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1997 - The Internet of Every Computer
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2007 - The Internet of Every Body
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2017 - The Internet of Everyday Things
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Why “Real” Information is so Important

Improve Productivity

Protect Health
High-Confidence Transport

Enhance Safety & Security

Improve Food & H20

Save Resources

Preventing Failures

Increase
Comfort

Enable New Knowledge
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Resources in a Smart Space (2011)

• Potential Displays Everywhere
– Walls, Tables, Appliances, Smart Phones, Google 
Glasses….

• Audio Output Everywhere
• Inputs Everywhere

– Touch Surfaces 
– Cameras/
Gesture Tracking

– Voice
• Context Tracking

– Who is Where
– What do they want
– Which Inputs map to which applications
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2013

Lec 24.84/29/15 Kubiatowicz CS162 ©UCB Spring 2015

2014
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2013

The Nest makes headlines!
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2014
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2014
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Broad Technology Trends

Today: 1 million transistors per $

Moore’s Law: # transistors 
on cost-effective chip doubles 
every 18 months

Mote!years

Computers
Per Person

103:1

1:106

Laptop
PDA

Mainframe

Mini
Workstation

PC

Cell

1:1

1:103

Bell’s Law: a new computer 
class emerges every 10 years

Same fabrication technology provides CMOS 
radios for communication and micro-sensors
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‘Low-Tech’ Enabling Technology

Microcontroller Radio
Communication

Flash
Storage

Sensors

IEEE 802.15.4

Network
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The Systems Challenge

applications

service

network

system

architecture

data 
mgmt

Monitoring &  Managing Spaces and Things

technology

sensing
Power

Comm. actuate

Miniature, low-power connections to the physical world

Proc
Store
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Key WSN Research Developments
• Event-Driven Component-Base Operating System

– Framework for building System & Network abstractions
– Low-Power Protocols
– Hardware and Application Specific

• Idle listening
– All the energy is consumed by listening for a packet to receive
=> Turn radio on only when there is something to hear

• Reliable routing on Low-Power & Lossy Links
– Power, Range, Obstructions => multi-hop
– Always at edge of SNR => loss is common
=> monitoring, retransmission, and local rerouting

• Trickle – don’t flood  (tx rate < 1/density, and < info 
change)

– Connectivity is determined by physical points of interest, not 
network designer.

– never naively respond to a broadcast
– re-broadcast very very politely
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Internet of Every Thing – Realized 2008

• Footprint, power, packet 
size, & bandwidth

• Open version 27k / 4.6k

ROM RAM
CC2420 Driver 3149 272

802.15.4 Encryption 1194 101
Media Access Control 330 9

Media Management Control 1348 20
6LoWPAN + IPv6 2550 0

Checksums 134 0
SLAAC 216 32

DHCPv6 Client 212 3
DHCPv6 Proxy 104 2

ICMPv6 522 0
Unicast Forwarder 1158 451

Multicast Forwarder 352 4
Message Buffers 0 2048

Router 2050 106
UDP 450 6
TCP 1674 50

(including runtime)

* Production implementation on TI msp430/cc2420

24038 ROM
3598 RAM
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Internet of Every Thing – standardized 2010
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Smart meter rollouts

http://www.edisonfoundation.net/iee/Documents/IEE_SmartMeterRollouts_0512.pdf

Proprietary / Zigbee

Open IPv6, …

Lec 24.194/29/15 Kubiatowicz CS162 ©UCB Spring 2015

The Mote/TinyOS revolution…
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• SOC from here

Mote inside
• uP => Arm Cortex
• Radio => 802.15.4g 
narrow=band freq. 
hopper
• TinyOS too
• SOC from here
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CWSN'11

Storage ProcessingWireless Sensors
WSN mote platform

TinyOS – Framework for Innovation

Radio 
Serial

Flash ADC, 
Sensor 
I/F

MCU, 
Timers, 
Bus,…

Link

Network
Protocols Blocks, 

Logs, 
Files

Scheduling, 
Managemen

t

Streaming 
drivers

Over-the-air 
Programming

Applications and Services

Communication Centric
Resource-Constrained
Event-driven Execution
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Back to The Internet of Everything…?
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An More Global Application Model

• A Swarm Application is a 
Connected graph of Components

– Globally distributed, but locality and QoS aware
– Avoid Stovepipe solutions through reusability

• Many components are Shared Services written by 
programmers with a variety of skill-sets and motivations

– Well-defined semantics and a managed software version scheme
– Service Level Agreements (SLA) with micropayments

• Many are “Swarmlets” written by domain programmers
– They care what application does, not how it does it

Sensors
with

Aggregation

Distributed
Archival
Storage

Real-Time
Components

SwarmLet
(“The Application”)

