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Recall: Scheduling

• Question: How is the OS to decide which of several 
tasks to take off a queue?

• Scheduling: deciding which threads are given access to 
resources from moment to moment  
– The high-level goal: Dole out CPU time to optimize some 
desired parameters of system

T1 T2 T3 T1 T2

Time 
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Recall: Scheduling Policy Goals/Criteria
• Minimize Response Time

– Minimize elapsed time to do an operation (or job)
– Response time is what the user sees:

» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World

• Maximize Throughput
– Maximize operations (or jobs) per second
– Throughput related to response time, but not identical:

» Minimizing response time will lead to more context 
switching than if you only maximized throughput

– Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)

• Fairness
– Share CPU among users in some equitable way
– Fairness is not minimizing average response time:

» Better average response time by making system less fair
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Recall: First-Come, First-Served (FCFS) Scheduling
• First-Come, First-Served (FCFS)

– Also “First In, First Out” (FIFO) or “Run until done”
» In early systems, FCFS meant one program 

scheduled until done (including I/O)
» Now, means keep CPU until thread blocks 

• Example: Process Burst Time
P1 24
P2 3
P3 3

– Suppose processes arrive in the order: P1 , P2 , P3  
The Gantt Chart for the schedule is:

– Waiting time for P1 = 0; P2 = 24; P3 = 27
– Average waiting time:  (0 + 24 + 27)/3 = 17
– Average Completion time: (24 + 27 + 30)/3 = 27

• Convoy effect: short process behind long process

P1 P2 P3

24 27 300



Lec 10.52/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Round Robin (RR)
• FCFS Scheme: Potentially bad for short jobs!

– Depends on submit order
– If you are first in line at supermarket with milk, you 
don’t care who is behind you, on the other hand…

• Round Robin Scheme
– Each process gets a small unit of CPU time 
(time quantum), usually 10-100 milliseconds

– After quantum expires, the process is preempted 
and added to the end of the ready queue.

– n processes in ready queue and time quantum is q 
» Each process gets 1/n of the CPU time 
» In chunks of at most q time units 
» No process waits more than (n-1)q time units

• Performance
– q large  FCFS
– q small  Interleaved (really small  hyperthreading?)
– q must be large with respect to context switch, 
otherwise overhead is too high (all overhead)
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Example of RR with Time Quantum = 20
• Example: Process Burst Time

P1 53
P2 8
P3 68
P4 24

– The Gantt chart is:

– Waiting time for P1=(68-20)+(112-88)=72
P2=(20-0)=20
P3=(28-0)+(88-48)+(125-108)=85
P4=(48-0)+(108-68)=88

– Average waiting time = (72+20+85+88)/4=66¼
– Average completion time = (125+28+153+112)/4 = 104½

• Thus, Round-Robin Pros and Cons:
– Better for short jobs, Fair (+)
– Context-switching time adds up for long jobs (-)

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 28 48 68 88 108 112 125 145 153
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Round-Robin Discussion
• How do you choose time slice?

– What if too big?
» Response time suffers

– What if infinite ()?
» Get back FIFO

– What if time slice too small?
» Throughput suffers! 

• Actual choices of timeslice:
– Initially, UNIX timeslice one second:

» Worked ok when UNIX was used by one or two people.
» What if three compilations going on? 3 seconds to echo 

each keystroke!
– In practice, need to balance short-job performance 
and long-job throughput:
» Typical time slice today is between 10ms – 100ms
» Typical context-switching overhead is 0.1ms – 1ms
» Roughly 1% overhead due to context-switching
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Comparisons between FCFS and Round Robin
• Assuming zero-cost context-switching time, is RR 

always better than FCFS?
• Simple example: 10 jobs, each take 100s of CPU time

RR scheduler quantum of 1s
All jobs start at the same time

• Completion Times:

– Both RR and FCFS finish at the same time
– Average response time is much worse under RR!

» Bad when all jobs same length
• Also: Cache state must be shared between all jobs with 

RR but can be devoted to each job with FIFO
– Total time for RR longer even for zero-cost switch!

