Appears inlEEE International High Level Design Validation and Test Workshop, November 2007

Transactorsfor Parallel Hardware and Software Co-Design

Krste Asanovit
Computer Science Division
University of California at Berkeley

kr st e@ecs. berkel ey. edu

1 Introduction current programs.

A system is described as a hierarchical composition of
Complex, high-performance, low-power information protransactors. A transactor unit has four components: archi-
cessing systems usually incorporate a mixture of hardwatgtural state; buffered input and output channels thatigeo
and software elements, and pose significant design ch@écoupled connections between transactors; a set of atomic
lenges. Conventional register-transfer level (RTL) hat transactions that can read from the input channels, mutate p
design methodologies are too low-level, requiring destgnsyate state, and write to the output channels; and a scheduler
be partitioned into collections of combinational gatesasepthat selects the next transaction to perform (Fig. 2).
rated by clocked registers. Conversely, threaded pasaifel ~ Thearchitectural state of a transactor is the state that per-
ware design methodologies provide a very high-level spegisis petween transactions, and hence which can affecpthe o
fication from which it is difficult to synthesize efficient @t o ation of future transactions or the scheduler. Archibedt
level implementations. In this paper, we introducett®s- giate s of fixed size. An implementation of a transactor may
actor (transactionalactor) model to provide a natural level ;ontain further microarchitectural state (e.g. pipeliegis-
of design representation for both hardware and software ifgys or caches), but this is never visible from the trans#cto
plementation. As shown in Fig. 1, a design is modeled agierface (j.e., it can never change the behavior of anystran
network of communicating transactors connected by messag@fion).
gueues, where each transactor performs atomic actions a”‘i’nput and output channels provide buffered point-to-point

sends output messages based on its local state and messgg§itections between units. Channels are unidirectiortal wi

arriving on its input queues. _ a single sender and a single receiver, and carry messades wit
Transactors support a higher-level design style, we teifitiyad maximum size.

UTL (Unit-Transaction Level) design. Transaction-level A transaction describes a possible computation to be per-

modeling has become a popular starting point for modern ®H8tmed. Transactions are guarded atomic actions, where the

bedded system design, butthe goal of tra_nsactors Isto StupFﬁfﬂJard is a predicate over the state of the head of each in-
a complete transact|on—IeVQInth$sflow into hardware or ut channel read, the status of the tail of each output chan-
software. A transactor can be implemented as custom cjr-

it te-level netlist d to standard cell el potentially written to, and the unit's architecturahtst
cuitry, or as a gate-level netiist mapped to standard Cells 5,55 ctions execute atomically with respect to each other

?nni!:]G'g'n':téi?f:ﬁ?gnc;nnzltsroct:%r']mspgfn:sgiisrs SOftW%(?ransaction can read at most one message from each input
unning ventl instruct P ' channel, and when a transaction fires, any messages it read
are removed from the input channels. A transaction can write

2 The Transactor M odél at most one message to each output channel.
The scheduler contains a combinational function which

The transactor computation model is based on guarded
atomic actions [2, 7], to cleanly specify non-determinate-c

Output
queues

Transactions I

Input
queues

gl

Architectural
State

Figure 1. UTL design containing transactor units communi-
cating over message queues. Figure 2: Anatomy of a transactor.

selects the next transaction to be performed, if anyfansaction route(

. . . i nput pkt in,
The scheduling function can read architectural state, theOlJtIDLIt okt out 0
empty/full state of each input queue, and the message at the ; put pkt out 15
head of each input queue. The scheduler can not update state

unless a transaction is fired, but can then update schedulefihen (routabl e(in))

state to implement various scheduling policies. The scleedu if (route_func(in)==0)

functionality can in principle be merged into transacti{ing outo = in;

folding scheduler priority equations into transaction igisa el se _

and by folding scheduler state updates into transactida st outl =in;

updates), but the separation makes code more modular gnd

easier to read. transaction route_Kill(
The operational semantics of a collection of transactorsi nput pkt in,

are as follows: Non-deterministically select a transactieat int[32] & bad_packets)

is ready to execute on some unit, execute that transactidn, &
repeat. If no transaction can execute, the system is either fi
ished, waiting on external input to arrive, waiting for extal }
output to drain, or deadlocked.

