Cs162
Operating Systems and
Systems Programming
Lecture 12

Address Translation (Con't)
March 4, 2015

Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: Starvation vs Deadlock @
+ Starvation vs. Deadlock

- Starvation: thread waits indefinitely

» Example, low-priority thread waiting for resources
constantly in use by high-priority threads

- Deadlock: circular waiting for resources

» Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

- Deadlock = Starvation but not vice versa
» Starvation can end (but doesn't have to)
» Deadlock can't end without external intervention
3/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 12.2

Recall: Four requirements for Deadlock

* Mutual exclusion
- Only one thread at a time can use a resource.
*+ Hold and wait

- Thread holding at least one resource is waiting to
acquire additional resources held by other threads

* No preemption
- Resources are released only voluntarily by the thread
holding the resource, after thread is finished with it
+ Circular wait
- There exists a set {T;, .., T} of waiting threads
» T, is waiting for a resource that is held by T,

» T, is waiting for a resource that is held by T;
»

» T, is waiting for a resource that is held by T;

3/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 12.3

Recall: Ways of preventing deadlock

* Force all threads to request resources in a particular
order preventing any cyclic use of resources

- Example (x.P, y.P, z.P,..)
» Make tasks request disk, then memory, then..
* Banker's algorithm:

- Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run
deadlock detection algorithm, substituting

(IMax, 4. 1-[Alloc,,q.] < [Avail]) for ([Request, 4] ¢ [Avail])
Grant request if result is deadlock free (conservativel)

» Keeps system in a "SAFE" state, i.e. there exists a
sequence {T,, T,, .. T} with T, requesting all remaining
resources, finishing, then T, requesting all remaining
resources, etc..

- Algorithm allows the sum of maximum resource needs of all
current threads to be greater than total resources

3/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 12.4

Recall: Address translation

Virtual Physical
ddressei Addresses

» MMU

Untranslated read or write ——

* Address Space:
- All the addresses and state a process can touch
- Each process and kernel has different address space
+ Consequently, two views of memory:
- View from the CPU (what program sees, virtual memory)
- View from memory (physical memory)
- Translation box (MMU) converts between the two views
* Translation essential to implementing protection

- If task A cannot even gain access to task B's data, no
way for A to adversely affect B

* With translation, every program can be linked/loaded
into same region of user address space

3/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 12.5

Recall: General Address Translation

Code

Data

Heap

Stack

Prog 1
Virtual
Address
Space 1

|

Translation Map 1

3/4/15

Stack 1

Heap 1

Code 1

Data 1

OS code

OS data

OS heap &
Stacks

Code

Data

Heap

Stack

Prog 2
Virtual
Address
Space 2

|

Physical Address Space
Kubiatowicz €5162 ®UCB Spring 2015

Translation Map 2

Lec 12.6

Simple Base and Bounds (CRAY-1)
Base

Virtual

Address
CPU DRAM

Physical
Limit— Address
No: Error!

* Could use base/limit for dynamic address translation -
translation happens at execution:

- Alter address of every load/store by adding "base”
- Generate error if address bigger than limit
* This gives program the illusion that it is running on its
own dedicated machine, with memory starting at O
- Program gets continuous region of memory

- Addresses within program do not have to be relocated
when program placed in different region of DRAM

3/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 12.7

Issues with Simple B&B Method

* Fragmentation problem
- Not every process is the same size
- Over time, memory space becomes fragmented
* Missing support for sparse address space
- Would like to have multiple chunks/program
- E.g.: Code, Data, Stack
* Hard to do inter-process sharing
- Want to share code segments when possible
- Want to share memory between processes
- Helped by providing multiple segments per process

