud storage and computation
– Potentially extensive use of remote services
– Serious security/data vulnerability concerns

Lec 24.264/29/15 Kubiatowicz CS162 ©UCB Spring 2015

The Missing Link?

Home
security/
emergency

Unpad
Energy-
efficient

home Health
monitoringApps

Resources Sensors/
Input devs

A t t /

devs

Actuators/
Output
devs

Networks

Storage

Computing

SWARM-OS

SWARM-OS: A mediation layer that discovers
resources and connects them with applications

Lec 24.274/29/15 Kubiatowicz CS162 ©UCB Spring 2015

What about the “FOG” and “Cloud”?
New Abstraction: the Cell

• Properties of a Cell: Service Level Guarantees
– A user-level software component with guaranteed resources
– Has full control over resources it owns (“Bare Metal”)
– Contains at least one memory protection domain (possibly more)
– Contains a set of secured channel endpoints to other Cells
– Contains a security context which may protect and decrypt

information
• When mapped to the hardware, a cell gets:

– Gang-schedule hardware thread resources (“Harts”)
– Guaranteed fractions of other physical resources

» Physical Pages (DRAM), Cache partitions, memory bandwidth,
power

– Guaranteed fractions of system services
• Predictability of performance 

– Ability to model performance vs resources
– Ability for user-level schedulers to better provide QoS

Lec 24.284/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Cell Implementation Platform: Tessellation Version 2
• Tessellation Operating System

– Provides basic Cell Implementation
– Build on the Xen Hypervisor

• Why Xen?
– Provides clean starting point for resource containers
– Leverage mature OS (Linux) device support, critical
drivers can be isolated in a stub domain

– Framework for developing VM schedulers
– Mini-OS, a lightweight POSIX-compatible Xen guest
OS, is basis for the customizable app runtime

– Support for ARM and x86
• Unikernels: Software Appliances

– Small compiled kernels with only enough components to
support one application

– Every component has its own resource container
• Dynamic resource optimization framework

Lec 24.294/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Implementing Cells:
Space-Time Partitioning

• Spatial Partition:
Performance isolation
– Each partition receives a

vector of basic resources
» A number HW threads
» Chunk of physical memory
» A portion of shared cache
» A fraction of memory BW
» Shared fractions of services

• Partitioning varies over time
– Fine-grained multiplexing and

guarantee of resources
» Resources are gang-scheduled

• Controlled multiplexing, not
uncontrolled virtualization

• Partitioning adapted to the
system’s needs

Time

Space

Lec 24.304/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Resource Discovery and Ontology
• Dynamically discover resources, services, and cyber-

physical components (sensors/actuators) that meet
application requirements

– Find local components that meet some specification
– Use ontology to describe exactly what component do
– Distribute these resources (or fractions of services) to

application cells in order to meet QoS requirements
• Many partial solutions out there, no complete solutions

– Must deal with locality (discover local items) while at same
time dealing with remote (global) services

– Must gracefully handle failover of components
• One important aspect is that resources must be handed out

only to authorized users
– Authorization can involve ownership, micropayments, etc..

Lec 24.314/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Brokering Service:
The Hierarchy of Ownership

• Discover Resources in “Domain”
– Devices, Services, Other Brokers
– Resources self-describing?

• Allocate and Distribute
Resources to Cells that need
them

– Solve Impedance-mismatch
problem

– Dynamically optimize execution
– Hand out Service-Level
Agreements (SLAs) to Cells

– Deny admission to Cells which
violate existing agreements

• Complete hierarchy
– World graph of applications

Local
Broker

Sibling
Broker

Parent
Broker

Child
Broker

Lec 24.324/29/15 Kubiatowicz CS162 ©UCB Spring 2015

DataCentric Vision

• Hardware resources are a commodity
– Computation resource fails? Get another
– Sensor fails? Find another
– Change your location? Find new resources

• All that really matters is the information
– Integrity, Privacy, Availability, Durability
– Hardware to prevent accidental information leakage

• Permanent state handled by Universal Data
Storage, Distribution, and Archiving

• We need a new Internet for the Internet of
Things?

– Communication and Storage are really duals
– Why separate them?