Job # FIFO RR
1 100 991
2 200 992
… … …
9 900 999
10 1000 1000
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Quantum

Completion
Time

Wait
Time

AverageP4P3P2P1

Earlier Example with Different Time Quantum

P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 8 32 85 153

Best FCFS:

6257852284Q = 1

104½11215328125Q = 20

100½8115330137Q = 1

66¼ 88852072Q = 20

31¼885032Best FCFS

121¾14568153121Worst FCFS

69½32153885Best FCFS
83½121014568Worst FCFS

95½8015316133Q = 8

57¼5685880Q = 8

99½9215318135Q = 10

99½8215328135Q = 5

61¼68851082Q = 10

61¼58852082Q = 5
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Handling differences in importance:
Strict Priority Scheduling

• Execution Plan
– Always execute highest-priority runable jobs to completion

• Problems:
– Starvation: 

» Lower priority jobs don’t get to run because higher priority 
tasks always running

– Deadlock: Priority Inversion
» Not strictly a problem with priority scheduling, but happens 

when low priority task has lock needed by high-priority task
» Usually involves third, intermediate priority task that keeps 

running even though high-priority task should be running
• How to fix problems?

– Dynamic priorities – adjust base-level priority up or down 
based on heuristics about interactivity, locking, burst 
behavior, etc…

Priority 3
Priority 2
Priority 1
Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4
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Scheduling Fairness
• What about fairness?

– Strict fixed-priority scheduling between queues is unfair 
(run highest, then next, etc):
» long running jobs may never get CPU 
» In Multics, shut down machine, found 10-year-old job

– Must give long-running jobs a fraction of the CPU even 
when there are shorter jobs to run

– Tradeoff: fairness gained by hurting avg response time!
• How to implement fairness?

– Could give each queue some fraction of the CPU 
» What if one long-running job and 100 short-running ones?
» Like express lanes in a supermarket—sometimes express 

lanes get so long, get better service by going into one of 
the other lines

– Could increase priority of jobs that don’t get service
» What is done in some variants of UNIX
» This is ad hoc—what rate should you increase priorities?
» And, as system gets overloaded, no job gets CPU time, so 

everyone increases in priorityInteractive jobs suffer
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Lottery Scheduling

• Yet another alternative: Lottery Scheduling
– Give each job some number of lottery tickets
– On each time slice, randomly pick a winning ticket
– On average, CPU time is proportional to number of 
tickets given to each job

• How to assign tickets?
– To approximate SRTF, short running jobs get more, 
long running jobs get fewer

– To avoid starvation, every job gets at least one 
ticket (everyone makes progress)

• Advantage over strict priority scheduling: behaves 
gracefully as load changes
– Adding or deleting a job affects all jobs 
proportionally, independent of how many tickets each 
job possesses



Lec 10.132/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Lottery Scheduling Example

• Lottery Scheduling Example
– Assume short jobs get 10 tickets, long jobs get 1 ticket

– What if too many short jobs to give reasonable 
response time?  
» If load average is 100, hard to make progress
» One approach: log some user out

# short jobs/
# long jobs

% of CPU each 
short jobs gets

% of CPU each 
long jobs gets

1/1 91% 9%
0/2 N/A 50%
2/0 50% N/A
10/1 9.9% 0.99%
1/10 50% 5%
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Administrivia

• Exam in 2 weeks (Wednesday, March 11)?  
– Still trying to get room, so may move
– 2-hour exam in 3-hour slot
– 1 page of hand-written notes, both sides
– Evening exam, no class that day
– Technically, material up to previous Monday fair game

• Checkpoint #2 due on Friday
• Getting close to time for a survey to see how things 

are going…
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How to Evaluate a Scheduling algorithm?
• Deterministic modeling

– takes a predetermined workload and compute the 
performance of each algorithm  for that workload

• Queueing models
– Mathematical approach for handling stochastic workloads

• Implementation/Simulation:
– Build system which allows actual algorithms to be run 
against actual data.  Most flexible/general.
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Recall: CPU Burst Behavior

• Execution model: programs alternate between bursts of 
CPU and I/O
– Program typically uses the CPU for some period of time, 
then does I/O, then uses CPU again

– Each scheduling decision is about which job to give to the 
CPU for use by its next CPU burst

– With timeslicing, thread may be forced to give up CPU 
before finishing current CPU burst

Weighted toward small bursts
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How to handle simultaneous mix of different 
types of applications?

• Can we use Burst Time (observed) to decide which 
application gets CPU time?

• Consider mix of interactive and high throughput apps:
– How to best schedule them?
– How to recognize one from the other?