Transform
and Archive

Channel
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SWARMLETs

• SWARMLET: a software component written by 
domain programmer that is easy to write but 
exhibits sophisticated behavior by exploiting 
services distributed within the infrastructure

• Swarmlets specify their needs in terms of human-
understandable requirements

– Necessary Services, Frame rates, Minimum 
Bandwidths

– Locality, Ownership, and Micropayment parameters 
for sensors and/or data

• Swarmlets may evolve into Shared Services 
• Programmers of Services used by Swarmlets think 

in terms of contracts provided to Swarmlets
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Meeting the needs of 
the Swarm

• Discover and Manage resource
• Integrate sensors, portable devices, cloud components
• Guarantee responsiveness, real-time behavior, throughput
• Self-adapt to failure and provide performance predictability
• Secure, high-performance, durable, available information
• Monetize resources when necessary: micropayments

The FOG

Personal/Local 
Swarm

Cloud Services
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Support for Swarm Applications

• Resource Discovery
– Which resources /services are available?  
– What are these resources and what are their capabilities?
– Who owns them and how much do I need?

• Real Time Requirements
– Sophisticated multimedia interactions
– Control of/interaction with health-related devices

• Responsiveness Requirements
– Provide a good interactive experience to users

• Explicitly Parallel Components
– Components exploit parallelism when possible

• Direct Interaction with Cloud storage and computation
– Potentially extensive use of remote services
– Serious security/data vulnerability concerns
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The Missing Link?

Home 
security/
emergency

Unpad
Energy-
efficient

home Health 
monitoringApps

Resources Sensors/
Input devs

A t t /

devs

Actuators/
Output 
devs

Networks

Storage

Computing

SWARM-OS

SWARM-OS: A mediation layer that discovers 
resources and connects them with applications
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What about the “FOG” and “Cloud”?
New Abstraction: the Cell

• Properties of a Cell: Service Level Guarantees
– A user-level software component with guaranteed resources
– Has full control over resources it owns (“Bare Metal”)
– Contains at least one memory protection domain (possibly more)
– Contains a set of secured channel endpoints to other Cells
– Contains a security context which may protect and decrypt 

information
• When mapped to the hardware, a cell gets:

– Gang-schedule hardware thread resources (“Harts”)
– Guaranteed fractions of other physical resources

» Physical Pages (DRAM), Cache partitions, memory bandwidth, 
power

– Guaranteed fractions of system services
• Predictability of performance 

– Ability to model performance vs resources
– Ability for user-level schedulers to better provide QoS
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Cell Implementation Platform: Tessellation Version 2
• Tessellation Operating System

– Provides basic Cell Implementation
– Build on the Xen Hypervisor

• Why Xen?
– Provides clean starting point for resource containers
– Leverage mature OS (Linux) device support, critical 
drivers can be isolated in a stub domain

– Framework for developing VM schedulers
– Mini-OS, a lightweight POSIX-compatible Xen guest 
OS, is basis for the customizable app runtime

– Support for ARM and x86
• Unikernels: Software Appliances

– Small compiled kernels with only enough components to 
support one application

– Every component has its own resource container
• Dynamic resource optimization framework
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Implementing Cells:
Space-Time Partitioning

• Spatial Partition: 
Performance isolation
– Each partition receives a 

vector of basic resources
» A number HW threads
» Chunk of physical memory
» A portion of shared cache
» A fraction of memory BW
» Shared fractions of services

• Partitioning varies over time
– Fine-grained multiplexing and 

guarantee of resources
» Resources are gang-scheduled

• Controlled multiplexing, not 
uncontrolled virtualization

• Partitioning adapted to the 
system’s needs

Time

Space
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Resource Discovery and Ontology
• Dynamically discover resources, services, and cyber-

physical components (sensors/actuators) that meet 
application requirements

– Find local components that meet some specification
– Use ontology to describe exactly what component do
– Distribute these resources (or fractions of services) to 

application cells in order to meet QoS requirements
• Many partial solutions out there, no complete solutions

– Must deal with locality (discover local items) while at same 
time dealing with remote (global) services

– Must gracefully handle failover of components
• One important aspect is that resources must be handed out 

only to authorized users
– Authorization can involve ownership, micropayments, etc..
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Brokering Service:
The Hierarchy of Ownership

• Discover Resources in “Domain”
– Devices, Services, Other Brokers
– Resources self-describing?