Lec 24.334/29/15 Kubiatowicz CS162 ©UCB Spring 2015

The Global Data Plane

Archival Storage and
Optimized Streaming

Personal
Cache

Aggregate/Filter
Universal Tivo

Cloud ServicesCloud Services

Lec 24.344/29/15 Kubiatowicz CS162 ©UCB Spring 2015

GDP Secure Log

• Locality Optimization/QoS
– Flat 256-bit address space
– Routes adapted as elements

move
– Hardware QoS exploited
– Multicast trees built as needed

• Durability
– Replicas/Reed-Solomon coding

• Single Writer/Append only
– Owner Key Signs entries
– LOG server rejects bad

entries
– Tradeoff in granularity, i.e.

frequency of signatures
• Multiple

Readers/Subscribers
– Random access/push based

LOG
Replica
Server

Writer:
Signed

Source of
Packets

Subscriber

SubscriberLOG
Replica
Server

LOG
Server

Random
Reader Random

Reader
Random
Reader

Lec 24.354/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Simple Log-based Use-case

• Lightweight Logs  One Log per Device
• Log Input Secured via Owner Key/Checked by consumer
• Optional encryption for privacy
• Timestamps to help ensure freshness

Data
Distillation

Service

Sensors
w/key

Service
w/key

(MultiWriter,
Aggregator,

Control)

Actuator

LOGLOGLOGLOG

LOG

Lec 24.364/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Build DataStores on top of GDP through Composition

• Common Access APIs (CAAPIs): Support common
data access methods such as:

– Key/Value Store
– Object Store/File System
– Data Base (i.e. Google Spanner)

• CAPPIs exported by services that consume the LOG
– Much more convenient way to access data

• The LOG is the Ground Truth for data, but data is
projected into a more convenient form

– To do Random File access, Indexing, SQL queries,
Latest value for given Key, etc

– Optional Checkpoints stored for quick restart/cloning

Lec 24.374/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Example: DataBase CAAPI

• CAAPI Service can be taken down, replicated, and
restarted

• Time-stamp driven transactions (Google Spanner)
• Cloud-based computation (Spark)

LOG

DataBase
Service
(R/W)

DataBase
Projection

(RAM)CAAPI
Service
w/key

DataBase
Client

DataBase
Client

Client
w/key

Client
w/key

Read/Write

Read/Write

LOG

LOG

DataBase
Projection

(RAM)

Replica
Service
(R/O)

LOG
Replica

Slave
CAAPI
Service
w/o key

Long Distance Communication

Lec 24.384/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Properties of the GDP (Summary)
• Universal way to address every stream of information

– Publish/Subscribe view of information
– Large flat address space (at least 256 bits)
– Mechanisms for access control, privacy, and transactions
– Streams of data persisted automatically for later access

• Location Independence  Above network level
– Build Swarmlets once and run them anywhere
– Migrate or replicate running swarmlets
– Locality optimization/QoS handled by underlying system

• Common Access APIs (CAAPIs) provide standard
Interfaces

– Key/Value Store, Data Bases, File Systems
• Deep Archival Storage:

– Automatic Geographically Distributed Archival Storage
• One system for sensors and big data

Lec 24.394/29/15 Kubiatowicz CS162 ©UCB Spring 2015

The Revolution

10M

1B

10B

1T

100B

1990 2010 2020

Computers People Everything

2000

Lec 24.404/29/15 Kubiatowicz CS162 ©UCB Spring 2015

The Revolution

10M

1B

10B

1T

100B

1990 2000 2010 2020

Computers People Everything

Cost to
Connect

Things
Connected

$100

$1

1¢

Lec 24.414/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Use Quantum Mechanics to Compute?
• Weird but useful properties of quantum mechanics:

– Quantization: Only certain values or orbits are good
» Remember orbitals from chemistry???

– Superposition: Schizophrenic physical elements don’t
quite know whether they are one thing or another

• All existing digital abstractions try to eliminate QM
– Transistors/Gates designed with classical behavior
– Binary abstraction: a “1” is a “1” and a “0” is a “0”

• Quantum Computing:
Use of Quantization and Superposition to compute.

• Interesting results:
– Shor’s algorithm: factors in polynomial time!
– Grover’s algorithm: Finds items in unsorted database in
time proportional to square-root of n.

– Materials simulation: exponential classically, linear-time
QM

Lec 24.424/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Quantization: Use of “Spin”

• Particles like Protons have an intrinsic “Spin”
when defined with respect to an external
magnetic field

• Quantum effect gives “1” and “0”:
– Either spin is “UP” or “DOWN” nothing between

North

South

Spin ½ particle:
(Proton/Electron)

Representation:
|0> or |1>

Lec 24.434/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Kane Proposal II
(First one didn’t quite work)

• Bits Represented by combination of proton/electron spin
• Operations performed by manipulating control gates

– Complex sequences of pulses perform NMR-like operations
• Temperature < 1° Kelvin!

