
CS162
Operating Systems and
Systems Programming

Lecture 10

Scheduling (Continued),
Deadlock

February 25th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 10.22/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Scheduling

• Question: How is the OS to decide which of several
tasks to take off a queue?

• Scheduling: deciding which threads are given access to
resources from moment to moment
– The high-level goal: Dole out CPU time to optimize some
desired parameters of system

T1 T2 T3 T1 T2

Time

Lec 10.32/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Scheduling Policy Goals/Criteria
• Minimize Response Time

– Minimize elapsed time to do an operation (or job)
– Response time is what the user sees:

» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World

• Maximize Throughput
– Maximize operations (or jobs) per second
– Throughput related to response time, but not identical:

» Minimizing response time will lead to more context
switching than if you only maximized throughput

– Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)

• Fairness
– Share CPU among users in some equitable way
– Fairness is not minimizing average response time:

» Better average response time by making system less fair
Lec 10.42/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: First-Come, First-Served (FCFS) Scheduling
• First-Come, First-Served (FCFS)

– Also “First In, First Out” (FIFO) or “Run until done”
» In early systems, FCFS meant one program

scheduled until done (including I/O)
» Now, means keep CPU until thread blocks

• Example: Process Burst Time
P1 24
P2 3
P3 3

– Suppose processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

– Waiting time for P1 = 0; P2 = 24; P3 = 27
– Average waiting time: (0 + 24 + 27)/3 = 17
– Average Completion time: (24 + 27 + 30)/3 = 27

• Convoy effect: short process behind long process

P1 P2 P3

24 27 300

Lec 10.52/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Round Robin (RR)
• FCFS Scheme: Potentially bad for short jobs!

– Depends on submit order
– If you are first in line at supermarket with milk, you
don’t care who is behind you, on the other hand…

• Round Robin Scheme
– Each process gets a small unit of CPU time
(time quantum), usually 10-100 milliseconds

– After quantum expires, the process is preempted
and added to the end of the ready queue.

– n processes in ready queue and time quantum is q 
» Each process gets 1/n of the CPU time
» In chunks of at most q time units
» No process waits more than (n-1)q time units

• Performance
– q large  FCFS
– q small  Interleaved (really small  hyperthreading?)
– q must be large with respect to context switch,
otherwise overhead is too high (all overhead)

Lec 10.62/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Example of RR with Time Quantum = 20
• Example: Process Burst Time

P1 53
P2 8
P3 68
P4 24

– The Gantt chart is:

– Waiting time for P1=(68-20)+(112-88)=72
P2=(20-0)=20
P3=(28-0)+(88-48)+(125-108)=85
P4=(48-0)+(108-68)=88

– Average waiting time = (72+20+85+88)/4=66¼
– Average completion time = (125+28+153+112)/4 = 104½

• Thus, Round-Robin Pros and Cons:
– Better for short jobs, Fair (+)
– Context-switching time adds up for long jobs (-)

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 28 48 68 88 108 112 125 145 153

Lec 10.72/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Round-Robin Discussion
• How do you choose time slice?

– What if too big?
» Response time suffers

– What if infinite ()?
» Get back FIFO

– What if time slice too small?
» Throughput suffers!

• Actual choices of timeslice:
– Initially, UNIX timeslice one second:

» Worked ok when UNIX was used by one or two people.
» What if three compilations going on? 3 seconds to echo

each keystroke!
– In practice, need to balance short-job performance
and long-job throughput:
» Typical time slice today is between 10ms – 100ms
» Typical context-switching overhead is 0.1ms – 1ms
» Roughly 1% overhead due to context-switching

Lec 10.82/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Comparisons between FCFS and Round Robin
• Assuming zero-cost context-switching time, is RR

always better than FCFS?
• Simple example: 10 jobs, each take 100s of CPU time

RR scheduler quantum of 1s
All jobs start at the same time

• Completion Times:

– Both RR and FCFS finish at the same time
– Average response time is much worse under RR!

» Bad when all jobs same length
• Also: Cache state must be shared between all jobs with

RR but can be devoted to each job with FIFO
– Total time for RR longer even for zero-cost switch!