• Allocate and Distribute 
Resources to Cells that need 
them

– Solve Impedance-mismatch 
problem

– Dynamically optimize execution
– Hand out Service-Level 
Agreements (SLAs) to Cells

– Deny admission to Cells which 
violate existing agreements

• Complete hierarchy
– World graph of applications

Local
Broker

Sibling
Broker

Parent
Broker

Child
Broker
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DataCentric Vision

• Hardware resources are a commodity
– Computation resource fails?  Get another
– Sensor fails?  Find another
– Change your location?  Find new resources

• All that really matters is the information
– Integrity, Privacy, Availability, Durability
– Hardware to prevent accidental information leakage

• Permanent state handled by Universal Data 
Storage, Distribution, and Archiving

• We need a new Internet for the Internet of 
Things?

– Communication and Storage are really duals
– Why separate them?
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The Global Data Plane

Archival Storage and 
Optimized Streaming

Personal
Cache

Aggregate/Filter
Universal Tivo

Cloud ServicesCloud Services
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GDP Secure Log

• Locality Optimization/QoS
– Flat 256-bit address space
– Routes adapted as elements 

move
– Hardware QoS exploited
– Multicast trees built as needed

• Durability
– Replicas/Reed-Solomon coding

• Single Writer/Append only
– Owner Key Signs entries
– LOG server rejects bad 

entries
– Tradeoff in granularity, i.e. 

frequency of signatures
• Multiple 

Readers/Subscribers
– Random access/push based

LOG
Replica
Server

Writer:
Signed 

Source of 
Packets

Subscriber

SubscriberLOG
Replica
Server

LOG
Server

Random
Reader Random

Reader
Random
Reader

Lec 24.354/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Simple Log-based Use-case

• Lightweight Logs  One Log per Device
• Log Input Secured via Owner Key/Checked by consumer
• Optional encryption for privacy
• Timestamps to help ensure freshness

Data
Distillation

Service

Sensors
w/key

Service
w/key

(MultiWriter,
Aggregator,

Control)

Actuator

LOGLOGLOGLOG

LOG
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Build DataStores on top of GDP through Composition

• Common Access APIs (CAAPIs): Support common 
data access methods such as:

– Key/Value Store
– Object Store/File System
– Data Base (i.e. Google Spanner)

• CAPPIs exported by services that consume the LOG
– Much more convenient way to access data

• The LOG is the Ground Truth for data, but data is 
projected into a more convenient form

– To do Random File access, Indexing, SQL queries, 
Latest value for given Key, etc

– Optional Checkpoints stored for quick restart/cloning
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Example: DataBase CAAPI

• CAAPI Service can be taken down, replicated, and 
restarted

• Time-stamp driven transactions (Google Spanner)
• Cloud-based computation (Spark) 

LOG

DataBase
Service
(R/W)

DataBase
Projection

(RAM)CAAPI 
Service
w/key

DataBase
Client

DataBase
Client

Client
w/key

Client
w/key

Read/Write

Read/Write

LOG

LOG

DataBase
Projection

(RAM)

Replica 
Service
(R/O)

LOG
Replica

Slave
CAAPI 
Service
w/o key

Long Distance Communication
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Properties of the GDP (Summary)
• Universal way to address every stream of information

– Publish/Subscribe view of information 
– Large flat address space (at least 256 bits)
– Mechanisms for access control, privacy, and transactions
– Streams of data persisted automatically for later access

• Location Independence  Above network level
– Build Swarmlets once and run them anywhere
– Migrate or replicate running swarmlets
– Locality optimization/QoS handled by underlying system

• Common Access APIs (CAAPIs) provide standard 
Interfaces

– Key/Value Store, Data Bases, File Systems
• Deep Archival Storage: 

– Automatic Geographically Distributed Archival Storage
• One system for sensors and big data
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The Revolution

10M

1B

10B

1T

100B

1990 2010 2020

Computers People Everything

2000
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The Revolution

10M

1B

10B

1T

100B

1990 2000 2010 2020

Computers People Everything

Cost to
Connect

Things
Connected

$100

$1

1¢
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Use Quantum Mechanics to Compute?
• Weird but useful properties of quantum mechanics:

– Quantization: Only certain values or orbits are good
» Remember orbitals from chemistry???

– Superposition: Schizophrenic physical elements don’t 
quite know whether they are one thing or another

• All existing digital abstractions try to eliminate QM
– Transistors/Gates designed with classical behavior
– Binary abstraction: a “1” is a “1” and a “0” is a “0”

• Quantum Computing: 
Use of Quantization and Superposition to compute.

• Interesting results:
– Shor’s algorithm: factors in polynomial time!
– Grover’s algorithm: Finds items in unsorted database in 
time proportional to square-root of n.

– Materials simulation: exponential classically, linear-time 
QM
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Quantization: Use of “Spin”

• Particles like Protons have an intrinsic “Spin” 
when defined with respect to an external 
magnetic field

• Quantum effect gives “1” and “0”:
– Either spin is “UP” or “DOWN” nothing between

North

South

Spin ½ particle:
(Proton/Electron)

Representation:
|0> or |1>
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Kane Proposal II 
(First one didn’t quite work)

• Bits Represented by combination of proton/electron spin
• Operations performed by manipulating control gates

– Complex sequences of pulses perform NMR-like operations
• Temperature < 1° Kelvin!