Phosphorus
Impurity Atoms

Single Spin
Control Gates

Inter-bit
Control Gates

Lec 24.444/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Now add Superposition!
• The bit can be in a combination of “1” and “0”:

– Written as: = C0|0> + C1|1>
– The C’s are complex numbers!
– Important Constraint: |C0|2 + |C1|2 =1

• If measure bit to see what looks like,
– With probability |C0|2 we will find |0> (say “UP”)
– With probability |C1|2 we will find |1> (say “DOWN”)

• Is this a real effect? Options:
– This is just statistical – given a large number of protons, a

fraction of them (|C0|2) are “UP” and the rest are down.
– This is a real effect, and the proton is really both things

until you try to look at it
• Reality: second choice!

– There are experiments to prove it!

Lec 24.454/29/15 Kubiatowicz CS162 ©UCB Spring 2015

A register can have many values!

• Implications of superposition:
– An n-bit register can have 2n values simultaneously!
– 3-bit example:

= C000|000>+ C001|001>+ C010|010>+ C011|011>+
C100|100>+ C101|101>+ C110|110>+ C111|111>

• Probabilities of measuring all bits are set by
coefficients:
– So, prob of getting |000> is |C000|2, etc.
– Suppose we measure only one bit (first):

» We get “0” with probability: P0=|C000|2+ |C001|2+ |C010|2+ |C011|2
Result: = (C000|000>+ C001|001>+ C010|010>+ C011|011>)

» We get “1” with probability: P1=|C100|2+ |C101|2+ |C110|2+ |C111|2
Result: = (C100|100>+ C101|101>+ C110|110>+ C111|111>)

• Problem: Don’t want environment to measure
before ready!
– Solution: Quantum Error Correction Codes!

Lec 24.464/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Spooky action at a distance

• Consider the following simple 2-bit state:
= C00|00>+ C11|11>

– Called an “EPR” pair for “Einstein, Podolsky, Rosen”
• Now, separate the two bits:

• If we measure one of them, it instantaneously sets other one!
– Einstein called this a “spooky action at a distance”
– In particular, if we measure a |0> at one side, we get a |0> at the other

(and vice versa)
• Teleportation

– Can “pre-transport” an EPR pair (say bits X and Y)
– Later to transport bit A from one side to the other we:

» Perform operation between A and X, yielding two classical bits
» Send the two bits to the other side
» Use the two bits to operate on Y
» Poof! State of bit A appears in place of Y

Light-Years?

Lec 24.474/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Model:
Operations on coefficients + measurements

• Basic Computing Paradigm:
– Input is a register with superposition of many values

» Possibly all 2n inputs equally probable!
– Unitary transformations compute on coefficients

» Must maintain probability property (sum of squares = 1)
» Looks like doing computation on all 2n inputs simultaneously!

– Output is one result attained by measurement
• If do this poorly, just like probabilistic computation:

– If 2n inputs equally probable, may be 2n outputs equally
probable.

– After measure, like picked random input to classical function!
– All interesting results have some form of “fourier transform”

computation being done in unitary transformation

Unitary
Transformations

Input
Complex

State
Measure

Output
Classical
Answer

Lec 24.484/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Shor’s Factoring Algorithm

• The Security of RSA Public-key cryptosystems
depends on the difficulty of factoring a number N=pq
(product of two primes)
– Classical computer: sub-exponential time factoring
– Quantum computer: polynomial time factoring

• Shor’s Factoring Algorithm (for a quantum computer)
1) Choose random x : 2  x  N-1.
2) If gcd(x,N)  1, Bingo!
3) Find smallest integer r : xr  1 (mod N)
4) If r is odd, GOTO 1
5) If r is even, a  x r/2 (mod N)  (a-1)(a+1) = kN
6) If a  N-1(mod N) GOTO 1
7) ELSE gcd(a ± 1,N) is a non trivial factor of N.

Hard

Easy
Easy

Easy
Easy
Easy
Easy

Lec 24.494/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Finding r with xr  1 (mod N)

• Finally: Perform measurement
– Find out r with high probability
– Get |y>|aw’> where y is of form k/r and w’ is related


k

/
\k /

\xk
k

/
\k /

\1

 /
\

/
\x

y
r yw

0w 

w1r

 () /
\x

r
0

r r
1 k

0w 
w

1r
Quantum
Fourier

Transform

Lec 24.504/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Quantum Computing Architectures
• Why study quantum computing?

– Interesting, says something about physics
» Failure to build  quantum mechanics wrong?

