
Strober: Fast and Accurate Sample-Based Energy Simulation for Arbitrary RTL

Donggyu Kim, Adam Izraelevitz, Christopher Celio, Hokeun Kim, Brian Zimmer,
Yunsup Lee, Jonathan Bachrach, Krste Asanović

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
{dgkim, adamiz, celio, hokeunkim, bmzimmer, yunsup, jrb, krste}@eecs.berkeley.edu

Abstract—This paper presents a sample-based energy simu-
lation methodology that enables fast and accurate estimations
of performance and average power for arbitrary RTL designs.
Our approach uses an FPGA to simultaneously simulate the
performance of an RTL design and to collect samples containing
exact RTL state snapshots. Each snapshot is then replayed in
gate-level simulation, resulting in a workload-specific average
power estimate with confidence intervals. For arbitrary RTL
and workloads, our methodology guarantees a minimum of four-
orders-of-magnitude speedup over commercial CAD gate-level
simulation tools and gives average energy estimates guaranteed
to be within 5% of the true average energy with 99% confidence.
We believe our open-source sample-based energy simulation tool
Strober can not only rapidly provide ground truth for more
abstract power models, but can enable productive design-space
exploration early in the RTL design process.

Index Terms—Design, Energy, Experimentation, FPGA, Hard-
ware, Modeling, Performance, Power estimation, Statistical sam-
pling

I. INTRODUCTION

Energy efficiency has become the primary design metric
for both low-power portable computers and high-performance
servers. As technology scaling slows down, computer archi-
tects must use architectural innovation rather than semicon-
ductor process improvement to improve energy efficiency.
This trend necessitates accurate and fast energy evaluation
of various long-running applications on novel designs for
architectural design-space exploration.

The most accurate way to evaluate energy efficiency is by
running applications on a silicon prototype [1], [2], [3], [4],
[5] with power consumption measured directly. Prototyping is
accurate and can run large workloads rapidly, but each proto-
typing cycle is expensive and has a long latency, prohibiting
extensive design-space exploration.

Computer architects instead mostly rely on analytic power
models calibrated against representative RTL designs [6], [7],
[8], [9], [10]. These must be driven by activities from micro-
architectural simulation [11], [12], [13]. This approach helps
designers gain some intuition in early design phases, but is
limited to microarchitectures resembling those for which the
abstract model was built, and requires long simulation times to
gather microarchitectural activities. As power model validation
depends on the existence of representative RTL, constructing
abstract power models is more difficult for non-traditional
architectures such as application-specific accelerators.

When complete RTL designs are available, they can be
used to evaluate not only energy efficiency, but also cycle
time and area using commercial CAD tools [14], [5], [15].
Although existing commercial CAD tools provide extremely

accurate performance and power estimates from detailed gate-
level simulation, the simulation runtime of complex designs is
painfully slow, preventing large architecture studies of many
hardware configurations.

This paper describes a sample-based RTL energy-modeling
methodology, which enables fast and accurate energy evalua-
tion of long-running applications. First, a design’s performance
is evaluated using full-system RTL simulation, during which a
set of replayable RTL snapshots is captured randomly over the
course of a program’s execution. Next, the design’s average
power is estimated by replaying the samples on a gate-level
power simulator, which also provides the confidence interval
for the average power estimate.

We also present the open-source Strober framework, an
example implementation of sample-based energy simulation.
Strober is built upon Chisel [16], which supports advanced
hardware designs using highly parameterized generators.
Strober automatically generates an FPGA-accelerated FAME1
simulator [17] from any Chisel RTL design, to provide rapid
performance modeling. The FAME1 simulator is enhanced
with the ability to capture a full replayable RTL snapshot at
any sample point, which can then be replayed on a commercial
gate-level simulator to obtain power numbers. We evaluate the
Strober framework using both an in-order processor [18] and
an out-of-order processor [19].

The main contributions of this paper are as follows:
• General and Easy-to-Use Framework: Strober automat-

ically generates FPGA-accelerated FAME1 simulations
from any RTL design including the ability to snapshot
simulation state for replay on gate-level simulation, thus
minimizing designers’ manual effort. We present results
using RTL designs of in-order and out-of-order proces-
sors, but note that the approach applies to any Chisel RTL
including application-specific accelerators.

• Accurate Estimation: Performance measurement is truly
cycle-accurate, since it is based on the RTL design mod-
eled using a token-based timing simulation. For average
power, we can achieve less than 5% error with 99.9%
confidence against commercial CAD tools. This indicates
Strober can be a framework to provide ground truth for
other models.

• Fast Simulation: We achieve more than two orders
of magnitude speedup over existing microarchitectural
simulators and four orders of magnitude speedup over
commercial Verilog simulators. This implies Strober can
support large design-space exploration using long-running
applications on complex hardware designs.



II. RELATED WORK

Analytical power modeling [6], [7], [8], [9], [10] com-
bined with microarchitectural software simulators [11], [12],
[13] is widely-used for computer architecture research. This
method enables early architecture-level design-space explo-
ration, helping designers gain high-level intuitions before
RTL implementation. However, microarchitectural software
simulators execute far more slowly than real systems, requiring
application runs to be subset. Moreover, the power models
should be strictly validated against real systems or detailed
gate-level simulations, which is difficult when exploring new
non-traditional designs. We suggest sample-based energy sim-
ulation as a way of obtaining accurate ground truth to train
abstract power models rapidly.

Power modeling based on performance-monitoring counters
is also popular for power estimation [20], [21], [22], [23],
[24], [25]. This method provides a quick power estimate by
profiling full execution of applications. However, its appli-
cation is limited to existing physical systems since standard
power simulators are extremely slow. We believe the Strober
framework enables the system designer to correlate power
models and performance metrics of novel hardware designs
by accelerating both performance and power simulations.

There are also significant efforts to validate power mod-
els [26], [27], [28], [29]. Shafi et al. [26] validate an event-
driven power model against the IBM PowerPC 405GP pro-
cessor. Mesa-Martinez et al. [27] validate power and thermal
models by measuring the temperature of real machines. The
authors measure temperature using an infrared camera and
translate temperature to power using a genetic algorithm. Xi et
al. [28] validate McPAT against the IBM POWER7 processor
and illustrate how inaccuracies can arise without careful tuning
and validation. However, these methodologies can only be
applied using existing machines or proprietary data. Jacobson
et al. [29] suggest a power model from systematically selected
signals and validate it against RTL simulation. However, the
approach relies on designer annotations and microbenchmarks
exploiting familiarity with a particular family of processor
architectures. In contrast, Strober can be used for validation
of novel hardware designs and long-running real world appli-
cations.

