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Abstract

Multiported register files are a critical component
of high-performance superscalar microprocessors. Con-
ventional multiported structures can consume significant
power and die area. We examine the designs of banked mul-
tiported register files that employ multiple interleaved banks
of fewer ported register cells to reduce power and area.
Banked register files designs have been shown to provide
sufficient bandwidth for a superscalar machine, but previ-
ous designs had complex control structures that would likely
limit cycle time and add to design complexity. We develop
a banked register file with much simpler and faster control
logic while only slightly increasing the number of ports per
bank. We present area, delay, and energy numbers extracted
from layouts of the banked register file. For a four-issue su-
perscalar processor, we show that we can reduce area by
a factor of three, access time by 25%, and energy by 40%,
while decreasing IPC by less than 5%.

1 Introduction

Multiported register files and bypass networks lie at
the heart of a superscalar microprocessor core, providing
buffered communication of register values between pro-
ducer and consumer instructions. As issue widths increase,
both the number of ports and the number of registers re-
quired increase, causing the area of a conventional multi-
ported regfile to grow more than quadratically with issue
width [22]. The trend towards simultaneous multithreading
also increases register count as separate architectural regis-
ters are needed for each thread. For example, the proposed
eight-issue Alpha 21464 design had a regfile that occupied
over five times the area of the 64 KB primary data cache
[14].

Many techniques have been proposed to reduce the area,
energy, and delay of multiported register files. Some ap-
proaches split the microarchitecture into distributed clus-
ters, each containing a subset of the register file and func-

tional units [17, 12, 8, 11, 23, 16]. These schemes have the
potential to scale to larger issue widths but require complex
control logic to map instructions to clusters and to handle
inter-cluster dependencies. Alternatively, other approaches
retain a centralized microarchitecture, but divide the physi-
cal register file into interleaved banks with fewer ports per
bank [20, 2, 13]. Provided the number of simultaneous
accesses to any bank is less than the number of ports on
each bank, the structure can provide the aggregate band-
width needs of a superscalar machine with significantly re-
duced area compared to a fully multiported regfile. These
earlier banked schemes, however, require complex control
logic with pipeline stalls that would likely limit the cycle
time of a high-frequency design.

In this paper, we present a banked multiported register
file design together with a control scheme suitable for a
deeply pipelined high-frequency superscalar processor. Our
control scheme does not place any register bank arbitration
in the critical wakeup-select loop but instead speculatively
issues potentially conflicting instructions. If any conflicts
are found after issue, a pipelined recovery scheme quickly
repairs the issue window and reissues conflicting instruc-
tions. In contrast to previous work [20, 2, 13], all conflicts
are detected and resolved in one pipeline stage so that no
write buffering or pipeline stalls are required. An important
optimization is to avoid competing for register read ports
for operands that will be sourced by the bypass network.
We describe how we can conservatively compute a set of
operands that will be sourced by the bypass network using
the wakeup logic without adding to pipeline latency, and
while avoiding misprediction stalls caused by schemes that
optimistically predict which values will be bypassed [13].
To maintain acceptable performance, our scheme requires
more ports per bank than previous work. We show through
detailed circuit layouts, however, that for small banks with
small numbers of ports per bank, the overall regfile size
varies little with the bank port count due to the dominance
of the bank multiplexing overhead. For a four issue pro-
cessor we can reduce register file size by approximately a
factor of three while reducing IPC by under 5%. Regfile



access time is reduced by 25% and energy consumption is
reduced by around 40% compared to a unified multiported
structure.

The paper is structured as follows. We first describe our
scheme in detail in Section 2, including the pipeline struc-
ture and required control logic. We then present area, en-
ergy, and delay numbers from detailed circuit layouts in
Section 3, and performance simulation results in Section 4.
We discuss the relationship of our scheme to previous work
in Section 5, then conclude in Section 6.

2 Banked Regfile Design

First we consider the circuit structure of a banked multi-
ported register file then examine the pipeline control logic.

