CS162
Operating Systems and
Systems Programming
Lecture 10

Scheduling (Continued),
Deadlock

February 25, 2015
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: Scheduling

o ready queue | CPU
b e
IO queue |-—v: VO request [+
| time siice .
| expired |
child fork a |
axecutes child 1
interrupt waitforan |
(ocCuUrs) interrupt

* Question: How is the OS to decide which of several
tasks to take off a queue?

* Scheduling: deciding which threads are given access to
resources from moment to moment

- The high-level goal: Dole out CPU time to optimize some
desired parameters of system

T1 T2 T3 T1 T2

Time ————
2/25/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 10.2

Recall: Scheduling Policy Goals/Criteria

* Minimize Response Time
- Minimize elapsed time to do an operation (or job)
- Response time is what the user sees:
» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World
* Maximize Throughput
- Maximize operations (or jobs) per second
- Throughput related to response time, but not identical:

» Minimizing response time will lead to more context
switching than if you only maximized throughput

- Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)

* Fairness

- Share CPU among users in some equitable way

- Fairness is not minimizing average response time:
» Better average response time by making system /ess fair

2/25/15 Kubiatowicz 5162 ®UCB Spring 2015 Lec 10.3

Recall: First-Come, First-Served (FCFS) Scheduling

+ First-Come, First-Served (FCFS)
- Also “"First In, First Out” (FIFO) or “"Run until done”

» In early systems, FCFS meant one program
scheduled until done (including I/0)

» Now, means keep CPU until thread blocks

- Example: Process Burst Time
P 24
7 3
7, 3

- Suppose processes arrive in the order: P, , P, , P;
The Gantt Chart for the schedule is:

P P, Ps

0 24 27 30
- Waiting time for P, = 0; P, = 24; P;= 27
- Average waiting time: (0 + 24 + 27)/3 = 17
- Average Completion time: (24 + 27 + 30)/3 = 27
* Convoy effect: short process behind long process
2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.4

Round Robin (RR)

* FCFS Scheme: Potentially bad for short jobs!
- Depends on submit order

- If you are first in line at supermarket with milk, you
donYt care who is behind you? on the other hand... 4

* Round Robin Scheme

- Each process gets a small unit of CPU time
time ‘gquantum), usually 10-100 milliseconds

- After quantum expires, the process is preem
and adgied to the Fc’and of 'rhepready que?.le. P

- n processes in ready queue and time quantum is ¢ =
» Each process gets 1/n of the CPU time
» In chunks of at most ¢ time units
» No process waits more than (n#-1)g time units
+ Performance
- ¢ large = FCFS
- ¢ small = Interleaved (really small = hyperthreading?)

- g must be large with respect to context switch,
g‘l’herwise oveghead is Tog high (all overhead)

2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.5

Example of RR with Time Quantum = 20

. Example: Process Burst Time
P, 53
Py 68
Py 24

- The Gantt chart is:

P, [P, [Py [Py [Py [Py [P, [Py [Py [Py

0 20 28 48 68 88 108 112 125 145 153

- Waiting time for P,=(68-20)+(112-88)=72
P,=(20-0)=20
P,=(28-0)+(88-48)+(125-108)=85
P,=(48-0)+(108-68)=88

- Average waiting time = (72+20+85+88)/4=66%

- Average completion time = (125+28+153+112)/4 = 1043

+ Thus, Round-Robin Pros and Cons:
- Better for short jobs, Fair (+)
- Context-switching time adds up for long jobs (-)

2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.6

Round-Robin Discussion

* How do you choose time slice?
- What if too big?
» Response time suffers
- What if infinite («)? \
» Get back FIFO
- What if time slice too small?
» Throughput suffers!
* Actual choices of timeslice:
- Initially, UNIX timeslice one second:
» Worked ok when UNIX was used by one or two people.

» What if three compilations going on? 3 seconds to echo
each keystrokel!