Phosphorus
Impurity Atoms

Single Spin
Control Gates

Inter-bit 
Control Gates
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Now add Superposition!
• The bit can be in a combination of “1” and “0”:

– Written as:  = C0|0> + C1|1>
– The C’s are complex numbers!
– Important Constraint: |C0|2 + |C1|2 =1

• If measure bit to see what looks like, 
– With probability |C0|2 we will find |0> (say “UP”)
– With probability |C1|2 we will find |1> (say “DOWN”)

• Is this a real effect?  Options:
– This is just statistical – given a large number of protons, a 

fraction of them (|C0|2 ) are “UP” and the rest are down.
– This is a real effect, and the proton is really both things 

until you try to look at it
• Reality: second choice! 

– There are experiments to prove it!



Lec 24.454/29/15 Kubiatowicz CS162 ©UCB Spring 2015

A register can have many values!

• Implications of superposition:
– An n-bit register can have 2n values simultaneously!
– 3-bit example:

= C000|000>+ C001|001>+ C010|010>+ C011|011>+ 
C100|100>+ C101|101>+ C110|110>+ C111|111>

• Probabilities of measuring all bits are set by 
coefficients:
– So, prob of getting |000> is |C000|2, etc.
– Suppose we measure only one bit (first):

» We get “0” with probability: P0=|C000|2+ |C001|2+ |C010|2+ |C011|2
Result: =    (C000|000>+ C001|001>+ C010|010>+ C011|011>)

» We get “1” with probability: P1=|C100|2+ |C101|2+ |C110|2+ |C111|2
Result: =    (C100|100>+ C101|101>+ C110|110>+ C111|111>)

• Problem: Don’t want environment to measure
before ready!
– Solution: Quantum Error Correction Codes!

Lec 24.464/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Spooky action at a distance

• Consider the following simple 2-bit state:
= C00|00>+ C11|11>

– Called an “EPR” pair for “Einstein, Podolsky, Rosen”
• Now, separate the two bits:

• If we measure one of them, it instantaneously sets other one!
– Einstein called this a “spooky action at a distance”
– In particular, if we measure a |0> at one side, we get a |0> at the other 

(and vice versa)
• Teleportation

– Can “pre-transport” an EPR pair (say bits X and Y)
– Later to transport bit A from one side to the other we:

» Perform operation between A and X, yielding two classical bits
» Send the two bits to the other side
» Use the two bits to operate on Y
» Poof! State of bit A appears in place of Y

Light-Years?
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Model: 
Operations on coefficients + measurements

• Basic Computing Paradigm:
– Input is a register with superposition of many values 

» Possibly all 2n inputs equally probable!
– Unitary transformations compute on coefficients

» Must maintain probability property (sum of squares = 1)
» Looks like doing computation on all 2n inputs simultaneously!

– Output is one result attained by measurement
• If do this poorly, just like probabilistic computation:

– If 2n inputs equally probable, may be 2n outputs equally 
probable.

– After measure, like picked random input to classical function!
– All interesting results have some form of “fourier transform” 

computation being done in unitary transformation

Unitary 
Transformations

Input
Complex

State
Measure

Output
Classical
Answer
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Shor’s Factoring Algorithm

• The Security of RSA Public-key cryptosystems 
depends on the difficulty of factoring a number N=pq 
(product of two primes)
– Classical computer: sub-exponential time factoring
– Quantum computer: polynomial time factoring

• Shor’s Factoring Algorithm (for a quantum computer)
1) Choose random x : 2  x  N-1.
2) If gcd(x,N)  1, Bingo!
3) Find smallest integer r : xr  1 (mod N)
4) If r is odd, GOTO 1
5) If r is even, a  x r/2 (mod N)  (a-1)(a+1) = kN
6) If a  N-1(mod N) GOTO 1
7) ELSE gcd(a ± 1,N) is a non trivial factor of N.

Hard

Easy
Easy

Easy
Easy
Easy
Easy
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Finding r with xr  1 (mod N)

• Finally: Perform measurement
– Find out r with high probability
– Get |y>|aw’> where y is of form k/r and w’ is related


k

/
\k /

\xk
k

/
\k /

\1

 /
\

/
\x

y
r yw

0w 

w1r

 ( ) /
\x

r
0

r r
1 k

0w 
w

1r
Quantum
Fourier

Transform
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Quantum Computing Architectures
• Why study quantum computing?

– Interesting, says something about physics
» Failure to build   quantum mechanics wrong?