2.1 Register Bank Structure

Figure 1 shows one example of our register banking
scheme for a four-issue processor. The regfile provides a to-
tal of eight global read ports and four global write ports us-
ing four interleaved register banks, each with two local read
ports and two local write ports. Compared with a conven-
tional multiported structure, each word of register storage
has fewer ports and the storage cell size is reduced dramati-
cally. But now additional multiplexing circuitry is required
to connect the local port bitlines to the global port bitlines,
and there is the possibility of bank conflicts when too many
global ports attempt to read or write the same bank.

Each functional unit needs two global read ports, which
we term the left and right ports, to execute instructions with
two register source operands. We simplify the local-global
port crossbar by connecting one local port on each bank to
the global left operand busses, and the other to the global
right operand busses. This allows any instruction to get both
operands from the same bank in one cycle, but doesn’t al-
low the use of the local left ports to fetch global right port
operands. Apart from the reduction in mux circuitry, this
restriction simplifies port arbitration logic by cutting in half
the number of possible contendors for a local read port.

In contrast, the design presented in [2] employed banks
with a single read port. The single read port bank must con-
nect to all global ports, and hence requires the same com-
plexity of local-global crossbar as a dual read-port design
that connects each local port to half the global ports. As
shown below, there is little area saving for the single read
port design versus the split dual port design once the cost of
the local-global crossbar is included. Moreover, the single
read port bank requires considerably more complicated con-
trol logic to handle execution of an instruction that fetches
both operands from the same bank and the arbitration logic
to match instructions to register bank read port decoders is
twice as deep.
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Figure 1. An eight read, four write port regis-
ter file implemented using four two read, two
write port banks.

The design shown has two local write ports per bank.
Our results show that this is required to reduce the incidence
of write bank conflicts to an acceptable level for our spec-
ulative issue control scheme. Again, as shown below, the
area overhead of increasing the number of write ports from
one to two is minimal as a percentage of total regfile area.

Figure 1 also shows a portion of the bypass network for
single cycle latency functional units; multiple cycle units
such as load units will require additional bypass paths. Reg-
ister file writeback may require one or more cycles, in which
case additional bypass logic is required for results that have
completed but which are not yet available from the regis-
ter file. These delayed bypass paths are not latency critical
and can be supplied by an early stage mux that feeds into
the final latency critical mux stage [9]. We rely on values
sourced by the bypass network to reduce the required read
port bandwidth, but to reduce control complexity, we only
avoid contending for read ports for values bypassed from
the immediately preceding cycle.

Another important mechanism to reduce port contention
is read sharing. This allows multiple instructions to read the
same physical register from the same read port [2]. Read
sharing is implemented by allowing a single local read port
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Figure 2. Pipeline structures of processor with unified register file and processor with multibanked
register file. An additional cycle is added for multibanked register file for read port arbitration and
muxing. Read bank and write bank conflicts are also detected in this cycle.

to drive multiple global read ports.

2.2 Control Logic

A banked multiport register file can provide sufficient
bandwidth for a superscalar processor with less cost than
a flat design. The main challenge is devising control logic
that can handle the inevitable bank conflicts without com-
promising cycle time or adding excessive complexity.

Figure 2 shows the baseline processor pipeline design
for the flat register file structure and the modified processor
pipeline design for the banked register file structure. In-
structions are decoded and renamed then placed into an in-
struction window. Instructions wait in the instruction win-
dow until both operands are available. The instruction win-
dow pipeline stage contains the critical wakeup-select loop
[12], where the wakeup phase is used to update operand
readiness and the select phase picks a subset of the ready
instructions to issue. Once a single-cycle instruction is se-
lected, its result tag is immediately broadcast to the instruc-
tion window in the next wakeup phase to allow back-to-
back issue of dependent instructions, even though the se-
lected instruction will not produce its result for several cy-
cles.

The number of read ports required can be reduced sig-
nificantly if operands that will be sourced from the bypass
network do not also compete for access to the register file.
Determining which operands will be bypassed would at first
appear to require an additional sequential bypass check af-
ter issue but before port arbitration. To avoid this increase
in pipeline latency, the check can be folded into the wakeup
phase. Previous work has described an optimistic bypass
hint scheme [13] where an extra hint bit is added to each
operand of instructions waiting in the issue window. The
hint bit is cleared if the operand was ready before the in-
struction entered the issue window. If the operand becomes
ready while the instruction is in the window, the hint bit is
set. When the instruction is selected, this operand will not
contend for a read port as it is likely to be sourced from
the bypass network. The disadvantage with this scheme is
that it is only a prediction which can be incorrect, requiring

several additional repair cycles for recovery.