3/4/15

Kubiatowicz €5162 ®UCB Spring 2015

process 6 process 6 process 6 process 6

process 5 process 5 process 5 .
process 9 process 9 process 11

process 2 |::> |:> :> process 10

0s os os 0s

Lec 12.8

More Flexible Segmentation Implementation of Multi-Segment Model

1 Virtual Offset | affsel 'r->\ >Error
subroutine stack 4 i Address BaseO| Limit0 | V
Basel
symbol Base3| Limit3 [N Physical
tabie Based4| Limit4 |V Address
2 Base5| Limit5 | N
st : Base6| Limit6 | N
3 Base7| Limit7 |V Check Valid
— : - Segment map resides in processor
_ : : - Segment number mapped into base/limit pair ACCEsS
— : userviewof physical - Base added to offset to generate physical addféss"
el axkdvoes e METTIOTY SPACE e memory. space; - Error check catches offset out of range
* Logical View: multiple separate segments + As many chunks of physical memory as entries
- Typical: Code, Data, Stack - Segment addressed by portion of virtual address
- Others: memory sharing, etc - However, could be included in instruction instead:
- Each segment is given region of contiguous memory » x86 Example: mov [es:bx],ax.
_ Has a base and limit * What is "V/N" (valid / not valid)?
. . . - Can mark segments as invalid; requires check as well
- Can reside anywhere in physical memory
3/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 12.9 3/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 12.10
Intel x86 Special Registers Example: Four Segments (16 bit addresses)
80386 Special Registers SegID# | Base | Limit

Seqiment Legistels

[S&al offset] [O(code) |0x4000 |0x0800
—T ey ¥

15 14 13 0 1 (data) 0x4800 | 0x1400
15 CE o] 15 [0 o]
:| Virtual Address Format 2 (shared) | 0xFO000 |0x1000
Stack Seg. |:| Ertta Seg
iz = 5 18 = 5 3 (stack) 0x0000 | 0x3000
SeglD=0
; [Joemie [Jom ox0000 010000
15 = o] 13 Gs o]
Index T reL
é L |8l |olo|L|T|s|z|x |2 el |c SegiD=1 0x4000 Might
T|eL |E|F|E|F|E|F|X|F|X|E|%R]|F 0x4000 ﬁox4800 —
RPL = Requesior Privilege Level W e R e B o T T o L 5 be shared
TL=Table Indicator 0x5C00
W apt L =En g R[] es o8 0x8000
Thdex =Thdex into lable 3130 s 13210 31 OFlmgs
Puotecied Mode segiment selector - [Space for
g AR gm 0xC000 Other Apps
Typical Segment Register BG=Paging Ensble TR Tach
P . Bl Coilitien Libs LOPL=L/0 Privilege Lovel
Current Priority is RPL ST — CE Dok i 0xF000 Shared with
MPMath copiocomol presen el
Of Code Segmen'r (CS) BE_Protecind Madmardbie }rFE__—I"Et?;; agFI i Other Apps
S e Virtual Physical
AF=Anxilialy Fla
Petay B Address Space Address Space
3/4/15 Kubiatowicz €S162 ®UCB Spring 2015 Lec 12.11 3/4/15

Kubiatowicz 5162 ©®UCB Spring 2015 Lec 12.12

Example of segment translation
0x240 main: la $a0, varx

0x244 jal strlen Seg ID # | Base | Limit

0 (code) |0x4000 | 0x0800

0x§60 strien: i $v0, 0 ;count 1 (data) 0x4800 | 0x1400

oeen loepe L ST, G0 2 (shared) | OxFOOO | 0x1000

0x368 beq $r0,%$tl, done
3 (stack) |0x0000 | 0x3000

0x4050 varx dw 0x314159

Lets simulate a bit of this code to see what happens (PC=0x240):
Fetch 0x240. Virtual segment #? 0: Offset? 0x240
Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050 — $a0, Move PC+4—PC

2. Fetch Ox244. Translated to Ph sncal 0x4244. Get 0)al strlen”
Move 0x0248 — $ra (return a dress!), Move 0x036

3. Fetch 0x360. Translated to Physucal 0x4360. Get "li $v0 0"
Move 0x0000 — $vO, Move PC+4—PC

4. Fetch 0x364. Translated fo Physncal 0x4364. Get “Ib $10,($a0)"
Since $a0 is 0x4050, try to load byte from 0x4050

Translate 0x4050. Virtual segment #? 1: Offset? 0x50
Physical address? Base=0x4 80 Phy: sical’ addr = 0x4850,