Job # FIFO RR
1 100 991
2 200 992
… … …
9 900 999
10 1000 1000

Lec 10.92/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Quantum

Completion
Time

Wait
Time

AverageP4P3P2P1

Earlier Example with Different Time Quantum

P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 8 32 85 153

Best FCFS:

6257852284Q = 1

104½11215328125Q = 20

100½8115330137Q = 1

66¼ 88852072Q = 20

31¼885032Best FCFS

121¾14568153121Worst FCFS

69½32153885Best FCFS
83½121014568Worst FCFS

95½8015316133Q = 8

57¼5685880Q = 8

99½9215318135Q = 10

99½8215328135Q = 5

61¼68851082Q = 10

61¼58852082Q = 5

Lec 10.102/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Handling differences in importance:
Strict Priority Scheduling

• Execution Plan
– Always execute highest-priority runable jobs to completion

• Problems:
– Starvation:

» Lower priority jobs don’t get to run because higher priority
tasks always running

– Deadlock: Priority Inversion
» Not strictly a problem with priority scheduling, but happens

when low priority task has lock needed by high-priority task
» Usually involves third, intermediate priority task that keeps

running even though high-priority task should be running
• How to fix problems?

– Dynamic priorities – adjust base-level priority up or down
based on heuristics about interactivity, locking, burst
behavior, etc…

Priority 3
Priority 2
Priority 1
Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

Lec 10.112/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Scheduling Fairness
• What about fairness?

– Strict fixed-priority scheduling between queues is unfair
(run highest, then next, etc):
» long running jobs may never get CPU
» In Multics, shut down machine, found 10-year-old job

– Must give long-running jobs a fraction of the CPU even
when there are shorter jobs to run

– Tradeoff: fairness gained by hurting avg response time!
• How to implement fairness?

– Could give each queue some fraction of the CPU
» What if one long-running job and 100 short-running ones?
» Like express lanes in a supermarket—sometimes express

lanes get so long, get better service by going into one of
the other lines

– Could increase priority of jobs that don’t get service
» What is done in some variants of UNIX
» This is ad hoc—what rate should you increase priorities?
» And, as system gets overloaded, no job gets CPU time, so

everyone increases in priorityInteractive jobs suffer
Lec 10.122/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Lottery Scheduling

• Yet another alternative: Lottery Scheduling
– Give each job some number of lottery tickets
– On each time slice, randomly pick a winning ticket
– On average, CPU time is proportional to number of
tickets given to each job

• How to assign tickets?
– To approximate SRTF, short running jobs get more,
long running jobs get fewer

– To avoid starvation, every job gets at least one
ticket (everyone makes progress)

• Advantage over strict priority scheduling: behaves
gracefully as load changes
– Adding or deleting a job affects all jobs
proportionally, independent of how many tickets each
job possesses

Lec 10.132/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Lottery Scheduling Example

• Lottery Scheduling Example
– Assume short jobs get 10 tickets, long jobs get 1 ticket

– What if too many short jobs to give reasonable
response time?
» If load average is 100, hard to make progress
» One approach: log some user out

short jobs/
long jobs

% of CPU each
short jobs gets

% of CPU each
long jobs gets

1/1 91% 9%
0/2 N/A 50%
2/0 50% N/A
10/1 9.9% 0.99%
1/10 50% 5%

Lec 10.142/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Administrivia

• Exam in 2 weeks (Wednesday, March 11)?
– Still trying to get room, so may move
– 2-hour exam in 3-hour slot
– 1 page of hand-written notes, both sides
– Evening exam, no class that day
– Technically, material up to previous Monday fair game

• Checkpoint #2 due on Friday
• Getting close to time for a survey to see how things

are going…

Lec 10.152/25/15 Kubiatowicz CS162 ©UCB Spring 2015

How to Evaluate a Scheduling algorithm?
• Deterministic modeling

– takes a predetermined workload and compute the
performance of each algorithm for that workload

• Queueing models
– Mathematical approach for handling stochastic workloads

• Implementation/Simulation:
– Build system which allows actual algorithms to be run
against actual data. Most flexible/general.