– Mathematical Exercise (perfectly good reason)
– Hope that it will be practical someday:

» Shor’s factoring, Grover’s search, Design of Materials
» Quantum Co-processor included in your Laptop?

• To be practical, will need to hand quantum computer
design off to classical designers

– Baring Adiabatic algorithms, will probably need 100s to 1000s
(millions?) of working logical Qubits 
1000s to millions of physical Qubits working together

– Current chips: ~1 billion transistors!
• Large number of components is realm of architecture

– What are optimized structures of quantum algorithms when
they are mapped to a physical substrate?

– Optimization not possible by hand
» Abstraction of elements to design larger circuits
» Lessons of last 30 years of VLSI design: USE CAD

Lec 24.514/29/15 Kubiatowicz CS162 ©UCB Spring 2015

• Quantum Circuit model – graphical representation
– Time Flows from left to right
– Single Wires: persistent Qubits, Double Wires: classical bits

» Qubit – coherent combination of 0 and 1:  = |0 + |1
– Universal gate set: Sufficient to form all unitary transformations

• Example: Syndrome Measurement (for 3-bit code)
– Measurement (meter symbol)

produces classical bits
• Quantum CAD

– Circuit expressed as netlist
– Computer manpulated circuits

and implementations

Quantum Circuit Model

Lec 24.524/29/15 Kubiatowicz CS162 ©UCB Spring 2015

• Quantum State Fragile  encode all Qubits
– Uses many resources: e.g. 3-level [[7,1,3]]

code 343 physical Qubits/logical Qubit)!
• Still need to handle operations (fault-tolerantly)

– Some set of gates are simply “transversal:”
» Perform identical gate between each physical bit of logical encoding

– Others (like T gate for [[7,1,3]] code) cannot be handled transversally
» Can be performed fault-tolerantly by preparing appropriate ancilla

• Finally, need to perform periodical error correction
– Correct after every(?): Gate, Long distance movement, Long Idle Period
– Correction reducing entropy  Consumes Ancilla bits

• Observation:   90% of QEC gates are used for ancilla production
 70-85% of all gates are used for ancilla production

Adding Quantum ECC

H

T

Not Transversal!

n-physical Qubits
per logical Qubit H

TX

Encoded
/8 (T)
Ancilla

SXT:

C
orrect

C
orrect

C
orrect

C
orrect

C
orrect

C
orrect

C
orrect

C
orrect

QEC
Ancilla

Correct
Errors

Correct

Syndrom
e

Com
putation

Lec 24.534/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Outline

• Quantum Computing
• Ion Trap Quantum Computing
• Quantum Computer Aided Design

– Area-Delay to Correct Result (ADCR) metric
– Comparison of error correction codes

• Quantum Data Paths
– QLA, CQLA, Qalypso
– Ancilla factory and Teleportation Network Design

• Error Correction Optimization (“Recorrection”)
• Shor’s Factoring Circuit Layout and Design

Lec 24.544/29/15 Kubiatowicz CS162 ©UCB Spring 2015

MEMs-Based Ion Trap Devices
• Ion Traps: One of the more promising quantum

computer implementation technologies
– Built on Silicon

» Can bootstrap the vast infrastructure that currently exists
in the microchip industry

– Seems to be on a “Moore’s Law” like scaling curve
» 12 bits exist, 30 promised soon, …
» Many researchers working on this problem

– Some optimistic researchers speculate about room temperature
• Properties:

– Has a long-distance Wire
» So-called “ballistic movement”

– Seems to have relatively long decoherence times
– Seems to have relatively low error rates for:

» Memory, Gates, Movement

Lec 24.554/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Electrode Control

• Qubits are atomic ions (e.g. Be+)
– State is stored in hyperfine levels
– Ions suspended in channels between

electrodes
• Quantum gates performed by lasers

(either one or two bit ops)
– Only at certain trap locations
– Ions move between laser sites to

perform gates
• Classical control

– Gate (laser) ops
– Movement (electrode) ops

• Complex pulse sequences to cause
Ions to migrate

• Care must be taken to avoid
disturbing state

• Demonstrations in the Lab
– NIST, MIT, Michigan, many others

Quantum Computing with Ion Traps

Gate Location

Qubit Ions

Electrodes

Courtesy of Chuang group, MIT Lec 24.564/29/15 Kubiatowicz CS162 ©UCB Spring 2015

An Abstraction of Ion Traps
• Basic block abstraction: Simplify Layout

• Evaluation of layout through simulation
– Yields Computation Time and Probability of Success

• Simple Error Model: Depolarizing Errors
– Errors for every Gate Operation and Unit of Waiting
– Ballistic Movement Error: Two error Models