Load Byte from 0x4850—>$10, Move PC+4—PC

3/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 12.13

Administrivia

* Midterm I coming up in next Wednesday!
- March 11th. 7:00-10:00PM
- Rooms: 1 PIMENTEL. 2060 VALLEY LSB
» Will be dividing up in advance - watch for Piazza post
- All topics up to and including next Monday
- Closed book
- 1 page hand-written notes both sides
* Review Session
- This Sunday, 4-6 PM, 306 Soda Hall
* HW3 moved 1 week
- Sorry about that, we had a bit of a scheduling snafu

3/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 12.14

Observations about Segmentation

* Virtual address space has holes
- Segmentation efficient for sparse address spaces

- A correct program should never address gaps (except
as mentioned in moment)

» If it does, trap to kernel and dump core
* When it is OK to address outside valid range:
- This is how the stack and heap are allowed to grow

- For instance, stack takes fault, system automatically
increases size of stack

* Need protection mode in segment table
- For example, code segment would be read-only
- Data and stack would be read-write (stores allowed)
- Shared segment could be read-only or read-write
What must be saved/restored on context switch?
- Segment table stored in CPU, not in memory (small)

- Might store all of processes memory onto disk when
switched (called “swapping™)

3/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 12.15

What if segments than will fit into memory?

oparating e -
system

Pt ; process P,
(2) swap out |

= ! (N

lprocoss Py

N
| L_ZJ swap in

user — =

space backing store

Main Mamaory

+ Extreme form of Context Switch: Swapping

- In order to make room for next process, some or all
of the previous process is moved to disk

» Likely need to send out complete segments
- This greatly increases the cost of context-switching
* Desirable alternative?

- Some way to keep only active portions of a process in
memory at any one time

- Need finer granularity control over physical memory
3/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 12.16

Problems with Segmentation

* Must fit variable-sized chunks into physical memory
* May move processes multiple times to fit everything
* Limited options for swapping to disk

- Fragmentation: wasted space
- External: free gaps between allocated chunks
- Internal: don't need all memory within allocated chunks

3/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 12.17

Paging: Physical Memory in Fixed Size Chunks

+ Solution to fragmentation from segments?
- Allocate physical memory in fixed size chunks ("pages”)
- Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 .. 110010

» Each bit represents page of physical memory
1=allocated, O=free

- Should pages be as big as our previous segments?
- No: Can lead to lots of internal fragmentation
» Typically have small pages (1K-16K)
- Consequently: need multiple pages/segment

3/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 12.18

How to Implement Paging?
Offset

o 7 CT
age #1 : .

page #2_| V.R.W \[Physmal Address

| page #3 | V.RW Check Perm]

Virtual Address:

PageTablePtr

| PageTableSize

' page #4 |N v
él?ri)erss Eage#S V,R,WM Access

Error
. Pa%e Table (One per process)
- Resides in physical memor
- Contains physical page an germission for each virtual page
. » Permissions include: Valid bits, Read, Write, etc
* Virtual address mapping
- Offset from Virtual address coxied to Physical Address
» Example: 10 bit offset = 1024-byte pages
- Virtual page # is all remaining bits
» Example for 32-bits: 32-107= 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address
- Check Page Table bounds and permissions

3/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 12.19

Simple Page Table Example

Example (4 byte pages)

ox00 FE}-2200 0000 0x00
b
: c o 0001 0000—3 ox04 |5
: d 1 00000100 j 0x05!
: 0x04 [G= 00000100 5 , | 0000 1100 x X
: f
: 2 0000 0100 |
! 0x06? | g —> _— 0x08
: h
: 0x08 K 0000 1000 Page > oxoc |z
i 0x097 [Table f
: K g OXOE!
|
. —> 0x10 2
Virtual 0000 0110 ====> 0000 1110 b
Memory 0000 1001 ====> 0000 0101 c
d
Physical
Memory
3/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 12.20

What about Sharing?

(Process A):

[PageTablePuAt—|—"[page 0 [vr

Virtual Address
(Process B):

This physical page
appears in address

space of both processes

Memory Layout for Linux 32-bit

1GB f/
<1‘

3GB <

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Segmentation Fault

8xceBeaBea == TASK SIZE

Random stack offset

Stack (grows down)

> RLIMIT_STACK (e.g., 8MB)

Random mmap offset

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

program break

T

Heap

brk

start_brk

¢ Random brk offset

BSS segment
Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = "God’s own prototype”;

end_data

start_data

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

end_code

.