Lec 10.162/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: CPU Burst Behavior

• Execution model: programs alternate between bursts of
CPU and I/O
– Program typically uses the CPU for some period of time,
then does I/O, then uses CPU again

– Each scheduling decision is about which job to give to the
CPU for use by its next CPU burst

– With timeslicing, thread may be forced to give up CPU
before finishing current CPU burst

Weighted toward small bursts

Lec 10.172/25/15 Kubiatowicz CS162 ©UCB Spring 2015

How to handle simultaneous mix of different
types of applications?

• Can we use Burst Time (observed) to decide which
application gets CPU time?

• Consider mix of interactive and high throughput apps:
– How to best schedule them?
– How to recognize one from the other?

» Do you trust app to say that it is “interactive”?
– Should you schedule the set of apps identically on servers,

workstations, pads, and cellphones?
• Assumptions encoded into many schedulers:

– Apps that sleep a lot and have short bursts must be
interactive apps – they should get high priority

– Apps that compute a lot should get low(er?) priority, since
they won’t notice intermittent bursts from interactive apps

• Hard to characterize apps:
– What about apps that sleep for a long time, but then compute

for a long time?
– Or, what about apps that must run under all circumstances

(say periodically)

Lec 10.182/25/15 Kubiatowicz CS162 ©UCB Spring 2015

What if we Knew the Future?
• Could we always mirror best FCFS?
• Shortest Job First (SJF):

– Run whatever job has the least amount of
computation to do

– Sometimes called “Shortest Time to
Completion First” (STCF)

• Shortest Remaining Time First (SRTF):
– Preemptive version of SJF: if job arrives and has a
shorter time to completion than the remaining time on
the current job, immediately preempt CPU

– Sometimes called “Shortest Remaining Time to
Completion First” (SRTCF)

• These can be applied either to a whole program or
the current CPU burst of each program
– Idea is to get short jobs out of the system
– Big effect on short jobs, only small effect on long ones
– Result is better average response time

Lec 10.192/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Discussion

• SJF/SRTF are the best you can do at minimizing
average response time
– Provably optimal (SJF among non-preemptive, SRTF
among preemptive)

– Since SRTF is always at least as good as SJF, focus
on SRTF

• Comparison of SRTF with FCFS and RR
– What if all jobs the same length?

» SRTF becomes the same as FCFS (i.e. FCFS is best can
do if all jobs the same length)

– What if jobs have varying length?
» SRTF (and RR): short jobs not stuck behind long ones

Lec 10.202/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Example to illustrate benefits of SRTF

• Three jobs:
– A,B: both CPU bound, run for week
C: I/O bound, loop 1ms CPU, 9ms disk I/O

– If only one at a time, C uses 90% of the disk, A or B
could use 100% of the CPU

• With FIFO:
– Once A or B get in, keep CPU for two weeks

• What about RR or SRTF?
– Easier to see with a timeline

C

C’s
I/O

C’s
I/O

C’s
I/O

A or B

Lec 10.212/25/15 Kubiatowicz CS162 ©UCB Spring 2015

SRTF Example continued:

C’s
I/O

CABAB… C

C’s
I/O

RR 1ms time slice

C’s
I/O

C’s
I/O

CA BC

RR 100ms time slice

C’s
I/O

AC

C’s
I/O

AA

SRTF

Disk Utilization:
~90% but lots of
wakeups!

Disk Utilization:
90%

Disk Utilization:
9/201 ~ 4.5%

Lec 10.222/25/15 Kubiatowicz CS162 ©UCB Spring 2015

SRTF Further discussion
• Starvation

– SRTF can lead to starvation if many small jobs!
– Large jobs never get to run

• Somehow need to predict future
– How can we do this?
– Some systems ask the user

» When you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long

– But: Even non-malicious users have trouble predicting
runtime of their jobs

• Bottom line, can’t really know how long job will take
– However, can use SRTF as a yardstick
for measuring other policies

– Optimal, so can’t do any better
• SRTF Pros & Cons

– Optimal (average response time) (+)
– Hard to predict future (-)
– Unfair (-)