1. Every Hop/Turn has probability of error
2. Only Accelerations cause error

in/out ports

straight 3-way 4-way turn gate locations

Lec 24.574/29/15 Kubiatowicz CS162 ©UCB Spring 2015

H
H
H

q0
q1
q2
q3
q4
q5
q6

Q
ub

its

Time

Ion Trap Physical Layout

• Input: Gate level quantum
circuit
– Bit lines
– 1-qubit gates
– 2-qubit gates

• Output:
– Layout of channels
– Gate locations
– Initial locations of ions
– Movement/gate schedule
– Control for schedule

q0

q3

q4

q5
q6

q1

q2

Lec 24.584/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Outline

• Quantum Computering
• Ion Trap Quantum Computing
• Quantum Computer Aided Design

– Area-Delay to Correct Result (ADCR) metric
– Comparison of error correction codes

• Quantum Data Paths
– QLA, CQLA, Qalypso
– Ancilla factory and Teleportation Network Design

• Error Correction Optimization (“Recorrection”)
• Shor’s Factoring Circuit Layout and Design

Lec 24.594/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Classical Control
Teleportation Network

Vision of Quantum Circuit Design

Schematic Capture
(Graphical Entry)

Quantum Assembly
(QASM)

OR

QEC Insertion
Partitioning

Layout
Network Insertion

Error Analysis
…

Optimization

CAD Tool
Implementation

Custom Layout and
Scheduling

Lec 24.604/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Important Measurement Metrics

• Traditional CAD Metrics:
– Area

» What is the total area of a circuit?
» Measured in macroblocks (ultimately m2 or similar)

– Latency (Latencysingle)
» What is the total latency to compute circuit once
» Measured in seconds (or s)

– Probability of Success (Psuccess)
» Not common metric for classical circuits
» Account for occurrence of errors and error correction

• Quantum Circuit Metric: ADCR
– Area-Delay to Correct Result: Probabilistic Area-Delay metric

– ADCR = Area  E(Latency) =

– ADCRoptimal: Best ADCR over all configurations
• Optimization potential: Equipotential designs

– Trade Area for lower latency
– Trade lower probability of success for lower latency

success

single

P
LatencyArea

Lec 24.614/29/15 Kubiatowicz CS162 ©UCB Spring 2015

• First, generate a physical instance of circuit
– Encode the circuit in one or more QEC codes
– Partition and layout circuit: Highly dependant of layout

heuristics!
» Create a physical layout and scheduling of bits
» Yields area and communication cost

• Then, evaluate probability of success
– Technique that works well for depolarizing errors: Monte Carlo

» Possible error points: Operations, Idle Bits, Communications
– Vectorized Monte Carlo: n experiments with one pass
– Need to perform hybrid error analysis for larger circuits

» Smaller modules evaluated via vector Monte Carlo
» Teleportation infrastructure evaluated via fidelity of EPR

bits
• Finally – Compute ADCR for particular result

How to evaluate a circuit?

Normal
Monte Carlo:

n times

Vector
Monte Carlo:
single pass

Lec 24.624/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Quantum CAD flow

QEC Insert
Circuit

Synthesis

Hybrid Fault
Analysis

Circuit
Partitioning

Mapping,
Scheduling,

Classical control

Communication
Estimation

Teleportation
Network
Insertion

Input Circuit
O
utput Layout

ReSynthesis (ADCRoptimal)

P
success

Complete Layout

Re
M

ap
pi
ng

Error Analysis
Most Vulnerable Circuits

Fault-Tolerant
Circuit

(No layout)

Partitioned
Circuit

Functional
System

QEC
OptimizationFault

Tolerant

ADCR computation

Lec 24.634/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Example Place and Route Heuristic:
Collapsed Dataflow

• Gate locations placed in dataflow order
– Qubits flow left to right
– Initial dataflow geometry folded and sorted
– Channels routed to reflect dataflow edges

• Too many gate locations, collapse dataflow
– Using scheduler feedback, identify latency critical edges
– Merge critical node pairs
– Reroute channels

• Dataflow mapping allows pipelining of computation!

q0
q1
q2
q3

q0
q1
q2
q3

q0
q1
q2
q3

Lec 24.644/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Outline

• Quantum Computing
• Ion Trap Quantum Computing
• Quantum Computer Aided Design

– Area-Delay to Correct Result (ADCR) metric
– Comparison of error correction codes

• Quantum Data Paths
– QLA, CQLA, Qalypso
– Ancilla factory and Teleportation Network Design