@

http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpacelayout.png

3/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 12.21 3/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 12.22
Summary: Simple Page Table Summary: Simple Page Table
Vi |) Page Table Vi |) Page Table
irtual memory view 7 Physical memory view irtual memory view Physical memory view
11111 | 11101 11111 | 11101
11111111 tack 1110|1100 7717 11111 11110| 11100
1111 0000 °‘:“"‘ null stack 11101| null
null 11100 null
2 nut 110 0000 1110 0000 s 1100) nul 110 0000
null 11010 null
null 11001| null
1100 0000 null ; 11000| null
null What happens if 10111| null
null stack grows to 10110| null
E null 10101| null
1 null 1110 00007 10100, null
Rean null Rean \10011 null
1000 0000 ! 20000 1000 0000 o i — ot e
hean \10001 01111 TG
01110 U 0111 000 10000| 01110 U 0111 000
null 01111| null
null 01110| null
null 0101 000 01101] null 0101 000
null 01100 null
0100 0000 01101 0100 0000 01011/ 01101
01100 01010| 01100
01011 01001| 01011
01010 = 01000| 01010 =
null COutc 00111| null COUc
prt null 0001 0000] 00110| null 0001 0000
e null e 00101| null
0000 0000 null _ 0000 0000 0000 0000 00100 null _ 0000 0000
00101 00011 00101
page # offset 00100 page # offset 00010| 00100
00011 00001| 00011
3/4/15 00010 015 Lec 12.23 3/4/15 00000 00010 015 Lec 12.24

Summary: Simple Page Table

vi |) Page Table
irtual memory view Physical memory view
11111 | 11101
1111 1111 ?11110 11100
stack———— 10|
1110 0000 1 11011 null 1110 0000
¥ 11010| null
11001| null
1100 0000 11000 null
10111| null
10110 null
1 10101 null
10100 null
— brosed M Allocate ir:ew
! 10010| 10000 ages where
1000 0000 10001/ 01111 R pag |
10000| 01110 room:
01111 null

01110 null
01101| null
01100| null
01011| 01101
01010| 01100
01001| 01011
01000| 01010 iy
null COUCT

0101 000

0100 0000

code 00110| null 0001 0000

0000 0000 %0100| mu e 0000 0000
‘_'_“?J 00011(00101
page # offset 00010{ 00100

3/4/15 00001] 00011 015 Lec 12.25

00000/ 00010

Page Table Discussion

* What needs to be switched on a context switch?
- Page table pointer and limit

* Analysis
- Pros
» Simple memory allocation
» Easy to Share
- Con: What if address space is sparse?
» E.g. on UNIX, code starts at O, stack starts at (23!-1).
» With 1K pages, need 2 million page table entries!
- Con: What if table really big?
» Not all pages used all the time = would be nice to have
working set of page table in memory
* How about combining paging and segmentation?
- Segments with pages inside them?

- Need some sort of multi-level translation

3/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 12.26

Fix for sparse address space: The two-level page table

_ Physical
12 bits Address:

10 bits 10 bits

Virtual
Address:

— 4 bytes «—

* Tree of Page Tables
* Tables fixed size (1024 entries)
- On context-switch: save single
PageTablePtr register
* Valid bits on Page Table Entries
- Don't need every 2"-level table
- Even when exist, 2"d-level tables

can reside on disk if not in use
3/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 12.27

—> 4 bytes «—

Summary: Two-Level Paging

Virtual memory view Page Tables Physical memory view
1111 1111 (level 2)
stack 11| 11101
1111 0000 I 10| 11100 1110 0000
3 01 10111
P Tabl 00| 10110
1100 0000 age 1a
(level 1)
1| o 11| null
T 110| null 10| 10000
i 101| null 01 01111
hean |>_>100 00| 01110
1000 0000 b 813 null REAR
001 ol T——— {0111 000
000 & 11| 01101
~ 10{ 01100
- 01| 01011 0101 000
00| 01010
0100 0000 J
11| 00101
page2 # 10| 00100 —— code
01| 00011
code 00| 00010 ——" 0001 0000
0006.6000 _ 0000 0000
pagel # offset
3/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 12.28