– Mathematical Exercise (perfectly good reason)
– Hope that it will be practical someday:

» Shor’s factoring, Grover’s search, Design of Materials
» Quantum Co-processor included in your Laptop?

• To be practical, will need to hand quantum computer 
design off to classical designers

– Baring Adiabatic algorithms, will probably need 100s to 1000s 
(millions?) of working logical Qubits 
1000s to millions of physical Qubits working together

– Current chips: ~1 billion transistors!
• Large number of components is realm of architecture

– What are optimized structures of quantum algorithms when 
they are mapped to a physical substrate? 

– Optimization not possible by hand
» Abstraction of elements to design larger circuits
» Lessons of last 30 years of VLSI design: USE CAD
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• Quantum Circuit model – graphical representation
– Time Flows from left to right
– Single Wires: persistent Qubits, Double Wires: classical bits

» Qubit – coherent combination of 0 and 1:   = |0 + |1
– Universal gate set: Sufficient to form all unitary transformations

• Example: Syndrome Measurement (for 3-bit code)
– Measurement (meter symbol)

produces classical bits
• Quantum CAD 

– Circuit expressed as netlist
– Computer manpulated circuits

and implementations

Quantum Circuit Model
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• Quantum State Fragile  encode all Qubits
– Uses many resources: e.g. 3-level [[7,1,3]] 

code 343 physical Qubits/logical Qubit)!
• Still need to handle operations (fault-tolerantly)

– Some set of gates are simply “transversal:”
» Perform identical gate between each physical bit of logical encoding

– Others (like T gate for [[7,1,3]] code) cannot be handled transversally
» Can be performed fault-tolerantly by preparing appropriate ancilla

• Finally, need to perform periodical error correction
– Correct after every(?): Gate, Long distance movement, Long Idle Period
– Correction reducing entropy  Consumes Ancilla bits

• Observation:   90% of QEC gates are used for ancilla production
 70-85% of all gates are used for ancilla production

Adding Quantum ECC

H

T

Not Transversal!

n-physical Qubits
per logical Qubit H

TX

Encoded
/8 (T)
Ancilla

SXT:

C
orrect

C
orrect

C
orrect

C
orrect

C
orrect

C
orrect

C
orrect

C
orrect

QEC
Ancilla

Correct
Errors

Correct

Syndrom
e

Com
putation
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Outline

• Quantum Computing
• Ion Trap Quantum Computing
• Quantum Computer Aided Design

– Area-Delay to Correct Result (ADCR) metric
– Comparison of error correction codes

• Quantum Data Paths
– QLA, CQLA, Qalypso
– Ancilla factory and Teleportation Network Design

• Error Correction Optimization (“Recorrection”)
• Shor’s Factoring Circuit Layout and Design
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MEMs-Based Ion Trap Devices
• Ion Traps: One of the more promising quantum 

computer implementation technologies 
– Built on Silicon

» Can bootstrap the vast infrastructure that currently exists 
in the microchip industry

– Seems to be on a “Moore’s Law” like scaling curve
» 12 bits exist, 30 promised soon, …
» Many researchers working on this problem

– Some optimistic researchers speculate about room temperature
• Properties:

– Has a long-distance Wire
» So-called “ballistic movement”

– Seems to have relatively long decoherence times
– Seems to have relatively low error rates for:

» Memory, Gates, Movement
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Electrode Control

• Qubits are atomic ions (e.g. Be+)
– State is stored in hyperfine levels
– Ions suspended in channels between 

electrodes
• Quantum gates performed by lasers 

(either one or two bit ops)
– Only at certain trap locations
– Ions move between laser sites to 

perform gates
• Classical control

– Gate (laser) ops
– Movement (electrode) ops

• Complex pulse sequences to cause 
Ions to migrate

• Care must be taken to avoid 
disturbing state

• Demonstrations in the Lab
– NIST, MIT, Michigan, many others

Quantum Computing with Ion Traps

Gate Location

Qubit Ions

Electrodes

Courtesy of Chuang group, MIT Lec 24.564/29/15 Kubiatowicz CS162 ©UCB Spring 2015

An Abstraction of Ion Traps
• Basic block abstraction: Simplify Layout

• Evaluation of layout through simulation
– Yields Computation Time and Probability of Success

• Simple Error Model: Depolarizing Errors
– Errors for every Gate Operation and Unit of Waiting
– Ballistic Movement Error: Two error Models

1. Every Hop/Turn has probability of error
2. Only Accelerations cause error

in/out ports

straight 3-way 4-way turn gate locations
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H
H
H

q0
q1
q2
q3
q4
q5
q6

Q
ub

its

Time

Ion Trap Physical Layout

• Input: Gate level quantum 
circuit
– Bit lines
– 1-qubit gates
– 2-qubit gates

• Output:
– Layout of channels
– Gate locations
– Initial locations of ions
– Movement/gate schedule
– Control for schedule

q0

q3

q4

q5
q6

q1

q2
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Outline

• Quantum Computering
• Ion Trap Quantum Computing
• Quantum Computer Aided Design