There are a number of significant attempts to accelerate
power estimation using an FPGA [30], [31], [32], [33], [34].
Sunwoo et al. [30] generate power models from manually
specified signals, which requires designers’ intuition. This
technique also requires additional manual efforts to instrument
existing FPGA simulators with power models. Bhattacharjee,
Contreras, & Martonosi [31] also manually implement event
counters in FPGA emulators to speed up event-driven power
estimation. Coburn, Ravi, & Raghunathan [32] implement
detailed power models directly on the FPGA, which suffers
from large FPGA resource overhead. Ghodrat et al. [33] extend
Coburn et al. by employing a software/FPGA co-emulation
approach to reduce FPGA resource overhead, but introduces
communication overhead between the software and FPGA,

which can bottleneck emulation performance without careful
partitioning. Atienza et al. [34] implement a special module
to monitor selected signal activities on FPGA.

Our Strober framework differs in that the hardware design
is automatically instrumented to generate samples instead of
manually implementing power models on an FPGA, while still
minimizing FPGA resource overhead.

Sampling procedures have been applied to speed up exist-
ing processor simulation frameworks; many such procedures,
based on the foundational work of SMARTS [35], alternate at
fixed intervals between detailed simulation (including a non-
recorded warming stage) and fast functional simulation [13],
[36], [37], [38]. This simulation methodology makes the fol-
lowing assumptions: (1) length of execution is known, (2) no
aliasing along the fixed interval, (3) state warming terminates
with an accurate state. While acceptable for simulating known
architectures and known benchmarks, these assumptions are
invalid when estimating power for arbitrary RTL running ar-
bitrary code. Our proposed sample-based methodology avoids
making these assumptions by employing reservoir sampling
and cycle-accurate performance simulators.

There have been significant efforts to develop FPGA
performance simulators [39], [40], [17], [41], [42], [43].
Protoflex [39] implements a multi-core functional simulator
on the FPGA. FAST [40] is a hybrid approach simulating a
function model in software and a timing model on the FPGA.
Tan et al. [17] describe different FAME levels. FAME0 simu-
lators directly emulate the RTL design on the FPGA. FAME1
simulators are decoupled from the host memory simulation to
match the target DRAM timing models. FAME7 simulators
implement abstract models and simulation multi-threading on
top of FAME1. RAMP Gold [17] and HASim [42] are exam-
ples of FAME7 simulators. The simulators above are orders
of magnitude faster than software simulators, but they require
significant simulator development efforts. In contrast, our
approach automatically generates FAME1 simulators directly
from RTL designs to accurately model the target design’s
timing behavior.

III. SAMPLE-BASED ENERGY SIMULATION

In this section, we present our sample-based energy simu-
lation methodology using RTL designs for fast and accurate
energy estimation. First, we present a brief theoretical back-
ground of statistical sampling in Section III-A with parameters
in Table I. Next, we describe how statistical sampling is
applied to RTL energy simulation in Section III-B.

A. Statistical Sampling

A population P of size N is the set of all elements (e1, e2, ...
eN) which could be selected in an experiment. Each element
ei has a corresponding measurable quantity, Xi. A population’s
parameters such as its mean, X , and its variance, s2, can be
exactly calculated if all elements within the population are
measured.

X =
ÂN

i=1 Xi

N
(1)



Population Sample
size N size n

mean X mean x̄
variance s2 variance s2

x
sampling mean X

sampling variance Var(x̄)
confidence level (1�a)

confidence interval x̄± z1�(a/2)
p

Var(x̄)

TABLE I: Statistical Parameters

s2 =
ÂN

i=1(Xi �X)

N
(2)

Unfortunately, evaluating every element in P is usually
infeasible due to any number of resource constraints. Instead,
a subset of the population, a sample, is selected according to
a sampling strategy, and is used to estimate some parameters
of the original population.

While there are many sampling strategies, the most statisti-
cally robust strategy is random sampling without replacement,
where every ei in P has an equal probability of being selected
in a sample. For simplicity and clarity, the following assumes
this specific sampling strategy.

To estimate population parameters, every element in a
sample of size n is measured (xi), and the sample mean x̄
and sample variance s2

x are calculated. These sample values
are used to estimate the corresponding true population values.

X ⇡ x̄ = Ân
i=1 xi

n
(3)

s2
x =

Ân
i=1(xi � x̄)

n�1
(4)

s2 ⇡ (N �1)s2
x

N
(5)

fr
e
q

u
e
n

cy

sample mean 

sampling 

distribution

!"#$%&'#!'()'*')

Fig. 1: Theoretical Sampling Distribution

Population parameter estimates depend entirely on which
sample, out of all possible samples, was selected in the
experiment. To address this, statistical procedures have been
developed to judge the quality of an estimated parameter.

Suppose the mean for each possible sample of size n of our
population (totaling N!

n!(N�n)! possible samples) was calculated

and plotted as a histogram (Figure 1). The distribution of
these sample means (sampling distribution) has a variance
Var(x̄) (sampling variance) and a mean (sampling mean) that
is equivalent1 to X .

Like s2, directly computing Var(x̄) is too expensive but can
be accurately estimated.2

Var(x̄)⇡ s2
x(N �n)

Nn
(6)

Once an estimator and its estimated accuracy have been
computed, we can use normal theory to obtain approximate
confidence intervals under a given confidence level (1�a)
for the unknown parameter being estimated. The constant
z1�(a/2) is the 100[1 � (a/2)]th percentile of the standard
normal distribution.

x̄± z1�(a/2)
p

Var(x̄) (7)

A confidence interval interpretation is if n elements are
sampled from a population repeatedly, with a given sampling
strategy, 100[1�(a/2)]% of each sample’s confidence interval
would include the true (but unknown) population parameter.

A critical assumption of confidence intervals is of normality,
or that the sampling distribution is Gaussian in shape. Fortu-
nately, the central limit theorem of statistics guarantees that
for large enough sample sizes (n > 30), sampling distributions
tend to be normal, regardless of the underlying distribution of
the element characteristics in the sample.3

In other words, given random sampling, enough sam-
ples, and no measurement error, calculated confidence
intervals are always representative of the accuracy of an
estimator.

To determine the minimum sample size, the previous equa-
tions can be analyzed to derive the following approximate rela-
tionship, where e represents the maximum relative difference
allowed between the estimated parameter and the unknown
true population parameter.

n � max
⇢⇣ z2

1�(a/2)s
2
x

e2x̄2

⌘
,30

�
(8)

By using this equation, we can validate whether our sample
size was large enough to give adequate accuracy.

B. Methodology Overview
Our sample-based RTL energy simulation methodology

quickly and accurately estimates both performance and power
of long running applications on arbitrary hardware designs.
This methodology obtains random sample points from a fast
simulator and replays them on a slow but detailed simulator.
Figure 2 shows the basic idea behind our methodology.

1Assuming no measurement error, which is a valid assumption given our
simulation technique.

2This estimation again assumes no measurement error, as well as a sample
size greater than 30.

3This guarantee of normality is only for linear estimators (e.g. a mean
estimator).