Lec 10.232/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Predicting the Length of the Next CPU Burst
• Adaptive: Changing policy based on past behavior

– CPU scheduling, in virtual memory, in file systems, etc
– Works because programs have predictable behavior

» If program was I/O bound in past, likely in future
» If computer behavior were random, wouldn’t help

• Example: SRTF with estimated burst length
– Use an estimator function on previous bursts:
Let tn-1, tn-2, tn-3, etc. be previous CPU burst lengths.
Estimate next burst n = f(tn-1, tn-2, tn-3, …)

– Function f could be one of many different time series
estimation schemes (Kalman filters, etc)

– For instance,
exponential averaging
n = tn-1+(1-)n-1
with (0<1)

Lec 10.242/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Multi-Level Feedback Scheduling

• Another method for exploiting past behavior
– First used in CTSS
– Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks
– Each queue has its own scheduling algorithm

» e.g. foreground – RR, background – FCFS
» Sometimes multiple RR priorities with quantum increasing

exponentially (highest:1ms, next:2ms, next: 4ms, etc)
• Adjust each job’s priority as follows (details vary)

– Job starts in highest priority queue
– If timeout expires, drop one level
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute
Tasks Demoted to

Low Priority

Lec 10.252/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Scheduling Details
• Result approximates SRTF:

– CPU bound jobs drop like a rock
– Short-running I/O bound jobs stay near top

• Scheduling must be done between the queues
– Fixed priority scheduling:

» serve all from highest priority, then next priority, etc.
– Time slice:

» each queue gets a certain amount of CPU time
» e.g., 70% to highest, 20% next, 10% lowest

• Countermeasure: user action that can foil intent of
the OS designer
– For multilevel feedback, put in a bunch of meaningless
I/O to keep job’s priority high

– Of course, if everyone did this, wouldn’t work!
• Example of Othello program:

– Playing against competitor, so key was to do computing
at higher priority the competitors.
» Put in printf’s, ran much faster!

Lec 10.262/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Case Study: Linux O(1) Scheduler

• Priority-based scheduler: 140 priorities
– 40 for “user tasks” (set by “nice”), 100 for “Realtime/Kernel”
– Lower priority value  higher priority (for nice values)
– Highest priority value  Lower priority (for realtime values)
– All algorithms O(1)

» Timeslices/priorities/interactivity credits all computed when
job finishes time slice

» 140-bit bit mask indicates presence or absence of job at
given priority level

• Two separate priority queues: “active” and “expired”
– All tasks in the active queue use up their timeslices and get

placed on the expired queue, after which queues swapped
• Timeslice depends on priority – linearly mapped onto

timeslice range
– Like a multi-level queue (one queue per priority) with different

timeslice at each level
– Execution split into “Timeslice Granularity” chunks – round

robin through priority

Kernel/Realtime Tasks User Tasks

0 100 139

Lec 10.272/25/15 Kubiatowicz CS162 ©UCB Spring 2015

O(1) Scheduler Continued
• Heuristics

– User-task priority adjusted ±5 based on heuristics
» p->sleep_avg = sleep_time – run_time
» Higher sleep_avg  more I/O bound the task, more

reward (and vice versa)
– Interactive Credit

» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time
» IC is used to provide hysteresis to avoid changing

interactivity for temporary changes in behavior
– However, “interactive tasks” get special dispensation

» To try to maintain interactivity
» Placed back into active queue, unless some other task has

been starved for too long…
• Real-Time Tasks

– Always preempt non-RT tasks
– No dynamic adjustment of priorities
– Scheduling schemes:

» SCHED_FIFO: preempts other tasks, no timeslice limit
» SCHED_RR: preempts normal tasks, RR scheduling amongst

tasks of same priority
Lec 10.282/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Linux Completely Fair Scheduler (CFS)

• First appeared in 2.6.23, modified in 2.6.24
• “CFS doesn't track sleeping time and doesn't use

heuristics to identify interactive tasks—it just makes
sure every process gets a fair share of CPU within a
set amount of time given the number of runnable
processes on the CPU.”