Summary: Two-Level Paging

Virtual memory view Page Tables
(level 2)
anl
tack 11| 11101
10(11100
1 01| 10111
00| 10110
Page Table
(level 1)
11| @ 11{ null
T 110| null o[10000
1001 0000 101) nul ol
eap
(0x90) i 0LL [nul
010 @
001| null
ooo| @ 11| 01101
10{ 01100
01| 01011
00| 01010
11| 00101
10| 00100
01| 00011
code 00| 00010

Physical memory view

1110 0000

1000 0000
(0x80)

A
LUUC

0001 0000

T 0000 0000

Multi-level Translation: Segments + Pages
+ What about a free of tables?

- Lowest level page table=>memory still allocated with bitmap
- Higher levels often segmented
* Could have any number of levels. Example (top segment):

Virtual

Address: l
page #0 |V.R
BaseO[Limi age #1 |V R _
D o page #3 | V.R .V Physical Address
Base3| LimitA N page #4 |N
Base4| Limit4
Base5| Limith page #5 |V.RV
Base6| Limité6 | N
Base7| Limit7 |V —JAccess Access

rror E
* What must be saved/restored on context switch?
- Contents of top-level segment registers (for this example)
- Pointer to top-level table (page table)

3/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 12.29 3/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 12.30
What about Sharing (Complete Segment)? Multi-level Translation Analysis
page #1 |V.R - Only need to allocate as many page table entries as we
page #2 |V.R.M need for application
page #3 |V.R.V » In other wards, sparse address spaces are easy
[page #4 [N - Easy memory allocation
Limit3| N page #5 |V.R.V - Easy Sharing
Limit4 |V Shared Segment » Share at segment or page level (need additional reference
Base5| Limit5 [N Cimito counting)
Base6| Limit6 | N T . Cons:
Base7] Limit7[V b

Process
B

3/4/15

Kubiatowicz €5162 ®UCB Spring 2015

Limit3

Base4| Limit4

Base5| Limith

Base6| Limité

Base7| Limit7

<IZIZI<|Z

Lec 12.31

- One pointer per page (typically 4K - 16K pages today)
- Page tables need to be contiguous
» However, previous example keeps tables to exactly one
page in size
- Two (or more, if >2 levels) lookups per reference
» Seems very expensivel

3/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 12.32

Inverted Page Table

* With all previous examples ("Forward Page Tables™)

- Size of page table is at least as large as amount of
virtual memory allocated to processes

- Physical memory may be much less
» Much of process space may be out on disk or not in use

Hash
Table

* Answer: use a hash table

- Called an "Inverted Page Table”

- Size is independent of virtual address space

- Directly related to amount of physical memory

- Very attractive option for 64-bit address spaces
+ Cons: Complexity of managing hash changes

- Often in hardware!
3/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 12.33

Making it real:
X86 Memory model with segmentation (16/32-bit)

Logical Address
(or Far Pointer)
Y
Segment Y
Selector Offset Linear Address
Space
) Linear Address
Global Descriptor - .
Table (GDT) I Dir | Table Offset ig‘,c[iﬂec;sl.
Space
| | Segment

Segment Page Table Page

| g | Descriptor)
[Page Directory L[Phy. Addr.
™ Lin. Addr. 1
L r Entry -
y) - * - Entry

Segment 7

Base Address
I Page
Segmentation Paging
3/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 12.34

X86 Segment Descriptors (32-bit Protected Mode)

- Segments are either implicit_in the instruction (say for code
segments) or actually part of the instruction
- There are 6 registers: SS, CS, DS, ES, FS, 65
* What is in a segment register?
- A pointer to the actual segment description:

Segment selector [13 bits] S RPL
G/L selects between GDT and LDT tables (global vs local
descriptor tables)

+ Two registers: GDTR and LDTR hold pointers to the global and
local déscriptor tables in memory

- Includes length of table (for < 2!3) entries
- Descriptor format (64 bits): . .