• Error Correction Optimization (“Recorrection”)
• Shor’s Factoring Circuit Layout and Design

Lec 24.654/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Quantum Logic Array (QLA)

Anc

Comp

Anc

Comp

Anc

Comp

Anc

Comp

Anc

Comp

Anc

Comp

Anc

Comp

Anc

Comp

Anc

Comp

TP

EPREPR

EPR

EPR

EPREPR

EPREPR

EPR EPR

EPREPR

TP

TP

TP

TP

TP

EPR

EPR

EPR

C
orrect

C
orrect

1 or 2-Qubit
Gate (logical)

Storage for
2 Logical Qubits

(In-Place)

n-physical
Qubits

Syndrom
e

Ancilla
Factory

Correct

• Basic Unit:
– Two-Qubit cell (logical)
– Storage, Compute, Correction

• Connect Units with Teleporters
– Probably in mesh topology, but

details never entirely clear from original papers
• First Serious (Large-scale) Organization (2005)

– Tzvetan S. Metodi, Darshan Thaker,
Andrew W. Cross, Frederic T. Chong, and Isaac L.
Chuang

Teleporter
NODE

EPR EPR

EPR
EPR

Lec 24.664/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Parallel Circuit Latency

Running Circuit at “Speed of Data”
• Often, Ancilla qubits are independent of data

– Preparation may be pulled offline
– Very clear Area/Delay tradeoff:

• Ancilla qubits should be ready “just in time” to avoid
ancilla decoherence from idleness

H C
X H

T

T QEC

QEC

QEC

QEC

QEC

QEC

T-Ancilla

T-AncillaQ0

Q1 QEC
Ancilla

QEC
Ancilla

QEC
Ancilla

QEC
Ancilla

QEC
Ancilla

QEC
Ancilla

Hardware Devoted to
Parallel Ancilla Generation

Serial Circuit Latency

Lec 24.674/29/15 Kubiatowicz CS162 ©UCB Spring 2015

How much Ancilla Bandwidth Needed?

• 32-bit Quantum Carry-Lookahead Adder
– Ancilla use very uneven (zero and T ancilla)
– Performance is flat at high end of ancilla generation bandwidth

» Can back off 10% in maximum performance an save orders
of magnitude in ancilla generation area

• Many bits idle at any one time
– Need only enough ancilla to maintain state for these bits
– Many not need to frequently correct idle errors

• Conclusion: makes sense to compute ancilla requirements
and share area devoted to ancilla generation

Lec 24.684/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Encoded Ancilla Verification Qubits

Ancilla Factory Design I
• “In-place” ancilla preparation

• Ancilla factory consists of many of these
– Encoded ancilla prepared

in many places, then
moved to output port

– Movement is costly!

In-place
Prep

In-place
Prep

In-place
Prep

In-place
Prep

0 Prep

Cat Prep

0 Prep

Cat Prep

0 Prep

Cat Prep

Verify

Verify

Verify

?

?

?

Bit
Correct

Phase
Correct

Lec 24.694/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Ancilla Factory Design II
• Pipelined ancilla preparation: break into stages

– Steady stream of encoded ancillae at output port
– Fully laid out and scheduled to get area and bandwidth
estimates

Physical
0 Prep

CNOTs

Cat Prep
Cr

os
sb

ar

CNOTs

Cat Prep
Cr

os
sb

ar

Verif

Verif
Physical
0 Prep

X/Z
Correct

Cr
os

sb
ar

X/Z
CorrectJu

nk
 P

hy
si

ca
l Q

ub
its

G
oo

d
En

co
de

d
A

nc
ill

ae

Recycle cat state qubits and failures

Recycle used correction qubits
Lec 24.704/29/15 Kubiatowicz CS162 ©UCB Spring 2015

The Qalypso Datapath Architecture
• Dense data region

– Data qubits only
– Local communication

• Shared Ancilla Factories
– Distributed to data as needed
– Fully multiplexed to all data
– Output ports (): close to data
– Input ports (): may be far from
data (recycled state irrelevant)

• Regions connected by teleportation networks

R R R

Lec 24.714/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Tiled Quantum Datapaths

• Several Different Datapaths mappable by our CAD flow
– Variations include hand-tuned Ancilla generators/factories

• Memory: storage for state that doesn’t move much
– Less/different requirements for Ancilla
– Original CQLA paper used different QEC encoding

• Automatic mapping must:
– Partition circuit among compute and memory regions
– Allocate Ancilla resources to match demand (at knee of curve)
– Configure and insert teleportation network