- In practice, need to balance short-job performance
and long-job throughput:
» Typical time slice today is between 10ms - 100ms
» Typical context-switching overhead is 0.1ms - 1ms
» Roughly 1% overhead due to context-switching

2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.7

Comparisons between FCFS and Round Robin

* Assuming zero-cost context-switching time, is RR
always better than FCFS?
- Simple example: 10 jobs, each take 100s of CPU time

RR scheduler quantum of 1s
All jobs start at the same time

+ Completion Times: | Job # | FIFO RR

1 100 991
2 200 992
9 900 999

10 1000 1000
- Both RR and FCFS finish at the same time

- Average response time is much worse under RR!
» Bad when all jobs same length

* Also: Cache state must be shared between all jobs with
RR but can be devoted to each job with FIFO

- Total time for RR longer even for zero-cost switch!

2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.8

Earlier Example with Different Time Quantum

P, P P P
Best FCFS: | [g] | o] [53] [68]
0 8 32 85 153
Quantum P, P, P, P, Average
Best FCFS |32 |O 85 8 312
Q-1 84 |22 85 57 62
, Q-5 82 |20 85 58 613
1‘4{:": Q-8 80 |8 85 56 57%
Q= 10 82 |10 85 68 61%
Q = 20 72 |20 85 88 66%
Worst FCFS |68 |145 |0 121 |83%
Best FCFS |85 |8 153 |32 69%
Q-1 137 |30 153 |s1 1003
_[a=5 135 |28 153 |82 99%
f_‘i’n':‘g'em“ Q-8 133 |16 1563 |80 953
Q- 10 135 |18 153 |92 99%
Q=20 125 |28 153 (112 |104%
Worst FCFS | 121|163 |68 145 1212
2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.9

Handling differences in importance:
Strict Priority Scheduling

Priority 3
Priority 2
Priority 1

+ Execution Plan

- Always execute highest-priority runable jobs to completion
* Problems:

- Starvation:

» Lower priority jobs don't get to run because higher priority
tasks always rdnning

- Deadlock: Priority Inversion

» Not strictly a problem with priority scheduling, but happens
when low priority task has lock needed by high-priority task

» Usudlly involves third, intermediate priority task that keeps
running even though high-priority task should be running

* How to fix problems?

- Dynamic priorities - adjust base-level priority up or down
based on’heuristics about interactivity, locking, burst
behavior, efc...

2/25/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 10.10

Scheduling Fairness

* What about fairness?
- Strict fixed-priority scheduling between queues is unfair
(run highest, then next, etc):
» long running jobs may never get CPU
» In Multics, shut down machine, found 10-year-old job
- Must give long-running jobs a fraction of the CPU even
when gher'e are shorter jobs to run
- Tradeoff: fairness gained by hurting avg response timel!
* How to implement fairness?
- Could give each queue some fraction of the CPU
» What if one long-running job and 100 short-running ones?

» Like express lanes in a supermarket—sometimes express
lanes get so long, get better service by going into one of
the ofher lines

- Could increase priority of jobs that don't get service
» What is done in some variants of UNIX
» This is ad hoc—what rate should you increase priorities?

» And, as system gets overloaded, no job gets CPU time, so
everyone increases in priority=>Interactive jobs suffer

2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.11

Lottery Scheduling

* Yet another alternative: Lottery Scheduling
- Give each job some number of lottery tickets
- On each time slice, randomly pick a winning ticke

- On average, CPU time is proportional to number of
tickets given to each job

* How to assign tickets?

- To approximate SRTF, short running jobs get more,
long running jobs get fewer

- To avoid starvation, every job gets at least one
ticket (everyone makes progress)

* Advantage over strict priority scheduling: behaves
gracefully as load changes

- Adding or deleting a job affects all jobs
proportionally, independent of how many tickets each
Job possesses

2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.12

Lottery Scheduling Example

* Lottery Scheduling Example
- Assume short jobs get 10 tickets, long jobs get 1 ticket

short jobs/ | % of CPU each | % of CPU each
long jobs short jobs gets | long jobs gets
1/1 91% 9%

0/2 N/A 50%

2/0 50% N/A
10/1 9.9% 0.99%
1/10 50% 5%

- What if too many short jobs to give reasonable
response time?

» If load average is 100, hard to make progress
» One approach: log some user out

2/25/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 10.13

Administrivia

+ Exam in 2 weeks (Wednesday, March 11)?

- Still trying to get room, so may move

- 2-hour exam in 3-hour slot

- 1 page of hand-written notes, both sides

- Evening exam, no class that day

- Technically, material up to previous Monday fair game
+ Checkpoint #2 due on Friday

* Getting close to time for a survey to see how things
are going...