when (!routable(in))
bad_packet s++

transact or
router(input pkt inoO,

3 Router Example i nput pkt ini,
out put pkt outO,
Fig. 3 shows a pseudo-code description of a transactor output pkt outl)
that routes two input streams of message packets_ to twa . [32] bad_packets:
output streams. The two transactions a@ut e, which int[1] last; // Fair schedul er state.
moves packets from an input to one of the two outputs, andschedul e {
rout e kil |, which removes malformed packets from the reset { bad _packets = 0; last = 0; };
system while incrementing bad_packet counter. The route_kill (in0O, bad_packets);
rout abl e function determines whether the inputis avalid ~ route_kill (inl, bad_packets);
packet, and the out e_f unc function determines which of schedul e round_robin(l ast) {

(0): route(inO, outO, outl);

the two output streams the packet should leave on if routable (1): route(inl outo. outl):

The transactor contains two pieces of architectural stae, .}
the bad packet counter plus a one-bit valuast , used to
ensure a fair schedule. The scheduler state is considered pa
of the architectural state because if affects the externat Figure 3: Routing unit example.
ible behavior of the unit.

The scheduler has two components: a Combinationcaelssing messages. The reset channel is the only example of
scheduling function that prioritizes and selects the rexts-)

. . sLynchronous inter-unit communication in the transacta+ ne
action among all ready transactions, and a scheduler giate : . .
. . work, as each unit must simultaneously receive a reset token
date operation that only occurs after a transaction has been
fired. The scheduling function is restricted to be combina-
tional, so that no state is updated except when a transge- Transactorsin Hardware
tion fires. The scheduler state update is folded into the same

atomic action as the transaction that was fired. Hardware designs can follow a template consisting of a data-
By default, transactions listed sequentially within @ath to execute the transactional code, together with atearb
schedul e statement have decreasing priority. Schedul@®plementing the scheduling function. The execution datap
can be nested, and can take user-supplied priority magth can be pipelined, and a single transaction might require
ifier routines to provide more complex dynamic schedseveral passes through the pipeline.
ules. The example uses a standard priority modifier routine, The transactor description is intended to enable a wide
(r ound_r obi n), which implements one form of fair round-range of efficient hardware implementations. For example,
robin scheduling using the scheduler stht@st , to remem- one implementation of the out er function given above
ber the index of the last transaction to fire. The prioritytef t could pipeline its execution, and allow only a singleut e
constituent transactions is modified to give the lowestrpriatransaction into the pipeline each cycle. Alternatively; a
ity to the transaction that just fired, with priority incré&s other design might be unpipelined but allow the twaut e
as the numeric label decreases. transactions to fire on the same cycle provided they were
Ther eset transaction, which depends only on the imgoing to write to different outputs. Similarly, a more so-
plicit r eset channel, always has the highest priority and ighisticated implementation could allow batlout e ki | |
used to bring the unit into a known state before it begins prtransactions to fire on the same cycle, updating the shared

bad_packet s state by 0, 1, or 2. dezvous exposes round-trip communication latency in imple
Transactors are intended to represent relatively coarseentations, and many Occam programs required additional

grain units of functionality, perhaps 10,000-100,000gafe explicit buffer processes to decouple units and toleratg lo

hardware. These units are small enough that conventioaad variable latency communication. Also, CSP does not pro-

RTL design tools perform adequately within a unit [9]. Avide a mechanism to manage mutable state shared by concur-

large sub-100nm chip design might contain many thousanest processes.