We instead adopt a conservative bypass bit scheme,
which is always correct. We store the bypass bit for each in-
struction window operand in a latch that is loaded with the
result of the wakeup tag match on every cycle. If an instruc-
tion is selected in the same cycle that a tag match caused it
to wake up, the bypass bit will be set indicating that the
value is available from the bypass network. If the instruc-
tion is not selected for issue, the bypass bit latch will be
cleared by the failing tag match on the next wakeup phase.
The bypass bit is conservative because it is only set for val-
ues that will be ready in the cycle before this instruction ex-
ecutes. Where there are several pipeline stages feeding the
bypass mux (e.g., when register file access takes multiple
cycles) this scheme will still compete for read ports even
though these operands will be sourced from later pipeline
stage bypasses. In practice, we find this lost opportunity
causes negligible performance impact. To reduce datap-
ath complexity, a microarchitecture might not support by-
pass from every functional unit. In this case, the wakeup
tag search can be modified to broadcast a signal indicating
whether the operand can be bypassed. This value can then
be latched into the bypass bit on a successful tag match.

Any register operand of an issued instruction which
doesn’t have the bypass bit set must contend for read ports.
A conventional pipeline has a fixed mapping of issued in-
struction operands to register file ports, but with a banked
scheme it is necessary to mux operand addresses into the
available register file ports. By splitting the read ports into
left and right sets, corresponding to the left and right reg-
ister operands, we halve the size of the arbiters and muxes
needed. An N-way superscalar needs only an N-way arbi-
tration and mux for the left operands, and a parallel N-way
arbitration and mux for the right operands. To further re-
duce port allocation delay, it is possible to move the register
address decode function ahead of the arbitration. Rather
than mux the encoded bank address into the decoders on
each local bank which places bank address decode in series
with arbitration, we can decode each operand address into
a unary word select in parallel with arbitration, then mux
the unary word selects into the bank word line drivers once
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Figure 3. Pipeline diagram showing repair operation after conflicts are detected. The wakeup tag
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the arbitration result is known. In this way, only the N-way
arbitration and mux are added to the pipeline latency. In
Figure 2 and in our evaluation, we allocate an extra pipeline
stage to this arbitration and mux, but we believe the actual
penalty would be much lower in practice.

The arbitration stage also detects read bank conflicts,
when too many read accesses try to access the left or right
side of a single bank. The method by which the pipeline
state is repaired after a conflict is shown in Figure 3. A
second group of instructions following the ones that en-
counter a conflict will have been speculatively issued into
the pipeline in parallel with detection of the conflict. This
second group is killed along with the instructions in the first
group that were not granted a read port. The wakeup phase
that would have been used to broadcast the tags of the sec-
ond group of instructions is now used to repair the issue
window by broadcasting the tags and reseting the ready and
issued bits for the destinations of the killed instructions in
the first group. Issue will now resume correctly in the se-
lect phase of this pipeline stage. This approach adds only
a mux into the tag broadcast path of the critical wakeup
phase. Previous work has either placed additional arbitra-
tion logic in the select path to avoid conflicts or required
that pipeline stages be stalled [20, 2, 13]. Both approaches
complicate critical timing loops [3]. Stalling in particular is
usually prohibited on high frequency pipeline designs due
to the difficulty of generating and routing a global stall sig-
nal to a large number of pipeline registers. Using reissue to
handle conflicts can potentially decrease the effective size
of the instruction window by requiring that instructions re-
main in the window until all possible reissue conditions
have passed. We assume the bank conflict replay time is
subsumed within the longer replay time required to handle
reissue on data cache load misses, so there is no change in
effective window size.

A common cause of read bank conflicts is when multiple
instructions in an issue group try to read the same physical
register [2]. The read port arbiter can detect this sharing

and remove the conflict by setting enable signals such that
a local port drives multiple global ports. Our register file
structure only allows sharing on either the left ports or the
right ports, and requires a second local port if a physical
register is read from both sides.