2/25/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 10.14

How to Evaluate a Scheduling algorithm?

* Deterministic modeling

- takes a predetermined workload and compute the
performance of each algorithm for that workload

* Queueing models
- Mathematical approach for handling stochastic workloads
+ Implementation/Simulation:

- Build system which allows actual algorithms to be run
against actual data. Most flexible/general.

perfarmance
simulation = stafistics
f’ for FCFS
= | FCFs |
cPU 107
o 213
actual CPU 12 performance
process >0 112 =—p- Simulation =P statistics
execution cPu 2 for SJF
Vo 147 :
SJF
CPU 173
trace tape :1\
\ perfarmance
simulation = slalistics
| 1 for RR (g = 14}
AR (g = 14)

2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.15

Recall: CPU Burst Behavior

o g
o= sl
Trequer

o] 16 24

- Execution model: programs alternate between bursts of
CPU and I/0

- Program typically uses the CPU for some period of time,
then does 1/0, then uses CPU again

- Each scheduling decision is about which job to give to the
CPU for use by its next CPU burst

- With timeslicing, thread may be forced to give up CPU
before finishing current CPU burst

2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.16

How to handle simultaneous mix of different
types of applications?
+ Can we use Burst Time (observed) to decide which
application gets CPU time?
+ Consider mix of interactive and high throughput apps:
- How to best schedule them?
- How to recognize one from the other?
» Do you trust app to say that it is “interactive"?

- Should you schedule the set of apps identically on servers,
workstations, pads, and cellphones?

+ Assumptions encoded into many schedulers:

- Apps that sleep a lot and have short bursts must be
interactive apps - they should get high priority

- Apps thaf compute a lot should get low(er?) priority, since
they won't notice intermittent bursts from ‘interactive apps

* Hard to characterize apps:

- What about, apps that sleep for a long time, but then compute
for a long time:

- Or, what about apps that must run under all circumstances
(say periodically)

2/25/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 10.17

What if we Knew the Future?

* Could we always mirror best FCFS?
+ Shortest Job First (SJF):

- Run whatever job has the least amount of
computation to do

- Sometimes called “"Shortest Time to
Completion First” (STCF)

+ Shortest Remaining Time First (SRTF):

- Preemptive version of SJF: if job arrives and has a
shorter time to completion than the remaining time on
the current job, immediately preempt CPU

- Sometimes called "Shortest Remaining Time to
Completion First” (SRTCF)

+ These can be applied either to a whole program or
the current CPU burst of each program
- Idea is to get short jobs out of the system
- Big effect on short jobs, only small effect on long ones
- Result is better average response time
2/25/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 10.18

Discussion

+ SJF/SRTF are the best you can do at minimizing
average response time

- Provably optimal (SJF among non-preemptive, SRTF
among preemptive)

- Since SRTF is always at least as good as SJF, focus
on SRTF

+ Comparison of SRTF with FCFS and RR

- What if all jobs the same length?

» SRTF becomes the same as FCFS (i.e. FCFS is best can
do if all jobs the same length)

- What if jobs have varying length?
» SRTF (and RR): short jobs not stuck behind long ones

2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.19

Example to illustrate benefits of SRTF

AorB Cc

Cs Cs C's
* Three jobs: I/0 1/0 1/0

- A,B: both CPU bound, run for week
C: I/0 bound, loop 1ms CPU, 9ms disk I/0

- If only one at a time, C uses 90% of the disk, A or B
could use 100% of the CPU

+ With FIFO:

- Once A or B get in, keep CPU for two weeks
* What about RR or SRTF?

- Easier to see with a timeline

2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.20

SRTF Example continued:

(Disk Utilization:
B /\9/201 ~ 4 5%

C A
Il I
fl |
C's RR 100ms time slice Disk Utilization:
I/0 ~90% but lots of
CABAB. ¢ wakeups!
UL
(i 1 . .
—_— RR 1ms time slice
C's C's
I/0 I/0
Disk Utilization:
C A A A 90%
|
IR
— — SRTF
Cs C's
I/0 I/0
2/25/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 10.21

SRTF Further discussion

+ Starvafion
- SRTF can lead to starvation if many small jobs!
- Large jobs never get to run
- Somehow need to predict future
- How can we do this?
- Some systems ask the user
» When you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long