– Area-Delay to Correct Result (ADCR) metric
– Comparison of error correction codes

• Quantum Data Paths
– QLA, CQLA, Qalypso
– Ancilla factory and Teleportation Network Design

• Error Correction Optimization (“Recorrection”)
• Shor’s Factoring Circuit Layout and Design
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Classical Control
Teleportation Network

Vision of Quantum Circuit Design

Schematic Capture
(Graphical Entry)

Quantum Assembly
(QASM)

OR

QEC Insertion
Partitioning

Layout
Network Insertion

Error Analysis
…

Optimization

CAD Tool
Implementation

Custom Layout and
Scheduling

Lec 24.604/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Important Measurement Metrics

• Traditional CAD Metrics:
– Area

» What is the total area of a circuit?
» Measured in macroblocks (ultimately m2 or similar)

– Latency (Latencysingle)
» What is the total latency to compute circuit once
» Measured in seconds (or s)

– Probability of Success (Psuccess)
» Not common metric for classical circuits
» Account for occurrence of errors and error correction

• Quantum Circuit Metric: ADCR 
– Area-Delay to Correct Result: Probabilistic Area-Delay metric

– ADCR = Area  E(Latency) =

– ADCRoptimal: Best ADCR over all configurations
• Optimization potential: Equipotential designs

– Trade Area for lower latency
– Trade lower probability of success for lower latency

success

single

P
LatencyArea
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• First, generate a physical instance of circuit
– Encode the circuit in one or more QEC codes
– Partition and layout circuit: Highly dependant of layout 

heuristics!
» Create a physical layout and scheduling of bits
» Yields area and communication cost

• Then, evaluate probability of success
– Technique that works well for depolarizing errors: Monte Carlo

» Possible error points: Operations, Idle Bits, Communications
– Vectorized Monte Carlo: n experiments with one pass
– Need to perform hybrid error analysis for larger circuits

» Smaller modules evaluated via vector Monte Carlo
» Teleportation infrastructure evaluated via fidelity of EPR 

bits
• Finally – Compute ADCR for particular result

How to evaluate a circuit?

Normal 
Monte Carlo:

n times

Vector
Monte Carlo:
single pass

Lec 24.624/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Quantum CAD flow

QEC Insert
Circuit

Synthesis

Hybrid Fault
Analysis

Circuit
Partitioning

Mapping,
Scheduling,

Classical control

Communication
Estimation

Teleportation
Network
Insertion

Input Circuit
O
utput Layout

ReSynthesis (ADCRoptimal)

P
success

Complete Layout

Re
M

ap
pi
ng

Error Analysis
Most Vulnerable Circuits

Fault-Tolerant 
Circuit

(No layout)

Partitioned
Circuit

Functional
System

QEC 
OptimizationFault

Tolerant

ADCR computation
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Example Place and Route Heuristic:
Collapsed Dataflow

• Gate locations placed in dataflow order
– Qubits flow left to right
– Initial dataflow geometry folded and sorted
– Channels routed to reflect dataflow edges

• Too many gate locations, collapse dataflow
– Using scheduler feedback, identify latency critical edges
– Merge critical node pairs
– Reroute channels

• Dataflow mapping allows pipelining of computation!

q0
q1
q2
q3

q0
q1
q2
q3

q0
q1
q2
q3
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Outline

• Quantum Computing
• Ion Trap Quantum Computing
• Quantum Computer Aided Design

– Area-Delay to Correct Result (ADCR) metric
– Comparison of error correction codes

• Quantum Data Paths
– QLA, CQLA, Qalypso
– Ancilla factory and Teleportation Network Design

• Error Correction Optimization (“Recorrection”)
• Shor’s Factoring Circuit Layout and Design
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Quantum Logic Array (QLA)
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EPR
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orrect
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1 or 2-Qubit
Gate (logical)

Storage for
2 Logical Qubits

(In-Place)

n-physical
Qubits

Syndrom
e 

Ancilla
Factory

Correct

• Basic Unit: 
– Two-Qubit cell (logical)
– Storage, Compute, Correction

• Connect Units with Teleporters
– Probably in mesh topology, but 

details never entirely clear from original papers
• First Serious (Large-scale) Organization (2005)

– Tzvetan S. Metodi, Darshan Thaker, 
Andrew W. Cross, Frederic T. Chong, and Isaac L. 
Chuang

Teleporter
NODE

EPR EPR

EPR
EPR
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Parallel Circuit Latency

Running Circuit at “Speed of Data”
• Often, Ancilla qubits are independent of data

– Preparation may be pulled offline
– Very clear Area/Delay tradeoff: 

• Ancilla qubits should be ready “just in time” to avoid 
ancilla decoherence from idleness

H C
X H

T

T QEC

QEC

QEC

QEC

QEC

QEC

T-Ancilla

T-AncillaQ0

Q1 QEC
Ancilla

QEC
Ancilla

QEC
Ancilla

QEC
Ancilla

QEC
Ancilla

QEC
Ancilla

Hardware Devoted to 
Parallel Ancilla Generation

Serial Circuit Latency
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How much Ancilla Bandwidth Needed?