• Inspired by Networking “Fair Queueing”
– Each process given their fair share of resources
– Models an “ideal multitasking processor” in which N
processes execute simultaneously as if they truly got
1/N of the processor
» Tries to give each process an equal fraction of the

processor
– Priorities reflected by weights such that increasing a
task’s priority by 1 always gives the same fractional
increase in CPU time – regardless of current priority

Lec 10.292/25/15 Kubiatowicz CS162 ©UCB Spring 2015

CFS (Continued)

• Idea: track amount of “virtual time” received by each
process when it is executing
– Take real execution time, scale by weighting factor

» Lower priority  real time divided by greater weight
» Actually – multiply by sum of all weights/current weight

– Keep virtual time advancing at same rate
• Targeted latency (ࡸࢀ): period of time after which all

processes get to run at least a little
– Each process runs with quantum ࢖ࢃ ⁄࢏ࢃ∑ ൈ ࡸࢀ
– Never smaller than “minimum granularity”

• Use of Red-Black tree to hold all runnable processes
as sorted on vruntime variable
– O(log n) time to perform insertions/deletions

» Cash the item at far left (item with earliest vruntime)
– When ready to schedule, grab version with smallest
vruntime (which will be item at the far left).

Lec 10.302/25/15 Kubiatowicz CS162 ©UCB Spring 2015

CFS Examples
• Suppose Targeted latency = 20ms,

Minimum Granularity = 1ms
• Two CPU bound tasks with same priorities

– Both switch with 10ms
• Two CPU bound tasks separated by nice value of 5

– One task gets 5ms, another gets 15
• 40 tasks: each gets 1ms (no longer totally fair)
• One CPU bound task, one interactive task same priority

– While interactive task sleeps, CPU bound task runs and
increments vruntime

– When interactive task wakes up, runs immediately, since it
is behind on vruntime

• Group scheduling facilities (2.6.24)
– Can give fair fractions to groups (like a user or other
mechanism for grouping processes)

– So, two users, one starts 1 process, other starts 40,
each will get 50% of CPU

Lec 10.312/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Real-Time Scheduling (RTS)
• Efficiency is important but predictability is essential:

– We need to be able to predict with confidence the worst case
response times for systems

– In RTS, performance guarantees are:
» Task- and/or class centric
» Often ensured a priori

– In conventional systems, performance is:
» System oriented and often throughput oriented
» Post-processing (… wait and see …)

– Real-time is about enforcing predictability, and does not equal to
fast computing!!!

• Hard Real-Time
– Attempt to meet all deadlines
– EDF (Earliest Deadline First), LLF (Least Laxity First), RMS (Rate-

Monotonic Scheduling), DM (Deadline Monotonic Scheduling)
• Soft Real-Time

– Attempt to meet deadlines with high probability
– Minimize miss ratio / maximize completion ratio (firm real-time)
– Important for multimedia applications
– CBS (Constant Bandwidth Server)

Lec 10.322/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Example: Workload Characteristics

• Tasks are preemptable, independent with arbitrary
arrival (=release) times

• Times have deadlines (D) and known computation
times (C)

• Example Setup:

Lec 10.332/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Example: Round-Robin Scheduling Doesn’t Work

Lec 10.342/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Earliest Deadline First (EDF)

• Preemptive priority-based dynamic scheduling
• Each task is assigned a (current) priority based

on how close the absolute deadline is.
• The scheduler always schedules the active task

with the closest absolute deadline.