Write bank conflicts are also detected in the arbitration
stage of the pipeline, with the same pipeline repair mech-
anism used to recover from conflicts. All instructions that
pass the arbitration phase can write back with no conflicts.
This approach avoids register bank write buffers [2] which
increase the size of the bypass network and which require
pipeline stalls when buffers fill. It is also much simpler
than schemes that delay physical register allocation until
writeback to avoid conflicts [13]. The main disadvantage of
the approach proposed in this paper is that sufficient write
ports must be provided such that write bank conflicts do not
cause performance degradation. We found that increasing
the number of write ports to two per bank removed most
write bank conflicts, with only a small penalty in overall
register file area.

3 Register File Layouts

We have completed layouts of various sized banked reg-
ister files to determine their area, delay, and energy. These
were laid out in a 0.25�m CMOS process from TSMC.
The storage cells are a standard six transistor SRAM design,
with differential write ports and single-ended read ports.

Metal 1 is used for local bitlines within a bank and metal
2 for word lines. The local ports from each bank then con-
nect to the global bitlines running over the cells in metal
3. Most previous work has assumed that a large conven-
tional multiported register file would have each port on a
storage cell connected directly to the global bitline. With
more metal layers, it is desirable to employ a hierarchical
bitline structure, where each port on a cell connects to a lo-
cal bitline which in turn connects to the global bitline [1, 9].



64�32b, 8 read ports, 4 write ports
Area 8r4w 2r2w 2r1w 1r1w
1 banks 100.00% - - -
4 banks 110.95% 28.99% 24.29% 22.88%
8 banks 122.55% 37.06% 31.97% 30.19%
Packing 1 2 2 2

Table 1. Relative area of different multibanked
regfile designs in comparison to the unified
design. Packing is the number of local bit
cells packed per global bit column.

On each access, only one local bitline is connected to the
global bitline. The parasitic drain capacitances of the stor-
age cells in other banks are not driven, reducing delay and
energy dissipation. Another benefit is that signal-to-noise
ratio improves in the presence of leakage currents from off
cells [1]. Hierarchical bitlines will reduce the relative ad-
vantage of a multibanked design. To save area, we employ
a single-ended global write bitline which is converted to a
differential local bitline using a local inverter. To further
save area, we pack two local storage cells into one global
bit column where possible. This has the disadvantages that
a 2:1 column mux is required which adds area and delay,
and that twice as many local bitlines are discharged on each
access increasing energy usage.

Table 1 shows the relative area of a variety of 64�32-bit
8 read ports and 4 write ports multibanked register file de-
signs in comparison to a unified design and Figure 4 shows
the detailed area breakdowns. Figure 5 provides a graphical
comparison of the floorplan of a few representative register
file designs.

For the designs with 8 read ports and 4 write ports per
storage cell, moving to hierarchical bitlines adds area be-
cause of the interconnection overhead. An additional 11%
area overhead is needed for 4 local bitlines (16 words per
local bitline) and an additional 23% moving to 8 local bit-
lines (8 words per local bitline). Bank conflicts do not occur
in these designs.

As the number of local ports per bank is reduced, area
drops dramatically. Compared to the baseline design, the
designs with four banks are around one quarter the size, and
the designs with eight banks are around one third the size.
Apart from the reduction in storage cell size, designs with
smaller numbers of ports per bank have significantly less
address decoder area than the highly multiported designs.
Each bank has fewer decoders with narrower addresses. The
design with four banks, each with one read port, can not sus-
tain eight global read port accesses and relies on the bypass
network to supply the missing read operands.

Both Figure 4 and Figure 5 also show that multiplexing
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64�32b, 8 read ports, 4 write ports

Delay 8r4w 2r2w 2r1w 1r1w
1 bank 100.00% - - -
4 bank 92.38% 79.05% 79.05% 81.90%
8 bank 83.33% 74.76% 74.76% 77.14%

Energy 8r4w 2r2w 2r1w 1r1w
1 bank 100.00% - - -
4 bank 61.98% 57.93% 56.90% 40.54%
8 bank 61.41% 58.62% 57.55% 40.71%

Table 2. Relative delay and energy numbers of
different 64 �32-bit eight global read port and
four global write port register file designs.

overhead dominates with few ports per cell. Designs with
two read ports per bank are not much larger than designs
with a single read port per bank given that the single read
port must connect to all global read ports whereas each of
the two read ports only connects to half of the global read
ports. Increasing the number of write ports from one to two
adds only 16–20% in area.