Anc

Comp

Anc

Comp

Anc

Comp

Anc

Comp

Anc

Comp

Anc

Comp

Anc

Comp

Anc

Comp

Anc

Comp

EPREPR

EPR

EPR

EPREPR

EPREPR

EPR EPR

EPREPR

TP

TP

TP

TP

Previous: QLA, LQLA

Anc

Mem

Anc

Mem

Anc

Comp

Anc

Comp

Anc

Comp

Anc

Mem

Anc

Mem

Anc

Mem

Anc

Mem

TP

TP

TP

TP

EPREPR

EPR

EPR

EPREPR

EPREPR

EPR EPR

EPREPR

Previous: CQLA, CQLA+

TP
Anc

CompAnc

Anc

Mem

Anc

Comp

Anc

Mem

Anc

Mem

TP

TP

EPR

EPREPR

EPREPR

EPR

EPR

EPR

Anc

Comp

Our Group: Qalypso

Lec 24.724/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Which Datapath is Best?
• Random Circuit Generation

– f(Gate Count, Gate Types, Qubit Count, Splitting factor)
– Splitting factor (r): measures connectivity of the circuit

» Example: 0.5 splits Qubits in half, adds random gates
between two halves, then recursively splits results

» Closely related to Rent’s parameter
• Qalypso clear winner (for all r)

– 4x lower latency than LQLA
– 2x smaller area than CQLA+

• Why Qalypso does well:
– Shared, matched ancilla generation
– Automatic network sizing (not one

Teleporter for every two Qubits)
– Automatic Identification of

Idle Qubits (memory)
• LQLA and CQLA+ perform close second

– Original datapaths supplemented with better ancilla generators,
automatic network sizing, and Idle Qubit identification

– Original QLA and CQLA do very poorly for large circuits

Lec 24.734/29/15 Kubiatowicz CS162 ©UCB Spring 2015

How to design Teleportation Network

• What is the architecture of the network?
– Including Topology, Router design, EPR Generators, etc..

• What are the details of EPR distribution?
• What are the practical aspects of routing?

– When do we set up a channel?
– What path does the channel take?

EPR Stream

Y Teleporters

X Teleporters

Incoming Classical
Information

(Unique ID, Dest,
Correction Info)

Storage

Storage

St
or

ag
e

Storage
CC

CC

CC

CC

Outgoing Message

Lec 24.744/29/15 Kubiatowicz CS162 ©UCB Spring 2015

• Positive Features
– Regularity (can build classical network topologies)
– T node linking not on critical path
– Pre-purification part of link setup

» Fidelity amplification of the line
– Allows continuous stream of EPR correlations to be established

for use when necessary

G TT G TGT G TGT

PP

TeleportationTeleportation

Adjacent T nodes linked for teleportation

Basic Idea: Chained Teleportation

Lec 24.754/29/15 Kubiatowicz CS162 ©UCB Spring 2015

0

200

400

600

800

1000

1200

1400

1600

1.0E-09 1.0E-08 1.0E-07 1.0E-06 1.0E-05

Purify at End Only

Pre-Purify Once
Pre-Purify Twice

Pre-Purification

• Experiment: Transmit enough EPR pairs over network
to meet required fidelity of channel

– Measure total global traffic
– Higher Fidelity local EPR pairs  less global EPR traffic

• Benefit: decreased congestion at T Nodes

Error Rate Per Operation

Lo
ng

-D
is
ta

nc
e

EP
R

Pa
ir
s

Pe
r

D
at

a
Co

m
m
un

ic
at

io
n T

G

T

Lec 24.764/29/15 Kubiatowicz CS162 ©UCB Spring 2015

• Grid of T nodes
• Packet-switched network

- Options: Dimension-Order or Adaptive Routing
- Precomputed or on-demand start time for setup

T T T T

T T T T

P P P P

P P P P

G

G

G

G

G

G G

G G G

, linked by G nodes

• Each EPR qubit has associated classical message

Gate Gate Gate Gate

Gate Gate Gate Gate

Building a Mesh Interconnect

Lec 24.774/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Outline

• Quantum Computing
• Ion Trap Quantum Computing
• Quantum Computer Aided Design

– Area-Delay to Correct Result (ADCR) metric
– Comparison of error correction codes

• Quantum Data Paths
– QLA, CQLA, Qalypso
– Ancilla factory and Teleportation Network Design

• Error Correction Optimization (“Recorrection”)
• Shor’s Factoring Circuit Layout and Design

Lec 24.784/29/15 Kubiatowicz CS162 ©UCB Spring 2015

• Standard idea: correct after every gate, and long
communication, and long idle time

– This is the easiest for people to analyze
• This technique is suboptimal (at least in some

domains)
– Not every bit has same noise level!