T T T T T T T T T —TTT AEL R LR
Base address (24-31) G|DB| |A Limit (16-19) P|DPL|5 Type Base address (16-23)
||||||| T T Tont Tt T T T |\l e)
Base address (Bit 0-15) Segment Limit (Bit 0-15)

Granularity of segment (0: 16bit, 1: 4KiB unit)
Default operand Size (0; 16bit, 1: 32bit)
Freely available for use by software
¢ Segment present

: Descriptor Privilege Level

System Segment {0: System, 1: code or data)
: Code, Datd, Segment

3/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 12.35

e 8,7 0

o
200

39
oo

What is in a Page Table Entry?

* What is in a Page Table Entry (or PTE)?
- Pointer to next-level page table or to actual page
- Permission bits: valid, read-only, read-write, write-only
- Example: Intel x86 architecture PTE:
- Address same format previous slide (10, 10, 12-bit offset)
- Intermediate page tables called "Directories”

Page Frame Number Free 3|2
(Physical Page Number) (0S) O]L[D[AIS § Ul“IP
31-12 11-9 876543210
P: Present (same as “valid” bit in other architectures)
W: Writeable
U: User accessible

PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)
: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
L: L=1=4MB page (directory only).
Bottom 22 bits of virtual address serve as offset

3/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 12.36

Examples of how to use a PTE

* How do we use the PTE?
- Invalid PTE can imply different things:
» Region of address space is actually invalid or
» Page/directory is just somewhere else than memory
- Validity checked first
» OS can use other (say) 31 bits for location info
* Usage Example: Demand Paging
- Keep only active Joa es in memory
- Place others on disk and mark their PTEs invalid
* Usage Example: Copy on Write
- UNIX fork gives copy of parent address space to child
» Address spaces disconnected after child created
- How to do this cheaply?
» Make copy of parent’'s page tables (point at same memory)
» Mark entries in both sets of page tables as read-only
» Page fault on write creates two copies
* Usage quample: Zero Fill On Demand
- New data pages must carry no information (say be zeroed)
- Mark PTEs as invalid: page fault on use gets zeroed page
- Often, OS creates zeroed pages in background

3/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 12.37

How is the translation accomplished?

Virtual Physical
Addresses Addresses
— MMV p——

* What, exactly happens inside MMU?
* One possibility: Hardware Tree Traversal

- For each virtual address, takes ﬁage table base pointer
and traverses the page table in hardware

- Generates a "Page Fault” if it encounters invalid PTE
» Fault handler will decide what to do
» More on this next lecture
- Pros: Relatively fast (but still many memory accesses!)
- Cons: Inflexible, Complex hardware
* Another possibility: Software
- Each traversal done in software
- Pros: Very flexible
- Cons: Every translation must invoke Fault!
* In fact, need way to cache translations for either case!
3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 Lec 12.38

Recall: Dual-Mode Operation

*+ Can a process modify its own translation tables?
- NO!
- If it could, could get access to all of physical memory
- Has to be restricted somehow
+ To Assist with Protection, Hardware provides at least
two modes (Dual-Mode Operation):
- "Kernel” mode (or “supervisor” or “protected")
- "User” mode (Normal program mode)

- Mode set with bits in special control register only
accessible in kernel-mode

+ Intel processor actually has four “rings” of protection:
- PL (Priviledge Level) from O - 3
» PLO has full access, PL3 has least
- Privilege Level set in code segment descriptor (CS)

- Mirrored "TOPL" bits in condition register gives
permission to programs to use the I70O insfructions

- TKpicaI OS kernels on Intel processors only use PLO
("kernel”) and PL3 (“user”

3/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 12.39

How to get from Kernel-User

+ What does the kernel do to create a new user
process?

- Allocate and initialize address-space control block
- Read program off disk and store in memory
- Allocate and initialize translation table
» Point at code in memory so program can execute
» Possibly point at statically initialized data
- Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program
+ How does kernel switch between processes?
- Same saving/restoring of registers as before
- Save/restore PSL (hardware pointer to translation table)
3/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 12.40

Recall: User—Kernel (System Call)

* Can't let inmate (user) get out of padded cell on own
- Would defeat purpose of protection!
- So, how does the user program get back into kernel?