 Full Program Execution (hundreds of billion cycles)

 Replayed RTL Snapshots (L = a few thousand cycles)

... ...

S1 ...

Random Sampling

S2 S3 S4 S5 S6 S30S29

Cycle selected to create a replayable RTL snapshot.

A replayable RTL snapshot containing all register state 

and I/O traces over the replay length
S#

A replayed RTL snapshot on slow power simulator

Full RTL simulation running on fast simulator

Fig. 2: Sample-Based Energy Simulation Methodology

First, a design’s performance is evaluated by an accelerated
full-system RTL simulation, during which a set of replayable
RTL snapshots is obtained. A replayable RTL snapshot, at
cycle c, of a given replay length L, consists of all information
necessary to replay from c to c + L on a very slow but
extremely detailed gate-level simulation. More specifically, a
replayable RTL snapshot contains all RTL state at cycle c
and a trace of all I/O signals of length L starting at cycle c.
As an optimization, the I/O traces of a given replayable RTL
snapshot are read out from the simulation only when the next
replayable RTL snapshot is picked.

We can obtain the best statistical properties when the re-
playable RTL snapshots are randomly captured over the course
of the program’s execution (Section III-A). Since knowing
the length of a full program execution is impossible a priori,
we employ reservoir sampling [44] to address this problem.
With this algorithm and a desired sample size n, the first
n replayable RTL snapshots are recorded with the sample
size. The kth element where k > n is recorded with the
probability of n/k, and then randomly replacing one of the
existing replayable RTL snapshots. Note that the probability
of selection decreases with longer execution, thus diminishing
the sampling overhead. At the end of the program execution,
we have n replayable RTL snapshots that were selected at
random, without replacement. As seen in V-B, the simulation
time of very long-running applications with sampling is very
close to the simulation time without sampling.

In order to replay each replayable RTL snapshot, the RTL
state is loaded into the detailed simulator. For each cycle in
the replay, the inputs from the I/O trace are fed to the input of
the target design, and outputs are verified against the output
values of the design. Note that unlike the previous simulation
sampling techniques [35], [13], [36], there is no state warming
problem due to the exactness of the replayable RTL snapshot.
In addition, all replayable RTL snapshots are independent, so
we can parallelize their replays on multiple instances of the
detailed simulator.

To estimate power, the detailed simulator is a gate-level
simulation of the given RTL design. The simulation computes
the signal activities of the gate-level design, accounting for
detailed timing from floorplanning, placement and routing. An
industrial power analysis tool computes the power of each

replayable RTL snapshot from the detailed signal activities.
By aggregating the power of all replayable RTL snapshots, we
can predict the average power and corresponding confidence
interval of a full execution of benchmarks. In general, the
derived confidence intervals are very small with a small
number of replayable RTL snapshots and 99.9% confidence,
regardless of the length of simulation.

IV. THE STROBER FRAMEWORK

In this section, we describe the Strober framework, our im-
plementation of the sampling-based energy-modeling method-
ology for Chisel RTL designs. In Section IV-A, we briefly
introduce Chisel. Next, in Section IV-B we explain how any
hardware design written in Chisel is automatically transformed
into a FAME1 simulator with simulation snapshot capture
capability. In Section IV-C, we explain how RTL snapshots are
replayed on gate-level simulation using commercial CAD tools
that are industry-standard and widely available to academics
through academic licensing programs. We also explain how to
estimate DRAM’s power consumption using activity counters
in Section IV-D. Lastly, a simple analytic performance model
for the Strober framework is introduced in Section IV-E.

A. Chisel
Chisel [16] is a hardware construction language embedded

in Scala [45] that helps hardware designers generate RTL
with various parameters by providing access to advanced
parameterization systems. Note that Chisel is not a high-
level synthesis tool; like Perl or Python scripts that modify or
generate Verilog [46], a designer uses Chisel’s host language
Scala to create and connect structural RTL components. Chisel
can also generate fast C emulators and high-level simulation
interfaces for a design.

Most importantly, Chisel’s backend provides an intermedi-
ate representation that can be manipulated by custom trans-
forms. Our toolchain includes custom transforms and platform-
specific hardware generators that automatically convert Chisel
designs to FPGA simulators, as explained in Section IV-B.

B. FPGA RTL Simulation
Manually writing accurate and fast FPGA simulators is very

difficult and tedious. Instead, Strober automatically transforms
the RTL design into a FAME1 simulator that can be mapped



RAM

Address 
Generation

RAM

FAME1 
Transform

Add Register 
Scan Chains

Add RAM Scan 
Chains

Mux

Token

Communication 
Channel

Module Port

Module 
containing 
comb. logic

Register

RAM SRAM/BRAM

Fig. 3: Transform from RTL Designs to FPGA RTL Simulators

C
h

is
e
l 

B
ac

k
e
n

d

Strober FPGA Simulator

C
h

is
e
l 

F
ro

n
te

n
d

Scan Chain Insertion

Simulation Metadata Dump

Channel Wrapping

FAME1 Transform

Platform Mapping

Chisel RTL

Fig. 4: Flow to Generate FPGA Simulators

onto an FPGA. Figure 4 shows the tool flow to automatically
generate FPGA RTL simulators. The following subsections
describe the strategies and techniques required to enable this
automatic transformation.

1) Simulation Mapping: Strober creates a FAME1 simu-
lator [17] from a given hardware design, similar to token-
based timing simulators manually implemented in previous
work [47], [48], [49], [50], [51]. Note that these simulators
are instances of synchronous dataflow [52].

Figure 3 depicts an automatic FAME1 transformation on
an arbitrary RTL design to generate a token-based simulator
of that design. Communication channels wrap a simulation
module to buffer timing tokens from other simulation modules.
A globally enabled mux is also added before each register
allowing it to capture its own output, thus enabling the
entire simulation module to stall when the global enable is
not set. A running simulation module will stall if the input
buffer is empty or the output buffer is full. When all input
timing tokens are ready for a given cycle and output buffer
space is available for all output timing tokens, a simulation
module fires, consuming input tokens, simulating one cycle,
and generating output tokens.

This FAME1 transformation allows simulation modules to
run decoupled, which is an important optimization when not

all components can be hosted on a single FPGA. In our case
studies discussed in Section V-A, the main memory and I/O
devices are mapped to the host platform memory and the
software components respectively, while the RTL designs are
mapped to the FPGA fabric.

The Strober framework flow, described in Figure 4, contains
this FAME1 transformation implemented in compiler passes
as well as libraries written in Chisel. Channel wrapping,
implemented as a Chisel library, systematically generates com-
munication channels for all I/O ports in a simulation module,
connecting them properly. This process also adds I/O trace
buffers for each channel for I/O recording, which is required
for replayable RTL snapshots (Section IV-B2). To complete
FAME1 transforms, a global enable signal is connected by
traversing all state elements in the Chisel backend.