» Do you trust app to say that it is “interactive”?
– Should you schedule the set of apps identically on servers, 

workstations, pads, and cellphones?
• Assumptions encoded into many schedulers:

– Apps that sleep a lot and have short bursts must be 
interactive apps – they should get high priority

– Apps that compute a lot should get low(er?) priority, since 
they won’t notice intermittent bursts from interactive apps

• Hard to characterize apps:
– What about apps that sleep for a long time, but then compute 

for a long time?
– Or, what about apps that must run under all circumstances 

(say periodically)
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What if we Knew the Future?
• Could we always mirror best FCFS?
• Shortest Job First (SJF):

– Run whatever job has the least amount of 
computation to do

– Sometimes called “Shortest Time to 
Completion First” (STCF)

• Shortest Remaining Time First (SRTF):
– Preemptive version of SJF: if job arrives and has a 
shorter time to completion than the remaining time on 
the current job, immediately preempt CPU

– Sometimes called “Shortest Remaining Time to 
Completion First” (SRTCF)

• These can be applied either to a whole program or 
the current CPU burst of each program
– Idea is to get short jobs out of the system
– Big effect on short jobs, only small effect on long ones
– Result is better average response time
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Discussion

• SJF/SRTF are the best you can do at minimizing 
average response time
– Provably optimal (SJF among non-preemptive, SRTF 
among preemptive)

– Since SRTF is always at least as good as SJF, focus 
on SRTF

• Comparison of SRTF with FCFS and RR
– What if all jobs the same length?

» SRTF becomes the same as FCFS (i.e. FCFS is best can 
do if all jobs the same length)

– What if jobs have varying length?
» SRTF (and RR): short jobs not stuck behind long ones
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Example to illustrate benefits of SRTF

• Three jobs:
– A,B: both CPU bound, run for week
C: I/O bound, loop 1ms CPU, 9ms disk I/O

– If only one at a time, C uses 90% of the disk, A or B 
could use 100% of the CPU

• With FIFO:
– Once A or B get in, keep CPU for two weeks

• What about RR or SRTF?
– Easier to see with a timeline

C

C’s 
I/O

C’s 
I/O

C’s 
I/O

A or B
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SRTF Example continued:

C’s 
I/O

CABAB… C

C’s 
I/O

RR 1ms time slice

C’s 
I/O

C’s 
I/O

CA BC

RR 100ms time slice

C’s 
I/O

AC

C’s 
I/O

AA

SRTF

Disk Utilization:
~90% but lots of 
wakeups!

Disk Utilization:
90%

Disk Utilization:
9/201 ~ 4.5%
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SRTF Further discussion
• Starvation

– SRTF can lead to starvation if many small jobs!
– Large jobs never get to run

• Somehow need to predict future
– How can we do this? 
– Some systems ask the user

» When you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long

– But: Even non-malicious users have trouble predicting 
runtime of their jobs

• Bottom line, can’t really know how long job will take
– However, can use SRTF as a yardstick 
for measuring other policies

– Optimal, so can’t do any better
• SRTF Pros & Cons

– Optimal (average response time) (+)
– Hard to predict future (-)
– Unfair (-)
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Predicting the Length of the Next CPU Burst
• Adaptive: Changing policy based on past behavior

– CPU scheduling, in virtual memory, in file systems, etc
– Works because programs have predictable behavior

» If program was I/O bound in past, likely in future
» If computer behavior were random, wouldn’t help

• Example: SRTF with estimated burst length
– Use an estimator function on previous bursts: 
Let tn-1, tn-2, tn-3, etc. be previous CPU burst lengths. 
Estimate next burst n = f(tn-1, tn-2, tn-3, …)

– Function f could be one of many different time series 
estimation schemes (Kalman filters, etc)

– For instance, 
exponential averaging
n = tn-1+(1-)n-1
with (0<1)
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Multi-Level Feedback Scheduling

• Another method for exploiting past behavior
– First used in CTSS
– Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks
– Each queue has its own scheduling algorithm

» e.g. foreground – RR, background – FCFS
» Sometimes multiple RR priorities with quantum increasing 

exponentially (highest:1ms, next:2ms, next: 4ms, etc)
• Adjust each job’s priority as follows (details vary)

– Job starts in highest priority queue
– If timeout expires, drop one level
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute
Tasks Demoted to 

Low Priority
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Scheduling Details
• Result approximates SRTF:

– CPU bound jobs drop like a rock
– Short-running I/O bound jobs stay near top

• Scheduling must be done between the queues
– Fixed priority scheduling:

» serve all from highest priority, then next priority, etc.
– Time slice:

» each queue gets a certain amount of CPU time 
» e.g., 70% to highest, 20% next, 10% lowest

• Countermeasure: user action that can foil intent of 
the OS designer
– For multilevel feedback, put in a bunch of meaningless 
I/O to keep job’s priority high