Table 2 lists normalized delay and energy measures for
the different multibanked register file designs compared to
the unified design. Figure 6 and Figure 7 show the detailed
delay and energy breakdowns of these designs. Delay and
energy numbers were obtained from HSPICE simulations of
extracted layout with 2.5V supply voltage. We obtained rel-
ative leakage energy numbers by calculating the total width
of leaking transistors assuming that 70% of stored values
are zero, and the bit cell ports were optimized to reduce
read energy for zero values [19].

For the fully ported storage cell designs, using hierarchi-
cal bitlines reduces energy by almost 40% and cuts delay
by 8–17%. The lesser-ported bank designs have a slightly
greater reduction in delay, at around 20% faster for the two
read, two write port case. The energy reduction is also
slightly greater for the lesser-ported cells compared with
just using hierarchical bitlines on the fully-ported cells. The
delay and energy reductions are not as great as might be
expected from the area reduction as the packing of two lo-
cal storage cells per global bit column slows the wordline
drive and adds a column mux stage, and also causes twice
as many bitlines to discharge on a read. It would be possible
to reoptimize the smaller ported cells for even smaller delay
and energy, but this would add considerable additional area.

4 Performance Evaluation

To determine the performance impact, we modified the
Simplescalar simulator [4] to keep track of a unified phys-
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Figure 6. Read access delay breakdown of
different 64 �32-bit 8 read-ports and 4 write-
ports register file designs.

ical register file organized into banks. We did not modify
the register renaming strategy, simply taking the next avail-
able registers off a single FIFO free list regardless of bank
allocation. The machine configurations are shown in Ta-
ble 3. For designs with multibanked register files, we mod-
eled the additional cycles required for read and write bank
conflicts and pipeline repair. To account for the extra arbi-
tration cycle, we increase branch misprediction latency by
one cycle. The baseline design has a three-cycle latency for
branch misprediction while other designs with multibanked
register files have a four-cycle latency. We performed simu-
lations of four and eight bank configurations for a four-issue
machine.

We chose a subset of SPEC2000 and Mediabench bench-
marks compiled with optimization for the PISA instruc-
tion set. The Mediabench benchmarks were used to pro-
vide some higher IPC codes that we would expect to cause
greater register file traffic. The Mediabench codes were run
to completion. For the SPEC2000 numbers, we used the
methodology described in [15] to select a fast-forward pe-
riod and sample length. We first simulate the baseline case
which uses a unified register file design and does not cause
any register file port conflicts. Then we analyze the perfor-
mance of various multibanked register file schemes.

Figure 8 and Table 4 show the resulting absolute and
relative IPC numbers obtained for the four issue machine
with register file of size 64. We label each configuration as
#banks/#reads/#writes/bypass/sharing, where#banksis the
number of banks,#readsis the number of local read ports,



L1 I-cache 32KB 2-way, 64-byte lines, 2 cycles
L1 D-cache 32KB 2-way, 32-byte lines, 2 cycles
L2 unified cashe 1MB 4-way, 64-byte lines, 10 cycles
Memory system ports available to CPU2
Branch misprediction latency 3 (baseline), 4 (others)
Fetch, dispatch, commit width 4
Integer ALUs 4
Integer multi/div 1

Table 3. Simplescalar simulation configurations.
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down of different 64 �32b 8 read-ports and 4
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#writesis the number of local write ports,bypassindicates
if values bypassed from the last execution cycle avoid com-
peting for register ports, andsharingindicates if local read
ports can drive multiple global read ports to implement read
sharing.

We have also included a configuration labelledissue
8/2/2/y/ywhich shows the results if the select logic were
changed to avoid register bank conflicts at issue time, and
where both bypassing and port sharing are used to reduce
conflicts in a system with eight 2R2W banks. In this case,
performance is degraded by less than 1% compared to the
baseline. This scheme would have a slower wakeup-select
loop which would likely limit clock frequency. The row
labelled (8/2/2/y/y) shows the performance drop when we
instead issue instructions without considering conflicts and
kill conflicting instructions. Performance drops another 4–
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6%, but it is possible this configuration could have a higher
cycle time to make up for this difference.