2) State Snapshotting using Scan Chains: The sample-
based energy simulation methodology described in Section III
requires that replayable RTL snapshots are captured during
the FPGA simulation. These replayable snapshots include all
register and SRAM values, which can be a large amount of
data in complex designs. This constraint requires 1) an efficient
implementation to read a large amount of data from an FPGA,
and 2) a systematic and automatic approach to transform
an arbitrary design. Strober adds scan chains in the Chisel
backend (Figure 4) to meet these requirements.

Figure 3 shows a basic scan chain to read the values from
registers. Immediately after the simulation stalls to create the
replayable RTL snapshot, the scan chain registers capture the
RTL state in the scan chain. All register state can then be read
via the scan chain.

Due to RAMs’ large capacity, basic scan chains cannot be
used. Moreover, we cannot change the number of RAMs’ ports
since they need to be mapped to Block RAMs on an FPGA.
To address this issue, Strober adds special scan chains for
RAMs (Figure 3). When the simulation stalls, the scan chain
generates the address to be read, and copies the data from
the read port. After all the data in the scan chain is read out,
the scan chain generates the next address, and copies the data
again. This process repeats until all necessary data is read out.

3) Platform Mapping: To enable a design to be mapped to
many different FPGA products, the Strober framework has a



Chisel RTL

Chisel Verilog Backend 

Verilog RTL

Matching Points  Samples

FPGA Simulation

Post-layout Design

Verification Tool
(Formality ® J-2014.09-SP4)

Gate-level Simulation
(VCS ® H-2013.06)

Signal Activities

Power Analysis Tool
(PrimeTime ® PX J-2014.12-SP2)

Average Power

Logic Synthesis Tool
(Design Compiler ® J-2014.09-SP4)

Placement and Route Tool
(IC Compiler ™ J-2014.09-SP4)

Fig. 5: Sample Replay Flow

platform-mapping transformation that automatically generates
the correct interface for a specific FPGA platform. This
transformation (Figure 4) generates a wrapper to convert
platform-specific data to simulation timing tokens, as well
as assigns addresses for the communication channels and
scan chain outputs. Simulation meta data for the simulation
software driver is also dumped in the custom transformation.
We currently support Xilinx Zynq boards for the host platform
but plan to support more platforms in the future.

C. Replaying on Gate-level Simulation

The FPGA RTL simulators generated by the Strober frame-
work provide cycle-exact performance estimates, but the re-
playable RTL snapshots must be simulated on a gate-level
simulator to compute average power. Figure 5 shows the tool
flow to replay samples on gate-level simulation. The Chisel
Verilog backend generates Verilog RTL from Chisel RTL for
the ASIC tool flow. Next, a synthesis tool4 and place-and-route
tool5 produce the gate-level netlist and the post-layout design,
respectively. Gate-level simulation 6, with very detailed timing,
simulates the post-layout design to compute signal activities.

Replayable RTL snapshots are obtained from the Strober-
generated FPGA RTL simulator, as explained in Section IV-B.
The RTL state is loaded into the gate-level simulation, and
the input traces are fed to the inputs of the design. Moreover,
the output values of the design are compared with the output
traces, which ensures samples are replayed correctly. Samples

4For synthesis, we used Design Compiler R� J-2014.09-SP4.
5For place-and-route, we used IC Compiler TM J-2014.09-SP4.
6For gate-level simulation, we used VCS R� H-2013.06.

are independent of one another, so we can replay them on
multiple instances of gate-level simulation in parallel.

The generated signal activities are consumed by the power
analysis tool7 to estimate total power consumption for that
replayable RTL snapshot. By calculating the mean of each
power result, we can obtain the average power of all replayable
RTL snapshots. As explained in Section III-A, this average
is an accurate estimation of the total application’s power
consumption on the given RTL design.

However, there are three key challenges to replay samples
on gate-level simulation, addressed in the following subsec-
tions.

1) Signal Name Mangling in the Gate-level Netlist: One
difficulty in initializing the RTL state is that register signal
names are mangled by the optimizations performed by CAD
tools. Because we cannot use the RTL signal names to load the
state snapshots on gate-level simulation, we use a commercial
formal verification tool8 to match nodes between RTL designs
and gate-level netlists (Figure 5).

The synthesis tool generates information about optimiza-
tions applied to a designs to help formal verification. By
using this information, the formal verification tool first finds
the matching points between RTL and the gate-level design
(including registers) and then verifies the equality of the
two designs. The matching results of this tool enable us to
construct a name mapping table and translate FPGA RTL
names into gate-level netlist names.

2) State Snapshot Loading on Gate-level Simulation: To
load the register values into the gate-level simulation, we orig-
inally translated the values into scripts that were read by our
commercial Verilog simulator. Unfortunately, this simulator
could only execute 400 commands per second, which for a
design of 35k flip-flops with 30 replayable RTL snapshots
takes 40 minutes to load. While this is unacceptably slow for
Strober’s framework, writing a customized testbench for each
design configuration is very cumbersome and error-prone.

We address this issue by writing a custom state snap-
shot loader that uses the Verilog Programming Language
Interface [53]. The commercial Verilog simulators are com-
piled with this loader, which handles the snapshot loading
commands efficiently. With this implementation, gate-level
simulation can handle 20000 commands per second, reducing
runtime to only 54 seconds for 30 samples with the example
in-order processor.

3) Register Retiming: Another big challenge in loading
state snapshots is handling register retiming. Register retiming
is a technique to move datapath registers, reducing the critical
path, area, or both [54]. For example, RTL designers often de-
pend on this technique for writing floating-point units (FPUs),
relying on CAD tools to automatically balance the stages in a
datapath pipeline. Unfortunately, we cannot easily reconstruct
the values of retimed registers from the RTL state snapshot.

7For power analysis, we used PrimeTime R� PX J-2014.12-SP2.
8For formal verification, we used Formality R� J-2014.09-SP4. Again, all

commercial CAD tools used are industry-standard and widely available to
academics through academic licensing programs.



Instead, we can capture the I/O values of the retimed
datapath. First, note the retimed datapaths are annotated by
the designers with the desired latency. For the n-cycle-latency
datapath, a custom transform adds shift registers which capture
the I/O values for the last n cycles (and the corresponding scan
chains). The I/O signals of the retimed datapaths are forced
externally in the simulation for n cycles before loading the
snapshots to recover their internal state. By starting replays at
this point, we can simulate each sample snapshot with fully-
recovered state.

D. DRAM Power Estimation
DRAM power consumption is affected by the DRAM’s

internal operations (which can be triggered by memory ac-
cess requests) and its internal state. For example, DRAM’s
internal read and write operations trigger data transfer through
DRAM’s I/O bus, causing dynamic power consumption. How-
ever, knowing the physical address mapping, the DRAM
controller’s policies, and all memory access requests is enough
to predict any given DRAM’s internal operations, and thus
predict its power consumption. As in the experimental settings
specified in Kim et al. [55], we use Micron’s LPDDR2
SDRAM S4 [56] with eight banks, and 16K (16⇥1024) rows
for each bank. We assume a bank-interleaved memory map-
ping where adjacent memory addresses are distributed across
different banks. Finally, we assume an open-page policy, where
DRAM banks are kept active after a row access.