– Of course, if everyone did this, wouldn’t work!
• Example of Othello program:

– Playing against competitor, so key was to do computing 
at higher priority the competitors. 
» Put in printf’s, ran much faster!
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Case Study: Linux O(1) Scheduler

• Priority-based scheduler: 140 priorities
– 40 for “user tasks” (set by “nice”), 100 for “Realtime/Kernel”
– Lower priority value  higher priority (for nice values)
– Highest priority value  Lower priority (for realtime values)
– All algorithms O(1)

» Timeslices/priorities/interactivity credits all computed when 
job finishes time slice

» 140-bit bit mask indicates presence or absence of job at 
given priority level

• Two separate priority queues: “active” and “expired”
– All tasks in the active queue use up their timeslices and get 

placed on the expired queue, after which queues swapped
• Timeslice depends on priority – linearly mapped onto 

timeslice range
– Like a multi-level queue (one queue per priority) with different 

timeslice at each level
– Execution split into “Timeslice Granularity” chunks – round 

robin through priority

Kernel/Realtime Tasks User Tasks

0 100 139
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O(1) Scheduler Continued
• Heuristics 

– User-task priority adjusted ±5 based on heuristics
» p->sleep_avg = sleep_time – run_time
» Higher sleep_avg  more I/O bound the task, more 

reward (and vice versa)
– Interactive Credit

» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time
» IC is used to provide hysteresis to avoid changing 

interactivity for temporary changes in behavior
– However, “interactive tasks” get special dispensation

» To try to maintain interactivity
» Placed back into active queue, unless some other task has 

been starved for too long…
• Real-Time Tasks

– Always preempt non-RT tasks
– No dynamic adjustment of priorities
– Scheduling schemes:

» SCHED_FIFO: preempts other tasks, no timeslice limit
» SCHED_RR: preempts normal tasks, RR scheduling amongst 

tasks of same priority
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Linux Completely Fair Scheduler (CFS)

• First appeared in 2.6.23, modified in 2.6.24
• “CFS doesn't track sleeping time and doesn't use 

heuristics to identify interactive tasks—it just makes 
sure every process gets a fair share of CPU within a 
set amount of time given the number of runnable 
processes on the CPU.”

• Inspired by Networking “Fair Queueing”
– Each process given their fair share of resources
– Models an “ideal multitasking processor” in which N 
processes execute simultaneously as if they truly got 
1/N of the processor
» Tries to give each process an equal fraction of the 

processor
– Priorities reflected by weights such that increasing a 
task’s priority by 1 always gives the same fractional 
increase in CPU time – regardless of current priority
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CFS (Continued)

• Idea: track amount of “virtual time” received by each 
process when it is executing
– Take real execution time, scale by weighting factor

» Lower priority  real time divided by greater weight
» Actually – multiply by sum of all weights/current weight

– Keep virtual time advancing at same rate
• Targeted latency (ࡸࢀ): period of time after which all 

processes get to run at least a little
– Each process runs with quantum ࢖ࢃ ⁄࢏ࢃ∑ ൈ ࡸࢀ
– Never smaller than “minimum granularity”

• Use of Red-Black tree to hold all runnable processes 
as sorted on vruntime variable
– O(log n) time to perform insertions/deletions 

» Cash the item at far left (item with earliest vruntime)
– When ready to schedule, grab version with smallest 
vruntime (which will be item at the far left).
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CFS Examples
• Suppose Targeted latency = 20ms, 

Minimum Granularity = 1ms
• Two CPU bound tasks with same priorities

– Both switch with 10ms 
• Two CPU bound tasks separated by nice value of 5

– One task gets 5ms, another gets 15
• 40 tasks: each gets 1ms (no longer totally fair)
• One CPU bound task, one interactive task same priority

– While interactive task sleeps, CPU bound task runs and 
increments vruntime

– When interactive task wakes up, runs immediately, since it 
is behind on vruntime

• Group scheduling facilities (2.6.24)
– Can give fair fractions to groups (like a user or other 
mechanism for grouping processes)

– So, two users, one starts 1 process, other starts 40, 
each will get 50% of CPU
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Real-Time Scheduling (RTS)
• Efficiency is important but predictability is essential:

– We need to be able to predict with confidence the worst case 
response times for systems

– In RTS, performance guarantees are:
» Task- and/or class centric
» Often ensured a priori

– In conventional systems, performance is:
» System oriented and often throughput oriented
» Post-processing (… wait and see …)

– Real-time is about enforcing predictability, and does not equal to 
fast computing!!!

