
Appears inIEEE International High Level Design Validation and Test Workshop, November 2007

Transactors for Parallel Hardware and Software Co-Design

Krste Asanović
Computer Science Division

University of California at Berkeley
krste@eecs.berkeley.edu

1 Introduction

Complex, high-performance, low-power information pro-
cessing systems usually incorporate a mixture of hardware
and software elements, and pose significant design chal-
lenges. Conventional register-transfer level (RTL) hardware
design methodologies are too low-level, requiring designsto
be partitioned into collections of combinational gates sepa-
rated by clocked registers. Conversely, threaded parallelsoft-
ware design methodologies provide a very high-level speci-
fication from which it is difficult to synthesize efficient gate-
level implementations. In this paper, we introduce thetrans-
actor (transactionalactor) model to provide a natural level
of design representation for both hardware and software im-
plementation. As shown in Fig. 1, a design is modeled as a
network of communicating transactors connected by message
queues, where each transactor performs atomic actions and
sends output messages based on its local state and messages
arriving on its input queues.

Transactors support a higher-level design style, we term
UTL (Unit-Transaction Level) design. Transaction-level
modeling has become a popular starting point for modern em-
bedded system design, but the goal of transactors is to support
a complete transaction-levelsynthesis flow into hardware or
software. A transactor can be implemented as custom cir-
cuitry, or as a gate-level netlist mapped to standard cells or
an FPGA. A transactor can also be implemented as software
running on a conventional instruction-set processor.

2 The Transactor Model

The transactor computation model is based on guarded
atomic actions [2, 7], to cleanly specify non-determinate con-

Figure 1: UTL design containing transactor units communi-
cating over message queues.

current programs.
A system is described as a hierarchical composition of

transactors. A transactor unit has four components: archi-
tectural state; buffered input and output channels that provide
decoupled connections between transactors; a set of atomic
transactions that can read from the input channels, mutate pri-
vate state, and write to the output channels; and a scheduler
that selects the next transaction to perform (Fig. 2).

Thearchitectural state of a transactor is the state that per-
sists between transactions, and hence which can affect the op-
eration of future transactions or the scheduler. Architectural
state is of fixed size. An implementation of a transactor may
contain further microarchitectural state (e.g. pipeline regis-
ters or caches), but this is never visible from the transactor’s
interface (i.e., it can never change the behavior of any trans-
action).

Input and output channels provide buffered point-to-point
connections between units. Channels are unidirectional with
a single sender and a single receiver, and carry messages with
a fixed maximum size.

A transaction describes a possible computation to be per-
formed. Transactions are guarded atomic actions, where the
guard is a predicate over the state of the head of each in-
put channel read, the status of the tail of each output chan-
nel potentially written to, and the unit’s architectural state.
Transactions execute atomically with respect to each other.
A transaction can read at most one message from each input
channel, and when a transaction fires, any messages it read
are removed from the input channels. A transaction can write
at most one message to each output channel.

The scheduler contains a combinational function which

Figure 2: Anatomy of a transactor.

1



selects the next transaction to be performed, if any.
The scheduling function can read architectural state, the
empty/full state of each input queue, and the message at the
head of each input queue. The scheduler can not update state
unless a transaction is fired, but can then update scheduler
state to implement various scheduling policies. The scheduler
functionality can in principle be merged into transactions(by
folding scheduler priority equations into transaction guards,
and by folding scheduler state updates into transaction state
updates), but the separation makes code more modular and
easier to read.

The operational semantics of a collection of transactors
are as follows: Non-deterministically select a transaction that
is ready to execute on some unit, execute that transaction, and
repeat. If no transaction can execute, the system is either fin-
ished, waiting on external input to arrive, waiting for external
output to drain, or deadlocked.

3 Router Example

Fig. 3 shows a pseudo-code description of a transactor
that routes two input streams of message packets to two
output streams. The two transactions areroute, which
moves packets from an input to one of the two outputs, and
route kill, which removes malformed packets from the
system while incrementing abad packet counter. The
routable function determines whether the input is a valid
packet, and theroute func function determines which of
the two output streams the packet should leave on if routable.

The transactor contains two pieces of architectural state,
the bad packet counter plus a one-bit value,last, used to
ensure a fair schedule. The scheduler state is considered part
of the architectural state because if affects the externally vis-
ible behavior of the unit.

The scheduler has two components: a combinational
scheduling function that prioritizes and selects the next trans-
action among all ready transactions, and a scheduler state up-
date operation that only occurs after a transaction has been
fired. The scheduling function is restricted to be combina-
tional, so that no state is updated except when a transac-
tion fires. The scheduler state update is folded into the same
atomic action as the transaction that was fired.

By default, transactions listed sequentially within a
schedule statement have decreasing priority. Schedules
can be nested, and can take user-supplied priority mod-
ifier routines to provide more complex dynamic sched-
ules. The example uses a standard priority modifier routine,
(round robin), which implements one form of fair round-
robin scheduling using the scheduler state,last, to remem-
ber the index of the last transaction to fire. The priority of the
constituent transactions is modified to give the lowest prior-
ity to the transaction that just fired, with priority increasing
as the numeric label decreases.

Thereset transaction, which depends only on the im-
plicit reset channel, always has the highest priority and is
used to bring the unit into a known state before it begins pro-

transaction route(
input pkt in,
output pkt out0,
output pkt out1)

{
when (routable(in))

if (route_func(in)==0)
out0 = in;

else
out1 = in;

}

transaction route_kill(
input pkt in,
int[32]& bad_packets)

{
when (!routable(in))

bad_packets++;
}

transactor
router(input pkt in0,

input pkt in1,
output pkt out0,
output pkt out1)

{
int[32] bad_packets;
int[1] last; // Fair scheduler state.
schedule {

reset { bad_packets = 0; last = 0; };
route_kill(in0, bad_packets);
route_kill(in1, bad_packets);
schedule round_robin(last) {

(0): route(in0, out0, out1);
(1): route(in1, out0, out1);

};};}

Figure 3: Routing unit example.

cessing messages. The reset channel is the only example of
synchronous inter-unit communication in the transactor net-
work, as each unit must simultaneously receive a reset token.