To capture the DRAM memory requests, we attach counters
to the memory request output ports. Using the known memory
mapping, the physical address of each memory request is
translated into the bank number and the row number. The
previously accessed row and bank numbers are stored with
the counter data to enable determining whether the row
activation operation will occur. From the counter values, we
know the number of read/write operations and the number of
row activation operations. With this information and DRAM
configurations, the DRAM power can be calculated using a
spreadsheet power calculator provided by Micron [57].

E. Simulation Performance Model
To demonstrate the opportunity for significant speedup over

the existing CAD tools, we present a simple analytic perfor-
mance model of the Strober framework in this section. To
estimate the overall time, we should consider (1) the synthesis
time for the FPGA simulator, (2) the FPGA simulation time,
(3) the ASIC tool chain time (logic synthesis, placement,
routing, and formal verification), and (4) the replay time for
sample snapshots. Note that (3) is independent from (1) and
(2), so the overall time is expressed as follows:

Toverall = max(TFPGAsyn +TFPGAsim,TASIC)+Treplay

The ASIC tool chain time, TASIC, tends to be long for
complex designs. However, we run very long-running ap-
plication on the FPGA simulator, thus resulting in TASIC <
TFPGAsyn +TFPGAsim. In this paper, the synthesis time for the
FPGA simulator, TFPGA syn, can be up to one hour with a

two-way out-of-order processor while TASIC is around three or
four hours. Also note that TFPGAsyn ⌧ TFPGAsim for real-world
long-running applications.

To estimate TFPGAsim, assume the FPGA simulation runs
at Kf Hz. Let N and L be the total simulation cycles and
the replay length respectively. Reservoir sampling [44] ensures
that the number of elements recorded during the simulation is
roughly 2nln((N/L)/n))) with the sample size n. The FPGA
simulation time, TFPGAsim, is therefore:

TFPGAsim = Trun +Tsample ⇡ N/Kf +Trec ⇥2nln(N/nL))

where Trun, Tsample, Trec are the simulation running time,
the total sampling time, and the time to read out a single
replayable RTL snapshot, respectively.

Treplay is decomposed into (1) the snapshot loading time, (2)
the snapshot replay time, and (3) the power analysis tool time.
The snapshot loading time is considered because it can be very
slow without a proper implementation (Section IV-C2). For the
snapshot replay time, suppose the gate-level simulation runs
at Kg Hz. In addition, only L cycles are replayed for each
sample snapshot. We provide the switching activity interface
format (SAIF) files to the power analysis tool for the average
power of each sample snapshot, and thus, the power analysis
time is independent of the length of each sample snapshot.
Lastly, as explained in Section III, each replays in the sample
are independent and can be parallelized. Therefore, assuming
P instances of gate-level simulation, the total replay time is:

Treplay =
n⇥ (Tload +(L/Kg)+Tpower)

P
where Tload is the time to load each RTL state into the gate-
level simulation, and Tpower is the time to run the power
analysis tool for a single sample snapshot.

For the example two-way out-of-order processor used in
this paper, the FPGA synthesis time with Strober was around
one hour9, the FPGA simulation runs at 3.6 MHz, and the
gate-level simulation runs at 12 Hz. In addition, the recording
time per replayable RTL snapshot is 1.3 seconds, the sample
loading time on gate-level simulation is 3 seconds, and the
time for power analysis10 is around two and a half minutes.
Suppose we simulate a benchmark whose execution length is
100 billion cycles on the two-way out-of-order, has a sample
of 100 replayable RTL snapshots (with replay length of 1000
cycles), on 10 instances of gate-level simulation. Plugging
these numbers to the equations, we can calculate the overall
simulation time:

TFPGAsyn = 3600 s

Trun =
1011cycles

3.6⇥106Hz
= 27778 s

Tsample = 1.3⇥100⇥2⇥ ln(
1011

100⇥103 )) = 3592 s

Treplay =
100⇥ (103cycles/12Hz+150)

10
= 2333 s

9For FPGA synthesis, we used Vivado R� 2014.4.
10For power analysis, we again used PrimeTime R� PX J-2014.12-SP2.



RegFile

ICache

Uncore

LSU

Rename
Table

FPU

ROB

Free List

Issue 
Window

Branch 
PredictorALUs

Fetch 
Buffer

DCache

DCache
Control

IDIVIMUL Busy 
Table

Bypasses

Fig. 6: Floorplan of BOOM-2w

Thus, Toverall = Trun+Tsample+Treplay = 33703 seconds or 9.4
hours. Note that it will take 1011cycles/300KHz = 3.86 days
even on fast microarchitectural software simulators and
1011cycles/12Hz = 264 years on gate-level simulation!

V. EVALUATION

A. Target Designs

Rocket BOOM-1w BOOM-2w
Fetch-width 1 1 2
Issue-width 1 1 2
Issue slots - 12 16
ROB size - 24 32

Ld/St entries - 8/8 8/8
Physical registers 32(int)/32(fp) 100 110

L1 I$ and D$ 16KiB/16KiB 16KiB/16KiB 16KiB/16KiB
DRAM latency 100 cycles 100 cycles 100 cycles

TABLE II: Processor Parameters

To demonstrate Strober’s ability to augment arbitrary Chisel
RTL, we evaluated two different synthesizable open-source
cores, both which leverage the open-source Rocket-Chip SoC
generator [18]. The first core is Rocket, a 5-stage single-issue
in-order core. The second core is BOOM, a parameterized, su-
perscalar out-of-order core [19]. Both cores implement the full
64-bit scalar RISC-V ISA, which includes support for atomics,
IEEE 754-2008 floating-point, and page-based virtual memory.
Note that the Strober framework is built upon commercial
CAD tools, which report accurate timing and area for RTL
designs. Figure 6 shows a sample floorplan of the two-way
superscalar out-of-order processor. We synthesize and place-
and-route the designs in TSMC 45nm. For this evaluation,
both cores were simulated at 1 GHz frequency, however silicon
implementations of Rocket have been demonstrated to reach
1.3 GHz [58] and 1.65 GHz [59] in an IBM 45nm SOI
technology.

Fig. 7: DRAM Timing Model Validation. A pointer-chase
through increasing sizes of arrays demonstrates the load-to-
load latency of different levels of the memory hierarchy. By
varying the simulated DRAM latencies for the Rocket-chip
processor, a change in the off-chip latency can be observed.