0 5 10 15

)1,4(1 T

)2,5(2 T

)2,7(3 T

Lec 10.352/25/15 Kubiatowicz CS162 ©UCB Spring 2015

EDF: Schedulability Test

Theorem (Utilization-based Schedulability Test):
A task set with is
schedulable by the earliest deadline first (EDF)
scheduling algorithm if

Exact schedulability test (necessary + sufficient)
Proof: [Liu and Layland, 1973]

nTTT ,,, 21  ii PD 











n

i i

i

D
C

1
1

Lec 10.362/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Lec 10.372/25/15 Kubiatowicz CS162 ©UCB Spring 2015

• Resources – passive entities needed by threads to do
their work
– CPU time, disk space, memory

• Two types of resources:
– Preemptable – can take it away

» CPU, Embedded security chip
– Non-preemptable – must leave it with the thread

» Disk space, plotter, chunk of virtual address space
» Mutual exclusion – the right to enter a critical section

• Resources may require exclusive access or may be
sharable
– Read-only files are typically sharable
– Printers are not sharable during time of printing

• One of the major tasks of an operating system is to
manage resources

Resources

Lec 10.382/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Starvation vs Deadlock
• Starvation vs. Deadlock

– Starvation: thread waits indefinitely
» Example, low-priority thread waiting for resources

constantly in use by high-priority threads
– Deadlock: circular waiting for resources

» Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

– Deadlock  Starvation but not vice versa
» Starvation can end (but doesn’t have to)
» Deadlock can’t end without external intervention

Res 2Res 1

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

Lec 10.392/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Conditions for Deadlock
• Deadlock not always deterministic – Example 2 mutexes:

Thread A Thread B
x.P(); y.P();
y.P(); x.P();
y.V(); x.V();
x.V(); y.V();

– Deadlock won’t always happen with this code
» Have to have exactly the right timing (“wrong” timing?)
» So you release a piece of software, and you tested it, and

there it is, controlling a nuclear power plant…
• Deadlocks occur with multiple resources

– Means you can’t decompose the problem
– Can’t solve deadlock for each resource independently

• Example: System with 2 disk drives and two threads
– Each thread needs 2 disk drives to function
– Each thread gets one disk and waits for another one

Lec 10.402/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Bridge Crossing Example

• Each segment of road can be viewed as a resource
– Car must own the segment under them
– Must acquire segment that they are moving into

• For bridge: must acquire both halves
– Traffic only in one direction at a time
– Problem occurs when two cars in opposite directions on
bridge: each acquires one segment and needs next

• If a deadlock occurs, it can be resolved if one car
backs up (preempt resources and rollback)
– Several cars may have to be backed up

• Starvation is possible
– East-going traffic really fast  no one goes west

Lec 10.412/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Train Example (Wormhole-Routed Network)
• Circular dependency (Deadlock!)

– Each train wants to turn right
– Blocked by other trains
– Similar problem to multiprocessor networks

• Fix? Imagine grid extends in all four directions
– Force ordering of channels (tracks)

» Protocol: Always go east-west first, then north-south
– Called “dimension ordering” (X then Y)

Lec 10.422/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Dining Lawyers Problem

• Five chopsticks/Five lawyers (really cheap restaurant)
– Free-for all: Lawyer will grab any one they can
– Need two chopsticks to eat

• What if all grab at same time?
– Deadlock!

• How to fix deadlock?
– Make one of them give up a chopstick (Hah!)
– Eventually everyone will get chance to eat

• How to prevent deadlock?
– Never let lawyer take last chopstick if no hungry
lawyer has two chopsticks afterwards

Lec 10.432/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Four requirements for Deadlock

• Mutual exclusion
– Only one thread at a time can use a resource.

• Hold and wait
– Thread holding at least one resource is waiting to
acquire additional resources held by other threads

• No preemption
– Resources are released only voluntarily by the thread
holding the resource, after thread is finished with it

• Circular wait
– There exists a set {T1, …, Tn} of waiting threads

» T1 is waiting for a resource that is held by T2
» T2 is waiting for a resource that is held by T3
» …
» Tn is waiting for a resource that is held by T1

Lec 10.442/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Symbols
Resource-Allocation Graph

• System Model
– A set of Threads T1, T2, . . ., Tn
– Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices
– Each resource type Ri has Wi instances.
– Each thread utilizes a resource as follows:

» Request() / Use() / Release()
• Resource-Allocation Graph:

– V is partitioned into two types:
» T = {T1, T2, …, Tn}, the set threads in the system.
» R = {R1, R2, …, Rm}, the set of resource types in system

– request edge – directed edge T1  Rj
– assignment edge – directed edge Rj  Ti

R1
R2

T1 T2

Lec 10.452/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Resource Allocation Graph Examples