- But: Even non-malicious users have trouble predicting
runtime of their jobs

* Bottom line, can't really know how long job will take

- However, can use SRTF as a yardstick
for measuring other policies

- Optimal, so can't do any better
SRTF Pros & Cons

- Optimal (average response time) (+)

- Hard to predict future (-)

- Unfair (-)

2/25/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 10.22

Predicting the Length of the Next CPU Burst

+ Adaptive: Changing policy based on past behavior
- CPVU scheduling, in virtual memory, in file systems, etc
- Works because programs have predictable behavior
» If program was I/0 bound in past, likely in future
» If computer behavior were random, wouldn't help
+ Example: SRTF with estimated burst length

- Use an estimator function on previous bursts:

Let t,_y, t,.., 1,3, etc. be previous CPU burst lengths.
Estimate next burst t, = f(t,_;, t,.2, Th-3. -.)

- Function f could be one of many different time series
estimation schemes (Kalman filters, etc)

- For instance,
exponential averaging
Tn = Ot'l'n_l*'(l-OL)Tn_l
with (O<a<1)

2/25/15 Kubiatowicz cfa=sii o 2 5 o F 9 1 % -lec 10.23

Multi-Level Feedback Scheduling

quantum = 8

Long-Running Compute
asks Demoted to

L -

—— =

| uantum 4 / L P i i

| quanum - 18 /—I/ ow Priority

L FCFS

* Another method for exploiting past behavior
- First used in CTSS
- Multiple queues, each with different priority
» Higher priority queues often considered “foreground” tasks
- Each queue has its own scheduling algorithm
» e.g. foreground - RR, background - FCFS

» Sometimes multiple RR priorities with quantum increasing
exponentially (highest:1lms, next:2ms, next: 4ms, etc)

* Adjust each job's priority as follows (details vary)
- Job starts in highest priority queue
- If timeout expires, drop one level
- If timeout doesn't expire, push up one level (or to top)
2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.24

Scheduling Details

* Result approximates SRTF:
- CPU bound jobs drop like a rock
- Short-running I/0 bound jobs stay near top
* Scheduling must be done between the queues
- Fixed priority scheduling:
» serve all from highest priority, then next priority, etc.
- Time slice:
» each queue gets a certain amount of CPU time
» e.g., 70% to highest, 20% next, 10% lowest
* Countermeasure: user action that can foil intent of
the OS designer
- For multilevel feedback, put in a bunch of meaningless
I/0 to keep job's priority high
- Of course, if everyone did this, wouldn't work!
+ Example of Othello program:

- Playing against competitor, so key was to do computing
at higher priority the competitors.
» Put in printf's, ran much faster!
2/25/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 10.25

Case Study: Linux O(1) Scheduler

Kernel/Realtime Tasks User Tasks

0 100 139
* Priority-based scheduler: 140 priorities
- 40 for “user tasks” (set by “nice”), 100 for “"Realtime/Kernel”
- Lower priority value = higher priority (for nice values)
- Highest priority value = Lower priority (for realtime values)
- All algorithms O(1)

» Timeslices/priorities/interactivity credits all computed when
Job finishes time slice

» 140-bit _bit mask indicates presence or absence of job at
given priority leve
+ Two separate priority queues: “active” and “expired”
- All tasks in the active queue use up their timeslices and c?e'r
placed on the expired queue, after which queues swappe
- Timeslice depends on priority - linearly mapped onto
timeslice range

- Like a multi-level queue (one queue per priority) with different
timeslice at each level
- Execution split into "Timeslice 6Granularity” chunks - round
robin through priority
2/25/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 10.26

O(1) Scheduler Continued

* Heuristics
- User-task priority adjusted +5 based on heuristics
» p->sleep_avg = sleep_time - run_time

» Higher sleep_avg = more I/O bound the task, more
reward (and vicé versa

- Interactive Credit
» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time

» IC is used to provide hysteresis to avoid changing
interactivity for temporary changes in behavior

- However, “interactive tasks” get special dispensation
» To try to maintain interactivity

» Placed back into active queue, unless some other task has
been starved for too long...