• Hard Real-Time
– Attempt to meet all deadlines
– EDF (Earliest Deadline First), LLF (Least Laxity First), RMS (Rate-

Monotonic Scheduling), DM (Deadline Monotonic Scheduling)
• Soft Real-Time

– Attempt to meet deadlines with high probability
– Minimize miss ratio / maximize completion ratio (firm real-time)
– Important for multimedia applications
– CBS (Constant Bandwidth Server)
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Example: Workload Characteristics

• Tasks are preemptable, independent with arbitrary 
arrival (=release) times

• Times have deadlines (D) and known computation 
times (C) 

• Example Setup:
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Example: Round-Robin Scheduling Doesn’t Work
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Earliest Deadline First (EDF)

• Preemptive priority-based dynamic scheduling
• Each task is assigned a (current) priority based 

on how close the absolute deadline is. 
• The scheduler always schedules the active task 

with the closest absolute deadline. 

0 5 10 15

)1,4(1 T

)2,5(2 T

)2,7(3 T
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EDF: Schedulability Test

Theorem (Utilization-based Schedulability Test):
A task set              with           is 
schedulable by the earliest deadline first (EDF) 
scheduling algorithm if

Exact schedulability test (necessary + sufficient)
Proof: [Liu and Layland, 1973]
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• Resources – passive entities needed by threads to do 
their work
– CPU time, disk space, memory

• Two types of resources:
– Preemptable – can take it away

» CPU, Embedded security chip
– Non-preemptable – must leave it with the thread

» Disk space, plotter, chunk of virtual address space
» Mutual exclusion – the right to enter a critical section 

• Resources may require exclusive access or may be 
sharable
– Read-only files are typically sharable
– Printers are not sharable during time of printing

• One of the major tasks of an operating system is to 
manage resources

Resources
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Starvation vs Deadlock
• Starvation vs. Deadlock

– Starvation: thread waits indefinitely
» Example, low-priority thread waiting for resources 

constantly in use by high-priority threads
– Deadlock: circular waiting for resources

» Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

– Deadlock  Starvation but not vice versa
» Starvation can end (but doesn’t have to)
» Deadlock can’t end without external intervention

Res 2Res 1

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

Lec 10.392/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Conditions for Deadlock
• Deadlock not always deterministic – Example 2 mutexes:

Thread A Thread B
x.P(); y.P();
y.P(); x.P();
y.V(); x.V();
x.V(); y.V();

– Deadlock won’t always happen with this code
» Have to have exactly the right timing (“wrong” timing?)
» So you release a piece of software, and you tested it, and 

there it is, controlling a nuclear power plant…
• Deadlocks occur with multiple resources

– Means you can’t decompose the problem
– Can’t solve deadlock for each resource independently

• Example: System with 2 disk drives and two threads
– Each thread needs 2 disk drives to function
– Each thread gets one disk and waits for another one
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Bridge Crossing Example

• Each segment of road can be viewed as a resource
– Car must own the segment under them
– Must acquire segment that they are moving into

• For bridge: must acquire both halves 
– Traffic only in one direction at a time 
– Problem occurs when two cars in opposite directions on 
bridge: each acquires one segment and needs next

• If a deadlock occurs, it can be resolved if one car 
backs up (preempt resources and rollback)
– Several cars may have to be backed up 

• Starvation is possible
– East-going traffic really fast  no one goes west
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Train Example (Wormhole-Routed Network)
• Circular dependency (Deadlock!)

– Each train wants to turn right
– Blocked by other trains
– Similar problem to multiprocessor networks

• Fix? Imagine grid extends in all four directions
– Force ordering of channels (tracks)

» Protocol: Always go east-west first, then north-south
– Called “dimension ordering” (X then Y)
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Dining Lawyers Problem

• Five chopsticks/Five lawyers (really cheap restaurant)
– Free-for all: Lawyer will grab any one they can
– Need two chopsticks to eat

• What if all grab at same time?
– Deadlock!

• How to fix deadlock?
– Make one of them give up a chopstick (Hah!)
– Eventually everyone will get chance to eat

• How to prevent deadlock?
– Never let lawyer take last chopstick if no hungry 
lawyer has two chopsticks afterwards
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Four requirements for Deadlock

• Mutual exclusion
– Only one thread at a time can use a resource.