Overall, we found the (8/2/2/y/y) configuration to per-
form well for this design point, and we chose this as our
center point in perturbing other parameters. Reducing the
number of banks to four (4/2/2/y/y), lowers performance by
another 3–4%. We can also see that moving from 1 to 2
write ports (8/2/1/y/y, 8/2/2/y/y) improves performance by
more than 4% but having more than 2 write ports per bank
(8/2/4/y/y and 8/2/8/y/y) adds only another 0.3%. This is
expected given that average IPCs are rarely above 2, and
some instructions do not write registers.

Omitting the bypass optimization (8/2/2/n/y) reduces
performance by over 3%. Omitting the sharing optimization
reduces performance by around 7%. We confirmed the ob-
servation in [2] that groups of load and store instructions de-
pendent on the stack pointer tend to issue together, probably



Type bzip2 gcc gzip twolf vortex ijpeg adpcm average
baseline 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
issue 8/2/2/y/y 99.3% 99.2% 99.6% 100.0% 97.7% 99.4% 99.5% 99.2%
8/2/4/y/y 96.2% 97.2% 96.0% 96.7% 95.2% 95.8% 91.0% 95.4%
8/2/2/y/y 96.1% 96.7% 95.8% 96.3% 94.5% 95.6% 90.9% 95.1%
4/2/2/y/y 92.4% 94.7% 94.1% 94.4% 91.4% 91.9% 88.6% 92.3%
8/2/1/y/y 90.9% 95.2% 92.9% 94.4% 91.5% 89.2% 87.2% 91.2%
8/2/2/n/y 92.7% 96.1% 93.9% 95.0% 92.5% 90.2% 86.6% 92.1%
8/2/2/y/n 90.7% 89.9% 93.5% 95.2% 71.8% 91.3% 89.5% 88.4%
8/2/2/n/n 85.3% 87.6% 91.3% 93.5% 69.3% 82.6% 78.8% 83.2%

Table 4. Normalized IPC % for a quad-issue machine with 64 physical registers. Configurations
are labelled as (#banks)/(#local read ports)/(#local write ports)/(bypass skipped?)/(read sharing?).
Results are normalized to the IPC of the baseline case (unified with eight read and four write ports).
Results for a configuration with bank arbitration in the issue logic (issue 8/2/2/y/y) are also shown.

at procedure call/return points. We also noticed that branch
instructions dependent on the same register issuing together
were another common source of value sharing. Omitting
both bypassing and value sharing (8/2/2/n/n) lowers perfor-
mance by 12–14%.

5 Related Work

Several techniques can reduce the difficulty of providing
a large, fast multiported register file. One approach, used in
the Alpha 21264 [11] and 21464 [14] designs, is to divide
the functional units among two clusters and provide copy of
all registers in each cluster. This approach halves the num-
ber of read ports required on each copy of the regfile, but
requires the same number of write ports on both regfiles to
allow values produced in one cluster to be made available in
the second cluster. An extension of this approach is to de-
velop a clustered microachitecture that divides the registers
among a number of clusters [17, 12, 8, 23, 16]. Clustered
microarchitectures also allow the instruction window to be
divided among clusters and can potentially scale to larger is-
sue widths at high clock frequencies. Clustering reduces the
number of ports on each partition of the register file, but re-
quires inter-cluster communication when a value is needed
from a different cluster. A critical issue in the design of such
systems is the heuristics used to map instructions to clusters.
The primary disadvantages of a clustered microarchitecture
is the complexity of the inter-cluster control logic and the
additional area required to achieve performance similar to a
centralized architecture.

The approach adopted here and in previous work [20,
2, 13] retains a centralized and non-duplicated register file,
but constructs this from multiple interleaved register banks.
The challenge with this approach is managing the complex-
ity and added latency of the control logic needed to handle

read and write bank conflicts and the mapping of register
ports to functional units.

A banking scheme that uses the bypass network to re-
duce read port usage is described in [20] but no descrip-
tion of the bypass check or read conflict resolution logic is
given. Write conflicts are handled by delaying physical reg-
ister allocation until writeback, at which point registers are
mapped to non-conflicting banks. The primary motivation
for delayed allocation was to limit the size of the physical
register file, but this can lead to a deadlock situation requir-
ing a complex recovery scheme [20].