of hardware transactors, and it is at this global scale that aThe Cal Actor Language (CAL) [4] shares many similar-

UTL discipline such as transactors can help with logical aritles to the transactor model, however, CAL is less well de-

physical design complexity: fined as the execution semantics mostly depend on an external

environment.
e Transactors encode locality of access, separating localthe yse of guarded atomic commands in TRS [7] and
computation from global communication. Bluespec [1] inspired much of the thinking behind transac-

e The message queues decouple the state machiﬁogg' _The transactor_model adds the UTL design discipline
of communicating transactors, limiting combinational ur_uts decoupled W'th message queues, and also a_IIows for
paths in control logic. muln—cycle t'ransacnons possibly of data—dependentu'mma

(i.e., operations that cannot be completely unfolded ircepa

e Transactors use a latency-insensitive design style [5],@ hardware implementation).
where functionality should not depend on communica-
tion latency. This enables more flexibility in physica?
design choices, such as the use of pipelined or multl- Summary

plexed global wires, or a GALS clocking strategy. The use of higher-level design specifications is required fo

e Transactions provide a natural granularity for implel2rge scale embedded systems, yet these must admit effi-
menting soft error correction through check and retry. cient hardware and software implementations. The transac-
tor model separates local computation from global commu-
nication, and avoids overspecifying the execution of compu
5 Transactorsin Software tations within each unit. The use of guarded atomic com-
mands provides a clean model for concurrent activities that
Transactors are easily mapped to software implementatioskare state within each unit, and supports computations on
The architectural state becomes a data structure in memaergyn-deterministic input streams.
Each transaction can be mapped to a serial thread of code
that executes to completion once fired. The scheduler ks
comes a separate piece of code that is run sequentially a?t%?ferences
each transaction completes. If no transactions are ready{p gjyespec Inc. Bluespec(tm) SystemVerilog Referencéd&u
fire, the whole transactor can be descheduled. The schedulerpescription of the Bluespec SystemVerilog Language and Li-
need only run again to check guard conditions if new inputs braries, Waltham, MA, 2004.

arrive or the output channels drain. The efficiency of involfz] K. M. Chandy and J. MisraParallel Program Design: A Foun-
ing the scheduler code on communication events will depend dation. Addison Wesley, 1988.

on the underlying hardware implementation. When multip] Inmos CorporationOccam 2 Reference Manual. Prentice Hall,
transactor instances are mapped to the same processor, theiqggg.

scheduling functions can be merged to improve efficiency. [4] J. Eker and J. W, Janneck. CAL language report. ERL Teztini
Memo UCB/ERL M03/48, University of California at Berkeley,

6 Redated Work December 2003.

[5] L.P. Carloni et al. A methodology for correct-by-consttion

The transactor model builds upon a number of earlier ap- latency-insensitive design. Froc. ICCAD, November 1999.

proaches. [6] C. A. R. Hoare. Communicating sequential processgéerm-
Kahn networks [8] provide decoupled communication be- ™UN-ACM, 21(8):666-677, 1978.

tween actors but do not provide for non-deterministic airiv[7] J. Hoe and Arvind. Operation-centric hardware desimiyg and

of input messages. Also, execution within an actor is sequen Synthesis. INEEE TCAD, 2004.

tial whereas transactors allow concurrent actions intdma [8] G. Kahn. The semantics of a simple language for paratiel p

an actor. Kahn processes of bounded size can be mappeddramming. Ininformation Processing 74: Proceedings of the

to transactors, where input or output events terminatestran F1P Congress 74, pages 471-475, August 1974.

actions (i.e., code between 1/O events can be representedfyD. Sylvester and K. Keutzer. Impact of small process geom

one or more transactions). tries on microarchitectures in systems on a chigPec. |EEE,
The CSP computational model [6] underlies the Occam Volume 89, April 2001.

language [3]. Parallel processes communicate and synchro-

nize via a rendezvous over a communication channel. Ren-