• Different idea: identify critical Qubits
– Try to identify paths that feed into noisiest output bits
– Place correction along these paths to reduce maximum noise

H

Reducing QEC Overhead

H Correct Correct

Correct

Correct

CorrectCorrect

Correct

HH Correct

Lec 24.794/29/15 Kubiatowicz CS162 ©UCB Spring 2015

4

3

4

1

1

2

1

1

2

3

3

1

2

1

2

1

Simple Error Propagation Model

• EDist model of error propagation:
– Inputs start with EDist = 0
– Each gate propagates max input EDist to outputs
– Gates add 1 unit of EDist, Correction resets EDist to 1

• Maximum EDist corresponds to Critical Path
– Back track critical paths that add to Maximum EDist

• Add correction to keep EDist below critical threshold

Error Distance
(EDist) Labels

Maximum EDist
propagation:

4=max(3,1)+1
H Correct

Correct

Lec 24.804/29/15 Kubiatowicz CS162 ©UCB Spring 2015

QEC Optimization

• Modified version of
retiming algorithm: called
“recorrection:”

– Find minimal placement
of correction operations
that meets specified
MAX(EDist)  EDistMAX

• Probably of success not
always reduced for
EDistMAX > 1

– But, operation count and
area drastically reduced

• Use Actual Layouts and
Fault Analysis

– Optimization pre-layout,
evaluated post-layout

EDistMAX
iteration

QEC
Optimization

EDistMAX

Partitioning
and

Layout

Fault
Analysis

Optimized
Layout

Input
Circuit

1024-bit QRCA and QCLA adders

Lec 24.814/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Recorrection in presence of
different QEC codes

• 500 Gate Random Circuit (r=0.5)
• Not all codes do equally well with Recorrection

– Both [[23,1,7]] and [[7,1,3]] reasonable candidates
– [[25,1,5]] doesn’t seem to do as well

• Cost of communication and Idle errors is clear here!
• However – real optimization situation would vary

EDist to find optimal point

Pr
ob

ab
ili
ty

 o
f

Su
cc

es
s

Move Error Rate per Macroblock
EDistMAX=3

Pr
ob

ab
ili
ty

 o
f

Su
cc

es
s

Idle Error Rate per CNOT Time
EDistMAX=3

Lec 24.824/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Outline

• Quantum Computing
• Ion Trap Quantum Computing
• Quantum Computer Aided Design

– Area-Delay to Correct Result (ADCR) metric
– Comparison of error correction codes

• Quantum Data Paths
– QLA, CQLA, Qalypso
– Ancilla factory and Teleportation Network Design

• Error Correction Optimization (“Recorrection”)
• Shor’s Factoring Circuit Layout and Design

Lec 24.834/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Comparison of 1024-bit adders

• 1024-bit Quantum Adder Architectures
– Ripple-Carry (QRCA)
– Carry-Lookahead (QCLA)

• Carry-Lookahead is better in all architectures
• QEC Optimization improves ADCR by order of magnitude

in some circuit configurations

ADCRoptimal for
1024-bit QCLA

ADCRoptimal for
1024-bit QRCA and QCLA

Lec 24.844/29/15 Kubiatowicz CS162 ©UCB Spring 2015

• Error Correction is not predominant use of area
– Only 20-40% of area devoted to QEC ancilla
– For Optimized Qalypso QCLA, 70% of operations for QEC

ancilla generation, but only about 20% of area
• T-Ancilla generation is major component

– Often overlooked
• Networking is significant portion of area when allowed

to optimize for ADCR (30%)
– CQLA and QLA variants didn’t really allow for much flexibility

Area Breakdown for Adders

Lec 24.854/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Investigating 1024-bit Shor’s

• Full Layout of all Elements
– Use of 1024-bit Quantum Adders
– Optimized error correction
– Ancilla optimization and Custom Network Layout

• Statistics:
– Unoptimized version: 1.351015 operations
– Optimized Version 1000X smaller
– QFT is only 1% of total execution time

Lec 24.864/29/15 Kubiatowicz CS162 ©UCB Spring 2015

1024-bit Shor’s Continued

• Circuits too big to compute Psuccess
– Working on this problem

• Fastest Circuit: 6108 seconds ~ 19 years
– Speedup by classically computing recursive squares?

• Smallest Circuit: 7659 mm2

– Compare to previous estimate of 0.9 m2 = 9105 mm2