The scheme presented in [2] handles read bank conflicts
by only scheduling groups of instructions without conflicts.
As confirmed by our results above, this reduces the IPC
penalty but adds significant logic into the critical wakeup-
select loop. The authors also assume that bypassability can
be determined during wakeup, but do not detail the mech-
anism used [2]. A design with single-ported read banks is
evaluated, but this requires more complex issue logic and
functional unit datapaths to allow instructions where both
operands are from the same bank to issue across two suc-
cessive bank read cycles. As we show in the register file
layouts above, there is little area overhead in moving from
single read ports to split dual read ports per bank once mul-
tiplexing overhead is considered. Write port conflicts are
handled by buffering conflicting writes [2], which increases
the size of the bypass network. Functional unit pipelines
must also be stalled when conflicting writes build up. Our
scheme never has any write stalls because write bank con-
flicts are detected after issue and conflicting instructions are
killed. We add an additional write port per bank to main-
tain acceptable performance. We believe the reduction in
control logic complexity and bypass mux size justifies the
increase (16–20%) in overall register file area.

The bypass hint scheme proposed in [13] also makes use



of the wakeup tag search to determine bypassability. How-
ever, because the bypass hint is not reset every cycle, the
hint is optimisitc and can be incorrect if the source instruc-
tion has written back to the register file before the depen-
dent instruction is issued. The authors propose stalling the
pipeline in the case that optimistic bypass hints cause read
port bandwidth to be oversubscribed [13] but stalls are diffi-
cult to implement in a high frequency pipeline without com-
promising cycle time. In contrast, our bypass bit is conser-
vative and is only set if the bypass will occur from the im-
mediately preceding cycle. Our scheme does not save regis-
ter port bandwidth for operands that will be bypassed from
later bypass stages, but avoids the possibility of a stall. The
design in [13] does not use banked reads to avoid increas-
ing the complexity of the select logic. The select logic still
has to select no more instructions that there are available
read ports after considering the bypass hint bits. In contrast,
our scheme issues instructions without considering bypass-
ability or conflicts and relies on rapid port arbitration and
non-stalling pipeline repair to reduce the pipeline latency
impact. This enables the use of read banking to reduce cell
size.

A number of other approaches have been described to
reduce the complexity of a large multiported register file.
Registers can be cached to reduce average access latency
[6, 3]. Register caching can add considerable control com-
plexity to an architecture, as register caches have much
worse locality than conventional data caches and determin-
ing the appropriate values to cache is non-trivial. Regis-
ter caching is motivated by the increasing access penalty
of conventional multiported structures as port counts and
register counts increase. Multibanking counteracts this in-
crease and reduces total area.

The preceding work has focused on the design of a high
bandwidth register file for dynamically scheduled super-
scalar processors with a single logical register file. Other
work has examined the use of partitioned register files made
visible to software. The SPARC architecture [21] has over-
lapping register windows where software explicity switches
between sets of registers. In-order superscalar implementa-
tions of the UltraSPARC exploit the fact that only one reg-
ister window is visible to implement a dense multiported
structure [18]. Clustered VLIW machines make the pres-
ence of multiple register file banks visible to software, and
the compiler is responsible for mapping instructions to clus-
ters [10]. Vector machines have also long been designed
with interleaved register file banks that exploit the regular
access patterns of vector instructions to provide high band-
width with few conflicts [5, 7].

6 Conclusion

A banked register file design can provide the bandwidth
needed by a superscalar processor but with reduced area,
delay and energy. By using layouts of all components in
the register file, we see that for a small number of ports
per bank, overall register file size grows slowly as ports are
added because area is dominated by bank interconnect. We
exploit this fact by using more bank ports to reduce the IPC
impact of a simpler pipelined control scheme that allows
higher frequency operation. For a quad-issue processor,
register file size is reduced by over a factor of three while
reducing IPC by under 5%. Access time is reduced by 25%
and access energy by 40%. These reductions in register file
delay and power can potentially be used to increase clock
rate, leading to a more complexity-effective design.
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