• 32-bit Quantum Carry-Lookahead Adder
– Ancilla use very uneven (zero and T ancilla)
– Performance is flat at high end of ancilla generation bandwidth

» Can back off 10% in maximum performance an save orders 
of magnitude in ancilla generation area

• Many bits idle at any one time
– Need only enough ancilla to maintain state for these bits
– Many not need to frequently correct idle errors

• Conclusion: makes sense to compute ancilla requirements 
and share area devoted to ancilla generation
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Encoded Ancilla Verification Qubits

Ancilla Factory Design I
• “In-place” ancilla preparation

• Ancilla factory consists of many of these
– Encoded ancilla prepared

in many places, then
moved to output port

– Movement is costly!

In-place
Prep

In-place
Prep

In-place
Prep

In-place
Prep

0 Prep

Cat Prep

0 Prep

Cat Prep

0 Prep

Cat Prep

Verify

Verify

Verify

?

?

?

Bit
Correct

Phase
Correct
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Ancilla Factory Design II
• Pipelined ancilla preparation: break into stages

– Steady stream of encoded ancillae at output port
– Fully laid out and scheduled to get area and bandwidth 
estimates

Physical
0 Prep

CNOTs

Cat Prep
Cr

os
sb

ar

CNOTs

Cat Prep
Cr

os
sb

ar

Verif

Verif
Physical
0 Prep
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Correct
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CorrectJu
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Recycle cat state qubits and failures

Recycle used correction qubits
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The Qalypso Datapath Architecture
• Dense data region

– Data qubits only
– Local communication

• Shared Ancilla Factories
– Distributed to data as needed
– Fully multiplexed to all data
– Output ports (   ): close to data
– Input ports (    ): may be far from
data (recycled state irrelevant)

• Regions connected by teleportation networks

R R R
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Tiled Quantum Datapaths

• Several Different Datapaths mappable by our CAD flow
– Variations include hand-tuned Ancilla generators/factories

• Memory: storage for state that doesn’t move much
– Less/different requirements for Ancilla
– Original CQLA paper used different QEC encoding 

• Automatic mapping must:
– Partition circuit among compute and memory regions
– Allocate Ancilla resources to match demand (at knee of curve)
– Configure and insert teleportation network
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Our Group: Qalypso
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Which Datapath is Best?
• Random Circuit Generation

– f(Gate Count, Gate Types, Qubit Count, Splitting factor)
– Splitting factor (r): measures connectivity of the circuit

» Example: 0.5 splits Qubits in half, adds random gates 
between two halves, then recursively splits results

» Closely related to Rent’s parameter
• Qalypso clear winner (for all r)

– 4x lower latency than LQLA
– 2x smaller area than CQLA+

• Why Qalypso does well:
– Shared, matched ancilla generation
– Automatic network sizing (not one

Teleporter for every two Qubits) 
– Automatic Identification of

Idle Qubits (memory)
• LQLA and CQLA+ perform close second

– Original datapaths supplemented with better ancilla generators, 
automatic network sizing, and Idle Qubit identification

– Original QLA and CQLA do very poorly for large circuits
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How to design Teleportation Network

• What is the architecture of the network?
– Including Topology, Router design, EPR Generators, etc..

• What are the details of EPR distribution?
• What are the practical aspects of routing?

– When do we set up a channel?
– What path does the channel take?

EPR Stream

Y Teleporters

X Teleporters

Incoming Classical 
Information

(Unique ID, Dest, 
Correction Info)

Storage

Storage

St
or

ag
e

Storage
CC

CC

CC

CC

Outgoing Message
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• Positive Features
– Regularity (can build classical network topologies)
– T node linking not on critical path
– Pre-purification part of link setup

» Fidelity amplification of the line
– Allows continuous stream of EPR correlations to be established 

for use when necessary

G TT G TGT G TGT

PP

TeleportationTeleportation

Adjacent T nodes linked for teleportation

Basic Idea: Chained Teleportation
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• Experiment: Transmit enough EPR pairs over network 
to meet required fidelity of channel

– Measure total global traffic
– Higher Fidelity local EPR pairs  less global EPR traffic