USEr process
user mode
{mode bit=1

| user process executing H calls system call | | return from system call |

\

i L

LY Fd
trap returm
mode bit=0 mode bit = 1
kernel mode

execute system call (mode bit = 0)

« System call: Voluntary procedure call into kernel
- Hardware for controlled User—Kernel transition
- Can any kernel routine be called?
» No! Only specific ones.
- System call ID encoded into system call instruction
» Index forces well-defined interface with kernel

kernel

3/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 12.41

System Call Continued

* What are some system calls?
- I/0: open, close, read, write, Iseek
- Files: delete, mkdir, rmdir, truncate, chown, chgrp, ..
- Process: fork, exit, wait (like join)
- Network: socket create, set options
* Are system calls constant across operating systems?
- Not entirely, but there are lots of commonalities
- Also some standardization attempts (POSIX)
* What happens at beginning of system call?
» On entry to kernel, sets system to kernel mode
» Handler address fetched from table/Handler started
+ System Call argument passing:
- In registers (not very much can be passed)
- Write into user memory, kernel copies into kernel mem
» User addresses must be translated!
» Kernel has different view of memory than user
- Every Argument must be explicitly checked!

3/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 12.42

User—Kernel (Exceptions: Traps and Interrupts)
+ A Sysfem call instruction causes a synchronous
exception (or “trap”)
- In fact, often called a software “trap” instruction
+ Other sources of Synchronous Exceptions (“Trap”):

- Divide by zero, Illegal instruction, Bus error (bad
address, e.g. unaligned access)

- Segmentation Fault (address out of range)
- Page Fault (for illusion of infinite-sized memory)

* Interrupts are Asynchronous Exceptions
- Examples: timer, disk ready, network, etc....
- Interrupts can be disabled, traps cannot!

* On system call, exception, or interrupt:
- Hardware enters kernel mode with interrupts disabled
- Saves PC, then jumps to appropriate handler in kernel
- For some processors (x86), processor also saves

registers, changes stack, etc.
* Actual handler typically saves registers, other CPU
state, and switczes to kernel stack
3/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 12.43

Closing thought: Protection without Hardware

* Does protection require hardware support for
translation and dual-mode behavior?
- No: Normally use hardware, but anything you can do in
hardware can also do in software (possibly expensive)
* Protection via Strong Typing
- Restrict rogramming language so that you can't express
program that would trash another program
- Loader needs to make sure that program produced by
valid compiler or all bets are off
- Example languages: LISP, Ada, Modula-3 and Java
* Protection via software fault isolation:
- Language indeﬁenden‘r approach: have compiler generate
object code that provably can't step out of bounds

» Compiler puts in checks for every “dangerous” operation
(loads, stores, efc). Again, need special loader.

» Alternative, compiler generates “proof” that code cannot
do certain things (Proof Carrying Code)

- Or: use virtual machine to guar‘anfee safe behavior
(loads and stores recompiled on fly to check bounds)

3/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 12.44

Summary (1/2)

Segment Mapping
- Segment registers within processor
- Segment ID associated with each access
» Often comes from portion of virtual address
» Can come from bits in instruction instead (x86)
- Each segment contains base and limit information
» Offset (rest of address) adjusted by adding base
Page Tables
- Memory divided into fixed-sized chunks of memory

- Virtual page number from virtual address mapped
through page table to physical page number

- Offset of virtual address same as physical address

- Large page tables can be placed into virtual memory
Multi-Level Tables

- Virtual address mapped to series of tables

- Permit sparse population of address space
Inverted page table

- Size of page table related to physical memory size

3/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 12.45

Summary (2/2)

* PTE: Page Table Entries
- Includes physical page number
- Control info (valid bit, writeable, dirty, user, etc)

+ Dual-Mode
- Kernel/User distinction: User restricted
- User—Kernel: System calls, Traps, or Interrupts

- Inter-process communication: shared memory, or
through kernel (system calls)

- Exceptions
- Synchronous Exceptions: Traps (including system calls)
- Asynchronous Exceptions: Interrupts

3/4/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 12.46