* Real-Time Tasks
- Always preempt non-RT tasks
- No dynamic adjustment of priorities
- Scheduling schemes:
» SCHED_FIFO: preempts other tasks, no timeslice limit

» SCHED_RR: preempts normal tasks, RR scheduling amongst
tasks of same priority

2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.27

Linux Completely Fair Scheduler (CFS)

* First appeared in 2.6.23, modified in 2.6.24

*+ "CFS doesn't track sleeping time and doesn't use
heuristics to identify interactive tasks—it just makes
sure every process gets a fair share of CPU within a
set amount of time given the number of runnable
processes on the CPU."

+ Inspired by Networking "Fair Queueing”
- Each process given their fair share of resources
- Models an “ideal multitasking processor” in which N

processes execute simultaneously as if they truly got
1/N of the processor
» Tries to give each process an equal fraction of the
processor
- Priorities reflected by weights such that increasing a
task’s priority by 1 always gives the same fractional
increase in CPU time - regardless of current priority

2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.28

CFS (Continued)

* Idea: track amount of “virtual time” received by each
process when it is executing

- Take real execution time, scale by weighting factor
» Lower priority = real time divided by greater weight
» Actually - multiply by sum of all weights/current weight
- Keep virtual time advancing at same rate
* Targeted latency (T.): period of time after which all
processes get to run at least a little
- Each process runs with quantum (Wp /> Wl-) x Ty
- Never smaller than “"minimum granularity”

* Use of Red-Black tree to hold all runnable processes
as sorted on vruntime variable
- O(log n) time to perform insertions/deletions
» Cash the item at far left (item with earliest vruntime)
- When ready to schedule, grab version with smallest
vruntime (which will be item at the far left).

2/25/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 10.29

CFS Examples
- Suppose Targeted latency = 20ms,
Minimum Granularity = 1ms

* Two CPU bound tasks with same priorities

- Both switch with 10ms
* Two CPU bound tasks separated by nice value of 5

- One task gets 5ms, another gets 15
* 40 tasks: each gets 1ms (no longer totally fair)
* One CPU bound task, one interactive task same priority

- While interactive task sleeps, CPU bound task runs and
increments vruntime

- When interactive task wakes up, runs immediately, since it
is behind on vruntime

* Group scheduling facilities (2.6.24)

- Can give fair fractions to groups (like a user or other
mechanism for grouping processes)

- So, two users, one starts 1 process, other starts 40,
each will get 50% of CPU

2/25/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 10.30

Real-Time Scheduling (RTS)

+ Efficiency is important but predictability is essential:

- We need to be able to predict with confidence the worst case
response times for systems

- In RTS, performance guarantees are:
» Task- and/or class centric
» Often ensured a priori
- In conventional systems, performance is:
» System oriented and often throughput oriented
» Post-processing (... wait and see ..)

- Real-time is about enforcing predictability, and does not equal to
fast computing!ll

+ Hard Real-Time
- Attempt to meet all deadlines

- EDF (Earliest Deadline Fir‘s‘?b LLF (Least Laxity First), RMS (Rate-
Monotonic Scheduling), DM (Deadline Monotonic' Scheduling)

- Soft Real-Time
- Attempt to meet deadlines with high probability
- Minimize miss ratio / maximize completion ratio (firm real-time)
- Important for multimedia applications
- CBS (Constant Bandwidth Server)

2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.31

Example: Workload Characteristics

* Tasks are preemptable, independent with arbitrary
arrival (=release) times

+ Times have deadlines (D) and known computation
times (C)

+ Example Setup:

TI —— 0|
T2 C—| D, l

v

v

T;l _(ﬁ D, l

2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.32

Example: Round-Robin Scheduling Doesn't Work

Missed
deadline!!

Tl T] i'

» et >
vl om
v 10O |
4 l -
T4 | ,
2/25/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 10.33

Earliest Deadline First (EDF)

* Preemptive priority-based dynamic scheduling

- Each task is assigned a (current) priority based
on how close the absolute deadline is.

* The scheduler always schedules the active task
with the closest absolute deadline.

=) . — t = . — 1 o t |
=(.2) L— : 1 - : t - : -—~
-2 —— t — .