4 Transactors in Hardware

Hardware designs can follow a template consisting of a data-
path to execute the transactional code, together with an arbiter
implementing the scheduling function. The execution datap-
ath can be pipelined, and a single transaction might require
several passes through the pipeline.

The transactor description is intended to enable a wide
range of efficient hardware implementations. For example,
one implementation of therouter function given above
could pipeline its execution, and allow only a singleroute
transaction into the pipeline each cycle. Alternatively, an-
other design might be unpipelined but allow the tworoute
transactions to fire on the same cycle provided they were
going to write to different outputs. Similarly, a more so-
phisticated implementation could allow bothroute kill
transactions to fire on the same cycle, updating the shared

2



bad packets state by 0, 1, or 2.
Transactors are intended to represent relatively coarse-

grain units of functionality, perhaps 10,000–100,000 gates of
hardware. These units are small enough that conventional
RTL design tools perform adequately within a unit [9]. A
large sub-100nm chip design might contain many thousands
of hardware transactors, and it is at this global scale that a
UTL discipline such as transactors can help with logical and
physical design complexity:

• Transactors encode locality of access, separating local
computation from global communication.

• The message queues decouple the state machines
of communicating transactors, limiting combinational
paths in control logic.

• Transactors use a latency-insensitive design style [5],
where functionality should not depend on communica-
tion latency. This enables more flexibility in physical
design choices, such as the use of pipelined or multi-
plexed global wires, or a GALS clocking strategy.

• Transactions provide a natural granularity for imple-
menting soft error correction through check and retry.

5 Transactors in Software

Transactors are easily mapped to software implementations.
The architectural state becomes a data structure in memory.
Each transaction can be mapped to a serial thread of code
that executes to completion once fired. The scheduler be-
comes a separate piece of code that is run sequentially after
each transaction completes. If no transactions are ready to
fire, the whole transactor can be descheduled. The scheduler
need only run again to check guard conditions if new inputs
arrive or the output channels drain. The efficiency of invok-
ing the scheduler code on communication events will depend
on the underlying hardware implementation. When multiple
transactor instances are mapped to the same processor, their
scheduling functions can be merged to improve efficiency.

6 Related Work

The transactor model builds upon a number of earlier ap-
proaches.

Kahn networks [8] provide decoupled communication be-
tween actors but do not provide for non-deterministic arrival
of input messages. Also, execution within an actor is sequen-
tial whereas transactors allow concurrent actions internal to
an actor. Kahn processes of bounded size can be mapped
to transactors, where input or output events terminate trans-
actions (i.e., code between I/O events can be represented by
one or more transactions).

The CSP computational model [6] underlies the Occam
language [3]. Parallel processes communicate and synchro-
nize via a rendezvous over a communication channel. Ren-

dezvous exposes round-trip communication latency in imple-
mentations, and many Occam programs required additional
explicit buffer processes to decouple units and tolerate long
and variable latency communication. Also, CSP does not pro-
vide a mechanism to manage mutable state shared by concur-
rent processes.

The Cal Actor Language (CAL) [4] shares many similar-
ities to the transactor model, however, CAL is less well de-
fined as the execution semantics mostly depend on an external
environment.

The use of guarded atomic commands in TRS [7] and
Bluespec [1] inspired much of the thinking behind transac-
tors. The transactor model adds the UTL design discipline
of units decoupled with message queues, and also allows for
multi-cycle transactions possibly of data-dependent duration
(i.e., operations that cannot be completely unfolded in space
in a hardware implementation).

7 Summary

The use of higher-level design specifications is required for
large scale embedded systems, yet these must admit effi-
cient hardware and software implementations. The transac-
tor model separates local computation from global commu-
nication, and avoids overspecifying the execution of compu-
tations within each unit. The use of guarded atomic com-
mands provides a clean model for concurrent activities that
share state within each unit, and supports computations on
non-deterministic input streams.

References
[1] Bluespec Inc. Bluespec(tm) SystemVerilog Reference Guide:

Description of the Bluespec SystemVerilog Language and Li-
braries, Waltham, MA, 2004.

[2] K. M. Chandy and J. Misra.Parallel Program Design: A Foun-
dation. Addison Wesley, 1988.

[3] Inmos Corporation.Occam 2 Reference Manual. Prentice Hall,
1988.

[4] J. Eker and J. W. Janneck. CAL language report. ERL Technical
Memo UCB/ERL M03/48, University of California at Berkeley,
December 2003.

[5] L.P. Carloni et al. A methodology for correct-by-construction
latency-insensitive design. InProc. ICCAD, November 1999.

[6] C. A. R. Hoare. Communicating sequential processes.Com-
mun. ACM, 21(8):666–677, 1978.

[7] J. Hoe and Arvind. Operation-centric hardware descriptions and
synthesis. InIEEE TCAD, 2004.

[8] G. Kahn. The semantics of a simple language for parallel pro-
gramming. InInformation Processing 74: Proceedings of the
IFIP Congress 74, pages 471–475, August 1974.

[9] D. Sylvester and K. Keutzer. Impact of small process geome-
tries on microarchitectures in systems on a chip. InProc. IEEE,
volume 89, April 2001.

3