• Benefit: decreased congestion at T Nodes
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• Grid of T nodes
• Packet-switched network 

- Options: Dimension-Order or Adaptive Routing
- Precomputed or on-demand start time for setup

T T T T

T T T T

P P P P

P P P P

G

G

G

G

G

G G

G G G

, linked by G nodes

• Each EPR qubit has associated classical message

Gate Gate Gate Gate

Gate Gate Gate Gate

Building a Mesh Interconnect
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Outline

• Quantum Computing
• Ion Trap Quantum Computing
• Quantum Computer Aided Design

– Area-Delay to Correct Result (ADCR) metric
– Comparison of error correction codes

• Quantum Data Paths
– QLA, CQLA, Qalypso
– Ancilla factory and Teleportation Network Design

• Error Correction Optimization (“Recorrection”)
• Shor’s Factoring Circuit Layout and Design
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• Standard idea: correct after every gate, and long 
communication, and long idle time

– This is the easiest for people to analyze
• This technique is suboptimal (at least in some 

domains)
– Not every bit has same noise level!

• Different idea: identify critical Qubits
– Try to identify paths that feed into noisiest output bits
– Place correction along these paths to reduce maximum noise

H

Reducing QEC Overhead

H Correct Correct

Correct

Correct

CorrectCorrect

Correct

HH Correct
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Simple Error Propagation Model

• EDist model of error propagation: 
– Inputs start with EDist = 0
– Each gate propagates max input EDist to outputs 
– Gates add 1 unit of EDist, Correction resets EDist to 1

• Maximum EDist corresponds to Critical Path
– Back track critical paths that add to Maximum EDist

• Add correction to keep EDist below critical threshold

Error Distance 
(EDist) Labels

Maximum EDist 
propagation:

4=max(3,1)+1 
H Correct

Correct
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QEC Optimization

• Modified version of 
retiming algorithm: called 
“recorrection:”

– Find minimal placement 
of correction operations 
that meets specified 
MAX(EDist)  EDistMAX

• Probably of success not
always reduced for 
EDistMAX > 1

– But, operation count and 
area drastically reduced

• Use Actual Layouts and 
Fault Analysis

– Optimization pre-layout, 
evaluated post-layout

EDistMAX
iteration

QEC
Optimization

EDistMAX

Partitioning
and

Layout

Fault
Analysis

Optimized
Layout

Input
Circuit

1024-bit QRCA and QCLA adders
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Recorrection in presence of 
different QEC codes

• 500 Gate Random Circuit (r=0.5)
• Not all codes do equally well with Recorrection

– Both [[23,1,7]] and [[7,1,3]] reasonable candidates
– [[25,1,5]] doesn’t seem to do as well

• Cost of communication and Idle errors is clear here!
• However – real optimization situation would vary 

EDist to find optimal point
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Outline

• Quantum Computing
• Ion Trap Quantum Computing
• Quantum Computer Aided Design

– Area-Delay to Correct Result (ADCR) metric
– Comparison of error correction codes

• Quantum Data Paths
– QLA, CQLA, Qalypso
– Ancilla factory and Teleportation Network Design

• Error Correction Optimization (“Recorrection”)
• Shor’s Factoring Circuit Layout and Design
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Comparison of 1024-bit adders

• 1024-bit Quantum Adder Architectures
– Ripple-Carry (QRCA)
– Carry-Lookahead (QCLA)

• Carry-Lookahead is better in all architectures
• QEC Optimization improves ADCR by order of magnitude 

in some circuit configurations

ADCRoptimal for 
1024-bit QCLA

ADCRoptimal for 
1024-bit QRCA and QCLA
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• Error Correction is not predominant use of area
– Only 20-40% of area devoted to QEC ancilla
– For Optimized Qalypso QCLA, 70% of operations for QEC 

ancilla generation, but only about 20% of area
• T-Ancilla generation is major component

– Often overlooked
• Networking is significant portion of area when allowed 

to  optimize for ADCR (30%)
– CQLA and QLA variants didn’t really allow for much flexibility 

Area Breakdown for Adders
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Investigating 1024-bit Shor’s

• Full Layout of all Elements
– Use of 1024-bit Quantum Adders
– Optimized error correction
– Ancilla optimization and Custom Network Layout

• Statistics:
– Unoptimized version: 1.351015 operations
– Optimized Version 1000X smaller
– QFT is only 1% of total execution time
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1024-bit Shor’s Continued

• Circuits too big to compute Psuccess
– Working on this problem

• Fastest Circuit: 6108 seconds ~ 19 years
– Speedup by classically computing recursive squares?

• Smallest Circuit: 7659 mm2

– Compare to previous estimate of 0.9 m2 = 9105 mm2