B. Simulation Performance

LinuxBoot Coremark gcc
Simulation Cycles (109) 0.5 3.92 73.39

Record Counts 980 1116 1497
Simulation Time 12.88 32.80 344.00with Sampling (min)
Simulation Time 3.68 11.00 312.25without Sampling (min)

TABLE III: Simulation Performance Evaluation for Each
Benchmark on the Two-way BOOM Processor

For Rocket Chip target systems running under Strober,
target I/O devices are mapped to software on the host CPU,
not the FPGA, causing a communication overhead that stalls
the simulator every 256 cycles. The target simulator is also
stalled while capturing a replayable RTL snapshot.

Table III shows the performance evaluation of Strober
with the two-way BOOM processor running long benchmarks
showed in VI-A. The record counts, the number of sample
recording during each simulation run, only moderately in-
creases as explained by reservoir sampling. Therefore, the
sampling overhead is very small for long-running simulations.

For the gcc runs of 70 billion cycles, Strober achieved a
simulation speed of around 3.56 MHz. For comparison, the
unmodified Rocket and BOOM cores both can be synthesized
at 50 MHz on the same zc706 FPGA.

C. DRAM Timing Model Validation

One of the significant challenges of simulating RTL designs
on FPGAs is properly modeling the interfaces to the outside
environment. In simulating the processor designs discussed in
Section V-A, the DRAM behavior must be properly modeled.
Figure 7 demonstrates Strober’s ability to modify the simulated
DRAM latency. Repeated measurements of a pointer-chase
benchmark [60] is used to measure the L1-cache size and
memory access latencies to the L1 cache and off-chip DRAM.



0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

vvadd towers dhrystone qsort spmv dgemm

Er
ro

r

Theoretical Error Bound (99% Confidence) Actual Error

Fig. 8: Comparison for the Theoretical Error Bounds with the Actual Errors

Benchmark Simulated Cycles Replayed Cycles Coverage
vvadd 200521 30⇥128 1.92%
towers 410752 30⇥128 0.93%

dhrystone 396790 30⇥128 0.97%
qsort 187160 30⇥128 2.05%
spmv 927144 30⇥128 0.41%

dgemm 1833075 30⇥128 0.21%

TABLE IV: Simulated and Replayed Cycles for Each Bench-
mark on the Rocket Processor

D. Power Validation

To validate our Strober framework and the sample-based
RTL energy modeling methodology, we run the microbench-
marks included in the Rocket-Chip framework to completion
on a gate-level-simulation of Rocket. The switching activity
for the entire benchmark is used to calculate the actual average
power. Also, we obtain 30 random sample snapshots of 128
cycles from the FPGA simulation, and by replaying these, we
calculate the average power as well as their error bounds with
99% confidence. Then, we compare those error bounds over
the actual errors as in Figure 8. We repeated this process five
times for each benchmark.

Note that even though the samples cover only less than 2.1%
of the cycles as shown in Table IV, the errors tend to be very
small. Moreover, in most cases, the actual errors are within
the error bounds computed from the samples. This also shows
that the errors are independent of the length of execution.
While the third sampling of towers, and the third of qsort
are slightly outside their error bounds, this result is somewhat
expected due to the probabilistic nature of statistical sampling.
Nevertheless, their actual errors are still very small, less than
2%.

VI. CASE STUDY

A. Benchmarks

We chose three disparate workloads to demonstrate
Strober’s ability to measure target design performance, power,
and energy usage. The first is CoreMark, a benchmark de-
signed to stress processor pipelines [61]. The second workload
boots the RISC-V port of Linux on a small BusyBox disk im-
age, executes the uname and ls commands, and then powers
down. The third workload executes the SPECint benchmark
403.gcc[62] on Linux. For gcc, we execute the first 20B
instructions (or 20%) of the SPECint reference input workload
“gcc 166.in”.

B. Performance, Power, and Energy Analysis

Figure 9(a) compares the energy breakdown of the Rocket,
BOOM-1w, and BOOM-2w cores using 30 random sample
snapshots for each benchmark. The performance differences
between the cores is easiest to see when running CoreMark,
a small benchmark designed to fit in L1 caches and stress
processor’s integer pipelines. BOOM-1w is 9.8% faster than
Rocket, and BOOM-2w is 58% faster. However, BOOM-2w
uses 3⇥ the power, while Rocket is the most energy-efficient.

The other benchmarks use a much larger memory footprint
than CoreMark, as seen in the increased DRAM power us-
age. On Linux-boot, clock for clock, Rocket’s shorter branch
resolution latency allows it to outperform BOOM, which has
only a simple branch predictor in the version used in this case
study.

Details aside, this case study shows the validity of using
Strober as a basis for design-space exploration in architecture
research. With Strober, researchers now have the ability to
run real programs on RTL with a full evaluation of energy,
area, and performance. In addition, each sample snapshot
contains a timestamp, so by using performance counters we
can correlate performance and power at a specific point as
shown in Figure 10. Using this case study as an example, the



0

50

100

150

200

250

300

350

400

450

500

rocket boom 1-w boom 2-w rocket boom 1-w boom 2-w rocket boom 1-w boom 2-w

Coremark Linux Boot gcc

m
W

DRAM
Misc
Uncore
L1 D-cache control
L1 D-cache meta+data
L1 I-cache
ROB
FPU
LSU
Integer Unit
Issue Logic
Register File
Rename + Decode Logic
Fetch Unit

(a) Power Breakdown with Error Bounds using 30 Random Samples for Each Benchmark

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

0.5

1

1.5

2

2.5

3

3.5

4

rocket boom 1-w boom 2-w rocket boom 1-w boom 2-w rocket boom 1-w boom 2-w

Coremark Linux Boot gcc

EP
I(

nJ
/In

st
)

C
PI

CPI EPI(nJ)

(b) Performance and Energy Efficiency

Fig. 9: Case Studies for the Strober Framework using the Rocket and BOOM Processors

turn-around time for evaluating 70 billion cycles on BOOM-
2w is approximately 7 hours for a complete evaluation. We
believe this is fast enough to enable realtime feedback in the
RTL design loop.

VII. CONCLUSION

In this paper we presented a sample-based RTL energy
modeling methodology that captures replayable RTL snapshots
from a fast performance simulation and replays them on a
detailed power simulation. We showed the statistical robust-
ness of this methodology, including the ability to generate
confidence intervals for any power prediction.

Next, we introduced Strober, a framework for taking exist-
ing RTL designs written in the Chisel hardware construction

language, and generating a cycle-accurate, decoupled simu-
lator that can be executed on an FPGA. The instrumented
simulator can be used to not only measure the cycle-accurate
performance of the RTL design, but to generate random RTL
snapshots that can be replayed (in parallel) in a detailed gate-
level simulator. We also demonstrated significant theoretical
speedups using an analytical model for simulation perfor-
mance. While this work demonstrates using Chisel RTL, the
presented methodology is amenable to any hardware con-
struction language that provides a facility for developing new
hardware transformation passes.