• Hold and wait
– Thread holding at least one resource is waiting to 
acquire additional resources held by other threads

• No preemption
– Resources are released only voluntarily by the thread 
holding the resource, after thread is finished with it

• Circular wait
– There exists a set {T1, …, Tn} of waiting threads

» T1 is waiting for a resource that is held by T2
» T2 is waiting for a resource that is held by T3
» …
» Tn is waiting for a resource that is held by T1
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Symbols
Resource-Allocation Graph

• System Model
– A set of Threads T1, T2, . . ., Tn
– Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices
– Each resource type Ri has Wi instances.
– Each thread utilizes a resource as follows:

» Request() / Use() / Release()
• Resource-Allocation Graph:

– V is partitioned into two types:
» T = {T1, T2, …, Tn}, the set threads in the system.
» R = {R1, R2, …, Rm}, the set of resource types in system

– request edge – directed edge T1  Rj
– assignment edge – directed edge Rj  Ti
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Resource Allocation Graph Examples
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• Recall:
– request edge – directed edge T1  Rj
– assignment edge – directed edge Rj  Ti
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Methods for Handling Deadlocks

• Allow system to enter deadlock and then recover
– Requires deadlock detection algorithm
– Some technique for forcibly preempting resources 
and/or terminating tasks

• Ensure that system will never enter a deadlock
– Need to monitor all lock acquisitions
– Selectively deny those that might lead to deadlock

• Ignore the problem and pretend that deadlocks 
never occur in the system
– Used by most operating systems, including UNIX
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Deadlock Detection Algorithm
• Only one of each type of resource  look for loops
• More General Deadlock Detection Algorithm

– Let [X] represent an m-ary vector of non-negative 
integers (quantities of resources of each type):
[FreeResources]: Current free resources each type
[RequestX]: Current requests from thread X[AllocX]: Current resources held by thread X

– See if tasks can eventually terminate on their own
[Avail] = [FreeResources] Add all nodes to UNFINISHED do {

done = trueForeach node in UNFINISHED {if ([Requestnode] <= [Avail]) {remove node from UNFINISHED[Avail] = [Avail] + [Allocnode]done = false}}
} until(done)

– Nodes left in UNFINISHED  deadlocked
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What to do when detect deadlock?
• Terminate thread, force it to give up resources

– In Bridge example, Godzilla picks up a car, hurls it into 
the river.  Deadlock solved!

– Shoot a dining lawyer
– But, not always possible – killing a thread holding a 
mutex leaves world inconsistent

• Preempt resources without killing off thread 
– Take away resources from thread temporarily
– Doesn’t always fit with semantics of computation

• Roll back actions of deadlocked threads 
– Hit the rewind button on TiVo, pretend last few 
minutes never happened

– For bridge example, make one car roll backwards (may 
require others behind him)

– Common technique in databases (transactions)
– Of course, if you restart in exactly the same way, may 
reenter deadlock once again

• Many operating systems use other options
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Summary
• Round-Robin Scheduling: 

– Give each thread a small amount of CPU time when it executes; 
cycle between all ready threads

– Pros: Better for short jobs 
• Shortest Job First (SJF)/Shortest Remaining Time First 

(SRTF):
– Run whatever job has the least amount of computation to 

do/least remaining amount of computation to do
– Pros: Optimal (average response time) 
– Cons: Hard to predict future, Unfair

• Multi-Level Feedback Scheduling:
– Multiple queues of different priorities and scheduling algorithms
– Automatic promotion/demotion of process priority in order to 

approximate SJF/SRTF
• Lottery Scheduling:

– Give each thread a priority-dependent number of tokens (short 
tasksmore tokens)

• Linux CFS Scheduler: Fair fraction of CPU
– Approximates a “ideal” multitasking processor

• Realtime Schedulers such as EDF
– Guaranteed behavior by meeting deadlines
– Realtime tasks defined by tuple of compute time and period
– Schedulability test: is it possible to meet deadlines with 

proposed set of processes?
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Summary (2)

• Starvation vs. Deadlock
– Starvation: thread waits indefinitely
– Deadlock: circular waiting for resources

• Four conditions for deadlocks
– Mutual exclusion

» Only one thread at a time can use a resource
– Hold and wait

» Thread holding at least one resource is waiting to acquire 
additional resources held by other threads

– No preemption
» Resources are released only voluntarily by the threads

– Circular wait
»  set {T1, …, Tn} of threads with a cyclic waiting pattern

• Techniques for addressing Deadlock
– Allow system to enter deadlock and then recover
– Ensure that system will never enter a deadlock
– Ignore the problem and pretend that deadlocks never 
occur in the system