0 5

2/25/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 10.34

EDF: Schedulability Test

Theorem (Utilization-based Schedulability Test):

A task set T,T7,....T with D,=P is
schedulable by the earliest deadline first (EDF)
scheduling algorithm if

2o

Exact schedulability test (necessary + sufficient)
Proof: [Liu and Layland, 1973]

2/25/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 10.35

2/25/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 10.36

Resources

* Resources - passive entities needed by threads to do
their work

- CPU time, disk space, memory
+ Two types of resources:
- Preemptable - can take it away
» CPU, Embedded security chip
- Non-preemptable - must leave it with the thread
» Disk space, plotter, chunk of virtual address space
» Mutual exclusion - the right to enter a critical section

+ Resources may require exclusive access or may be
sharable

- Read-only files are typically sharable
- Printers are not sharable during time of printing
* One of the major tasks of an operating system is to
manage resources
2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.37

Starvation vs Deadlock

+ Starvation vs. Deadlock
- Starvation: thread waits indefinitely

» Example, low-priority thread waiting for resources
constantly in use by high-priority threads

- Deadlock: circular waiting for resources

» Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

- Deadlock = Starvation but not vice versa
» Starvation can end (but doesn't have to)
» Deadlock can't end without external intervention
2/25/15 Kubiatowicz €5162 ®UCB Spring 2015

)

Lec 10.38

Conditions for Deadlock
+ Deadlock not always deterministic - Example 2 mutexes:

Thread A Thread B
xX.PO; y-PQ;
y-PQ; X.PQ;
y-VO3; x.VQO;
x.VO; y-VO3;

- Deadlock won't always happen with this code
» Have to have exactly the right timing ("wrong” timing?)

» So you release a piece of software, and you tested it, and
there it is, controlling a nuclear power plant...

- Deadlocks occur with multiple resources
- Means you can't decompose the problem
- Can't solve deadlock for each resource independently
+ Example: System with 2 disk drives and two threads
- Each thread needs 2 disk drives to function
- Each thread gets one disk and waits for another one

2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.39

Bridge Crossing Example

* Each segment of road can be viewed as a resource

- Car must own the segment under them

- Must acquire segment that they are moving into
* For bridge: must acquire both halves

- Traffic only in one direction at a time

- Problem occurs when two cars in opposite directions on

bridge: each acquires one segment and needs next

« If a deadlock occurs, it can be resolved if one car

backs up (preempt resources and rollback)
- Several cars may have to be backed up
+ Starvation is possible
- East-going traffic really fast = no one goes west

2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015

Lec 10.40

Train Example (Wormhole-Routed Network)

+ Circular dependency (Deadlock!)
- Each train wants to turn right
- Blocked by other trains
- Similar problem to multiprocessor networks
* Fix? Imagine grid extends in all four directions
- Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south
- Called “dimension ordering” (X then Y)

2/25/15 Kubit®ZMicz €S5162 ©UCB|Spring 2015 Lec|10.41

> &
£O = O\
- " 6 e
=N \1(): /-
I¥]
* Five chopsticks/Five lawyers (really cheap restaurant)

- Free-for all: Lawyer will grab any one they can
- Need two chopsticks to eat
* What if all grab at same time?
- Deadlock!
* How to fix deadlock?
- Make one of them give up a chopstick (Hah!)
- Eventually everyone will get chance to eat
* How to prevent deadlock?

- Never let lawyer take last chopstick if no hungry
lawyer has two chopsticks afterwards
2/25/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 10.42

Four requirements for Deadlock

* Mutual exclusion
- Only one thread at a time can use a resource.
*+ Hold and wait

- Thread holding at least one resource is waiting to
acquire additional resources held by other threads

* No preemption
- Resources are released only voluntarily by the thread
holding the resource, after thread is finished with it
+ Circular wait
- There exists a set {T;, .., T} of waiting threads
» T, is waiting for a resource that is held by T,

» T, is waiting for a resource that is held by T;
»

» T, is waiting for a resource that is held by T;

2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.43

Resource-Allocation Graph
- System Model Symbols

- Asetof Threads 7,, T, . . ., T, @ @
R

- Resource types R, R,, . . .,

m
CPU cycles, memory space, I/O devices ° :
- Each resource type R has W, instances. 5 o
1
- Each thread utilizes a resource as follows: R,

» Request() 7/ Use() / Release()
+ Resource-Allocation Graph:
- V is partitioned into two types:
» T={T;, T,, .., T}, the set threads in the system.
» R={R, R,, .., R}, the set of resource types in system
- request edge - directed edge 7; — R;
- assignment edge - directed edge R, — T;