We then validated our methodology and framework for sim-
ulation performance, and power accuracy. Finally, we demon-



Fig. 10: The CPI of the first 20B instructions (or 20%) of 403.gcc as executed on Rocket. The CPI is sampled every 100M
cycles by a separate user program running on Rocket. Grey vertical lines denote when a Strober snapshot was taken.

strated our framework by running three complex RTL designs
through our toolchain to obtain timing, area, performance, and
average power for a variety of benchmarks. These case studies
serve as an example of how Strober can not only provide
ground truth for building faster and more flexible abstract
power models, but can in and of itself be a tool for design-
space exploration at the RTL level.

Strober is open-source and freely available [63]. The com-
mercial CAD tools used in this paper are industry-standard,
and widely available to academics through academic licensing
programs.

ACKNOWLEDGEMENT

Research partially funded by DARPA Award Number
HR0011-12-2-0016; the Center for Future Architecture Re-
search, a member of STARnet, a Semiconductor Research
Corporation program sponsored by MARCO and DARPA; and
ASPIRE Lab industrial sponsors and affiliates Intel, Google,
HPE, Huawei, LGE, Nokia, NVIDIA, Oracle, and Samsung.

REFERENCES

[1] B. Zimmer, Y. Lee, A. Puggelli, J. Kwak, R. Jevtic, B. Keller, S. Bailey,
M. Blagojevic, P.-F. Chiu, H.-P. Le, P.-H. Chen, N. Sutardja, R. Avizie-
nis, A. Waterman, B. Richards, P. Flatresse, E. Alon, K. Asanović,
and B. Nikolic, “A RISC-V vector processor with tightly-integrated
switched-capacitor DC-DC converters in 28nm FDSOI,” in VLSI, 2015.

[2] E. Rotenberg, B. H. Dwiel, E. Forbes, Z. Zhang, R. Widialaksono,
R. Basu Roy Chowdhury, N. Tshibangu, S. Lipa, W. R. Davis, and
P. D. Franzon, “Rationale for a 3D heterogeneous multi-core processor,”
in ICCD, 2013.

[3] P. Pannuto, Y. Lee, Y.-s. Kuo, Z. Foo, B. Kempke, G. Kim, R. G.
Dreslinski, D. Blaauw, and P. Dutta, “MBus : An Ultra-Low Power
Interconnect Bus for Next Generation Nanopower Systems,” in ISCA,
2015.

[4] X. Zhang, M. Lok, T. Tong, S. Chaput, S. K. Lee, B. Reagen, H. Lee,
D. Brooks, and G.-y. Wei, “A Multi-Chip System Optimized for Insect-
Scale Flapping-Wing Robots,” in VLSI, 2015.

[5] J. Balkind, M. Mckeown, Y. Fu, T. Nguyen, S. Payne, X. Liang, M. Matl,
and D. Wentzlaff, “OpenPiton : An Open Source Manycore Research
Framework,” in ASPLOS, 2016.

[6] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” in ISCA, 2000.

[7] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye,
“Energy-driven integrated hardware-software optimizations using Sim-
plePower,” in ISCA, 2000.

[8] S. Li, J. H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“McPAT: An integrated power, area, and timing modeling framework
for multicore and manycore architectures,” in MICRO, 2009.

[9] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “GPUWattch: enabling energy optimizations
in GPGPUs,” in ISCA, 2013.

[10] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A pre-RTL,
power-performance accelerator simulator enabling large design space
exploration of customized architectures,” in ISCA, 2014.

[11] N. Binkert, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill, D. A. Wood, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, and T. Krishna, “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, Aug
2011.

[12] A. Patel, F. Afram, and S. Chen, “MARSSx86: A full system simulator
for x86 CPUs,” in DAC, 2011.

[13] T. F. T. Wenisch, R. R. E. R. Wunderlich, M. Ferdman, A. Ailamaki,
B. Falsafi, and J. C. J. Hoe, “SimFlex: Statistical Sampling of Computer
System Simulation,” IEEE Micro, vol. 26, pp. 18–31, Jul 2006.

[14] N. K. Choudhary, S. V. Wadhavkar, T. A. Shah, H. Mayukh, J. Gandhi,
B. H. Dwiel, S. Navada, H. H. Najaf-abadi, and E. Rotenberg, “Fab-
Scalar: composing synthesizable RTL designs of arbitrary cores within
a canonical superscalar template,” in ISCA, 2011.

[15] D. Voitsechov and Y. Etsion, “Single-Graph Multiple Flows : Energy
Efficient Design Alternative for GPGPUs,” in ISCA, 2014.

[16] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: constructing hardware in a
scala embedded language,” in Proceedings of the 49th Annual Design
Automation Conference, pp. 1216–1225, ACM, 2012.

[17] Z. Tan, A. Waterman, H. Cook, S. Bird, K. Asanović, D. Patterson, and
D. P. Zhangxi Tan, Andrew Waterman, Henry Cook, Sarah Bird, Krste
Asanović, “A Case for FAME: FPGA Architecture Model Execution,”
in ISCA, 2010.

[18] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar,
B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas, A. Magyar,



H. Mao, M. Moreto, A. Ou, D. A. Patterson, B. Richards, C. Schmidt,
S. Twigg, H. Vo, and A. Waterman, “The Rocket Chip Generator,” Tech.
Rep. UCB/EECS-2016-17, EECS Department, University of California,
Berkeley, Apr 2016.

[19] C. Celio, D. A. Patterson, and K. Asanović, “The Berkeley Out-
of-Order Machine (BOOM): An Industry-Competitive, Synthesizable,
Parameterized RISC-V Processor,” Tech. Rep. UCB/EECS-2015-167,
EECS Department, University of California, Berkeley, Jun 2015.

[20] F. Bellosa, “The benefits of event: driven energy accounting in power-
sensitive systems,” in The 9th ACM SIGOPS European workshop, 2000.

[21] T. Li and L. K. John, “Run-time modeling and estimation of operating
system power consumption,” in SIGMETRICS, 2003.

[22] C. Isci and M. Martonosi, “Runtime power monitoring in high-end
processors: Methodology and empirical data,” in MICRO, 2003.

[23] W. Bircher, M. Valluri, J. Law, and L. John, “Runtime identification of
microprocessor energy saving opportunities,” in ISLPED, 2005.

[24] W. L. Bircher and L. K. John, “Complete System Power Estimation:
A Trickle-Down Approach Based on Performance Events,” in ISPASS,
2007.

[25] R. Bertran, M. Gonzelez, X. Martorell, N. Navarro, and E. Ayguade,
“A Systematic Methodology to Generate Decomposable and Responsive
Power Models for CMPs,” IEEE Transactions on Computers, vol. 62,
pp. 1289–1302, Jul 2013.