T1 T2 T3

R1 R2

R3
R4

Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3
R4

Allocation Graph
With Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph
With Cycle, but
No Deadlock

• Recall:
– request edge – directed edge T1  Rj
– assignment edge – directed edge Rj  Ti

Lec 10.462/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Methods for Handling Deadlocks

• Allow system to enter deadlock and then recover
– Requires deadlock detection algorithm
– Some technique for forcibly preempting resources
and/or terminating tasks

• Ensure that system will never enter a deadlock
– Need to monitor all lock acquisitions
– Selectively deny those that might lead to deadlock

• Ignore the problem and pretend that deadlocks
never occur in the system
– Used by most operating systems, including UNIX

Lec 10.472/25/15 Kubiatowicz CS162 ©UCB Spring 2015

T1

T2

T3

R2

R1

T4

Deadlock Detection Algorithm
• Only one of each type of resource  look for loops
• More General Deadlock Detection Algorithm

– Let [X] represent an m-ary vector of non-negative
integers (quantities of resources of each type):
[FreeResources]: Current free resources each type
[RequestX]: Current requests from thread X[AllocX]: Current resources held by thread X

– See if tasks can eventually terminate on their own
[Avail] = [FreeResources] Add all nodes to UNFINISHED do {

done = trueForeach node in UNFINISHED {if ([Requestnode] <= [Avail]) {remove node from UNFINISHED[Avail] = [Avail] + [Allocnode]done = false}}
} until(done)

– Nodes left in UNFINISHED  deadlocked
Lec 10.482/25/15 Kubiatowicz CS162 ©UCB Spring 2015

What to do when detect deadlock?
• Terminate thread, force it to give up resources

– In Bridge example, Godzilla picks up a car, hurls it into
the river. Deadlock solved!

– Shoot a dining lawyer
– But, not always possible – killing a thread holding a
mutex leaves world inconsistent

• Preempt resources without killing off thread
– Take away resources from thread temporarily
– Doesn’t always fit with semantics of computation

• Roll back actions of deadlocked threads
– Hit the rewind button on TiVo, pretend last few
minutes never happened

– For bridge example, make one car roll backwards (may
require others behind him)

– Common technique in databases (transactions)
– Of course, if you restart in exactly the same way, may
reenter deadlock once again

• Many operating systems use other options

Lec 10.492/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Summary
• Round-Robin Scheduling:

– Give each thread a small amount of CPU time when it executes;
cycle between all ready threads

– Pros: Better for short jobs
• Shortest Job First (SJF)/Shortest Remaining Time First

(SRTF):
– Run whatever job has the least amount of computation to

do/least remaining amount of computation to do
– Pros: Optimal (average response time)
– Cons: Hard to predict future, Unfair

• Multi-Level Feedback Scheduling:
– Multiple queues of different priorities and scheduling algorithms
– Automatic promotion/demotion of process priority in order to

approximate SJF/SRTF
• Lottery Scheduling:

– Give each thread a priority-dependent number of tokens (short
tasksmore tokens)

• Linux CFS Scheduler: Fair fraction of CPU
– Approximates a “ideal” multitasking processor

• Realtime Schedulers such as EDF
– Guaranteed behavior by meeting deadlines
– Realtime tasks defined by tuple of compute time and period
– Schedulability test: is it possible to meet deadlines with

proposed set of processes?
Lec 10.502/25/15 Kubiatowicz CS162 ©UCB Spring 2015

Summary (2)

• Starvation vs. Deadlock
– Starvation: thread waits indefinitely
– Deadlock: circular waiting for resources

• Four conditions for deadlocks
– Mutual exclusion

» Only one thread at a time can use a resource
– Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

– No preemption
» Resources are released only voluntarily by the threads

– Circular wait
»  set {T1, …, Tn} of threads with a cyclic waiting pattern

• Techniques for addressing Deadlock
– Allow system to enter deadlock and then recover
– Ensure that system will never enter a deadlock
– Ignore the problem and pretend that deadlocks never
occur in the system