2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.44

Resource Allocation Graph Examples Methods for Handling Deadlocks @
* Recadll:
- request edge - directed edge T; —» R,
- assignment edge - directed edge R, > T; Allow system to enter deadlock and then recover
5 = - Requires deadlock detection algorithm
1 2
R, R, R, /@ - Some technique for forcibly preempting resources
AN AN N \ o and/or terminating tasks
N * Ensure that system will never enter a deadlock
\ - Need to monitor all lock acquisitions
ik iE - Selectively deny those that might lead to deadlock
\/ f \/ ” = * Ignore the problem and pretend that deadlocks
: 5 ~ never occur in the system
R; 2 R o 5 - Used by most operating systems, including UNIX
R,
Simple Resource Allocation Graph Allocation Graph
Allocation 6raph With Deadlock With Cycle, but
No Deadlock
2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.45 2/25/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 10.46
Deadlock Detection Algorithm What to do when detect deadlock?
* Only one of each type of resource = look for loops + Terminate thread, force it to give up resources
* More General Deadlock Detection Algorithm - In Bridge example, Godzilla picks up a car, hurls it into
- Let [X] re . the river. Deadlock solved!
L present an m-ary vector of non-negative -,
integers (quantities of resources of each type): - Shoot a dining Iawyer .)
[FreeResources]: Current free resources each type - But, not 0|W0YS P°S§|b|e - klllmg a thread holdmg a
[Requestx]: Current requests from thread X mutex leaves world inconsistent
Alfoc,]: Current resources held by thread X - Preempt resources without killing off thread
- See if tasks can eventually terminate on their own - Take away resources from thread temporarily
/E/gga; : = Egeigeaﬁgm?gam R, @ - Doesn't alw9ys fit with semantics of computation
do { o * Roll back actions of deadlocked threads
done = true A - Hi i i
Foreach node in UNFINISHED { :'\:;um‘; ;‘ngé?.dh%"h?n"eg" TiVo, pretend last few
if ([Request .1 <= [Avail]) { T T X PP
remove node from UNFINISHED - For bridge example, make one car roll backwards (may
[Avail] = [Avail] + [Alloc,.] - require others behind him)
done = false o - Common technique in databases (transactions)
R, @ - Of course, if you restart in exactly the same way, may
} until(done) reenter deadlock once again
- Nodes left in UNFINISHED = deadlocked * Many operating systems use other options
2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.47 2/25/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 10.48

Summary

* Round-Robin Scheduling:

- Give each thread a small amount of CPU time when it executes;
cyc e between a r'eagy threads f "

- Pros: Better for short jobs
. ?sl"g_r‘:ﬁsf Job First (SJF)/Shortest Remaining Time First

- §u7 whatever \Lo,b has the Iegst amount of colggu‘l’a’rion to
o/least remaining amount of computation to
- Pros: Optimal (average response time)
- Cons: Hard to predict future, Unfair
* Multi-Level Feedback Schedufing:
- Multiple queues of different priorities and scheduling algorithms

- aAggrq(r’r’\(?Rg 1\gr'%l:."\gj/gﬁlif.lr_emom‘|or| of process priority in order to

+ Lottery Scheduling:
- c'x‘éﬁ each thre a)priority-dependem‘ number of tokens (short

s—=>more tokens
* Linux CFS Scheduler: Fair fraction of CPU
- Approximates a “ideal” multitasking processor
* Realtime Schedulers such as EDF
- Guaranteed behavior by meeting deadlines
- Realtime tasks defined by tuple of compute time and period

- Schedulability test: is it pgssible to meet deadlines with

pl"OpOSCd set of processes: .
2/25/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 10.49

Summary (2)

+ Starvation vs. Deadlock
- Starvation: thread waits indefinitely
- Deadlock: circular waiting for resources
* Four conditions for deadlocks
- Mutual exclusion
» Only one thread at a time can use a resource
- Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

- No preemption
» Resources are released only voluntarily by the threads
- Circular wait
» 3 set {T;, .., T} of threads with a cyclic waiting pattern
* Techniques for addressing Deadlock
- Allow system to enter deadlock and then recover
- Ensure that system will never enter a deadlock
- Ignore the problem and pretend that deadlocks never
occur in the system

2/25/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 10.50