[26] H. Shafi, P. J. Bohrer, J. Phelan, C. A. Rusu, and J. L. Peterson, “Design
and validation of a performance and power simulator for PowerPC
systems,” IBM Journal of Research and Development, vol. 47, no. 5.6,
pp. 641–651, 2003.

[27] F. J. Mesa-Martinez, J. Nayfach-Battilana, and J. Renau, “Power model
validation through thermal measurements,” 2007.

[28] S. L. Xi, H. Jacobson, P. Bose, G.-Y. Wei, and D. Brooks, “Quantifying
sources of error in McPAT and potential impacts on architectural
studies,” in HPCA, 2015.

[29] H. Jacobson, A. Buyuktosunoglu, P. Bose, E. Acar, and R. Eickemeyer,
“Abstraction and microarchitecture scaling in early-stage power model-
ing,” in HPCA, 2011.

[30] D. Sunwoo, G. Y. Wu, N. a. Patil, and D. Chiou, “PrEsto: An FPGA-
accelerated Power Estimation Methodology for Complex Systems,” in
FPGA, 2010.

[31] A. Bhattacharjee, G. Contreras, and M. Martonosi, “Full-system chip
multiprocessor power evaluations using FPGA-based emulation,” in
ISLPED, 2008.

[32] J. Coburn, S. Ravi, and A. Raghunathan, “Power emulation: A new
paradigm for power estimation,” in DAC, 2005.

[33] M. A. M. Ghodrat, K. Lahiri, and A. Raghunathan, “Accelerating
system-on-chip power analysis using hybrid power estimation,” in DAC,
2007.

[34] D. Atienza, P. G. Del Valle, G. Paci, F. Poletti, L. Benini, G. De Micheli,
and J. M. Mendias, “A fast HW/SW FPGA-based thermal emulation
framework for multi-processor system-on-chip,” in DAC, 2006.

[35] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe, “SMARTS: accel-
erating microarchitecture simulation via rigorous statistical sampling,”
ISCA, 2003.

[36] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “Statis-
tical sampling of microarchitecture simulation,” ACM Transactions on
Modeling and Computer Simulation, vol. 16, pp. 197–224, Jul 2006.

[37] E. K. Ardestani and J. Renau, “ESESC: A Fast Multicore Simulator
Using Time-Based Sampling,” in HPCA, 2013.

[38] S. Hassani, G. Southern, and J. Renau, “LiveSim : Going Live with
Microarchitecture Simulation,” in HPCA, 2016.

[39] E. S. Chung, M. K. Papamichael, E. Nurvitadhi, J. C. Hoe, K. Mai, and
B. Falsafi, “PROTOFLEX: Towards Scalable, Full-System Multiproces-
sor Simulations Using FPGAs,” ACM Transactions on Reconfigurable
Technology and Systems, vol. 2, pp. 1–32, Jun 2009.

[40] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. Reinhart, D. E. Johnson,
J. Keefe, and H. Angepat, “FPGA-Accelerated Simulation Technologies
(FAST): Fast, Full-System, Cycle-Accurate Simulators,” in MICRO,
2007.

[41] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook, D. Patterson, and
K. Asanović, “RAMP Gold: An FPGA-based Architecture Simulator for
Multiprocessors,” in DAC, 2010.

[42] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer, “HAsim:
FPGA-based high-detail multicore simulation using time-division mul-
tiplexing,” in HPCA, 2011.

[43] Z. Tan, Z. Qian, X. Chen, K. Asanović, and D. Patterson, “DIABLO:
A Warehouse-Scale Computer Network Simulator using FPGAs,” in
ASPLOS, 2015.

[44] J. S. Vitter, “Random sampling with a reservoir,” ACM Transactions on
Mathematical Software, vol. 11, pp. 37–57, Mar 1985.

[45] M. Odersky, S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman,
M. Zenger, and et al., “An overview of the Scala programming lan-
guage,” tech. rep., 2004.

[46] O. Shacham, M. Wachs, A. Danowitz, S. Galal, J. Brunhaver, W. Qadeer,
S. Sankaranarayanan, A. Vassiliev, S. Richardson, and M. Horowitz,
“Avoiding game over: Bringing Design to the Next Level,” DAC ’12,
2012.

[47] J. Emer, P. Ahuja, E. Borch, A. Klauser, S. Manne, S. Mukherjee,
H. Patil, S. Wallace, N. Binkert, R. Espasa, and T. Juan, “Asim: A
Performance Model Framework,” Computer, no. 2, pp. 68–76, 2002.

[48] G. Gibeling, A. Schultz, and K. Asanović, “The RAMP Architecture &
Description Language,” in The 2nd Workshop on Architecture Research
using FPGA Platforms, 2006.

[49] D. Chiou, W. H. Reinhart, and D. Eric Johnson, “The FAST methodol-
ogy for high-speed SoC/computer simulation,” in ICCAD, 2007.

[50] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, and J. Emer, “A-Port
Networks: Preserving the Timed Behavior of Synchronous Systems for
Modeling on FPGAs,” ACM Transactions on Reconfigurable Technology
and Systems, vol. 2, pp. 1–26, Sep 2009.

[51] A. Khan, M. Vijayaraghavan, S. Boyd-Wickizer, and Arvind, “Fast and
cycle-accurate modeling of a multicore processor,” in ISPASS, 2012.

[52] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of
the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[53] S. Sutherland, The Verilog PLI Handbook. The International Series
in Engineering and Computer Science, Kluwer Academic Publishers,
2nd ed., 2002.

[54] C. E. Leiserson and J. B. Saxe, “Optimizing synchronous systems,” in
22nd Annual Symposium on Foundations of Computer Science, 1981.

[55] H. Kim, D. Broman, E. A. Lee, M. Zimmer, A. Shrivastava, and J. Oh,
“A predictable and command-level priority-based DRAM controller for
mixed-criticality systems,” in RTAS, 2015.

[56] Micron Technology, “Micron mobile LPDDR2 SDRAM s4,” datasheet,
Micron Technology, Mar. 2012.

[57] Micron Technology, “Mobile LPDDR2 system-power calculator.”
http://www.micron.com/support/power-calc.

[58] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanovic,
and K. Asanović, “A 45nm 1.3 GHz 16.7 double-precision GFLOPS/W
RISC-V processor with vector accelerators,” in The 40th European Solid
State Circuits Conference (ESSCIRC), 2014.

[59] C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas,
A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, et al., “Single-
chip microprocessor that communicates directly using light,” Nature,
vol. 528, no. 7583, pp. 534–538, 2015.

[60] “The ccbench micro-benchmark collection.” https://github.com/ucb-
bar/ccbench/wiki.

[61] “CoreMark EEMBC Benchmark.” https://www.eembc.org/coremark/.
[62] “Cint2006.” https://www.spec.org/cpu2006/CINT2006/.
[63] “Strober.” http://www.strober.org, 2016.


