
CS 288: Statistical NLP

Assignment 3: Part-of-Speech Tagging

Due 3/8/09

In this assignment, you will build the important components of a part-of-speech tagger, including
a local scoring model and a decoder.

Setup: The data for this assignment is available on the web page as usual. It uses the same
Penn Treebank data as the first assignment, this time with the part-of-speech labels added in.

The starting class for this assignment is

edu.berkeley.nlp.assignments.POSTaggerTester

Make sure you can access the source and data files.

The World’s Worst POS Tagger: Now run the test harness, assignments.POSTaggerTester.
You will need to run it with the command line option -path DATA PATH, where DATA PATH is
wherever you have unzipped the assignment data. This class by default loads a fully functional, if
minimalist, POS tagger. The main method first loads the standard Penn Treebank WSJ part-of-
speech data, split in the standard way into training, validation, and test sentences. The current
code reads through the training data, extracting counts of which tags each word type occurs with.
It also extracts a count over “unknown” words - see if you can figure out what its unknown word
estimator is (it’s not great, but it’s reasonable). The current code then ignores the validation set
entirely. On the test set, the baseline tagger gives each known word its most frequent training
tag. Unknown words all get the same tag (which, and why?). This tagger operates at about 92%
accuracy, with a rather pitiful unknown word accuracy of 40%. Your job is to make a real tagger
out of this one by upgrading each of its placeholder components.

Part 1. A Better Sequence Model: Look at the main method - the POSTagger is con-
structed out of two components, the first of which is a LocalTrigramScorer. This scorer takes
LocalTrigramContexts and produces a Counter mapping tags to their scores in that context. A
LocalTrigramContext encodes a sentence, a position in that sentence, and values for two tags
preceding that position. The dummy scorer ignores the previous tags, looks at the word at the
current position, and returns a (log) conditional distribution over tags for that word:

log P (t|w)

1

Therefore, the best-scoring tag sequence will be the one which maximizes the quantity:∑
i

log P (ti|wi)

Your first job is to upgrade the local scorer. You have a choice between building an HMM tagger
or a maximum-entropy tagger. If you choose to build a trigram HMM tagger, your decoder will
maximize the quantity ∑

i

log (P (ti|ti−1, ti−2)P (wi|ti))

which means the local scorer would have to return counters containing

score(ti) = P (ti|ti−1, ti−2)P (wi|ti)

for each context. (Note that this is NOT a log distribution over tags). If you want to implement
an MEMM tagger, your decoder will instead be maximizing the quantity∑

i

log P (ti|ti−1, ti−2, w, i)

which means that you will want to build a little per-position maximum entropy model which predicts
distributions over tags given such contexts, based on whatever features of the contexts that you
design. The local score in this case has the form:

score(ti) = P (ti|ti−1, ti−2, w, i)

Note that this IS a log distribution over tags. You can built either type of tagger. Warning: a
full-blown maxent tagger will be very slow to train, on the order of hours per run, especially if you
add many feature templates, so start early and give yourself plenty of time to run experiments.
An HMM will train faster (but likely have lower accuracy). If you build an HMM, you should do
something sensible for unknown words, using a technique like unknown word classes, suffix trees, or
a maximum-entropy model of P(tag—UNK) used with Bayes’ rule as part of your emission model.

Whichever type of model you choose to build, your local scorer should use the provided interface
for training and validating. The assignment doesn’t require that you use the validation data, but
it’s there if you want it for tuning. You should also get into the habit of not testing repeatedly on
the test set, but rather using the validation set for tuning and preliminary experiments.

Note: if you are feeling very adventurous, you can even build a CRF tagger, but be warned that
you’ll almost certainly have to rewrite the object-heavy decoding machinery with primitive arrays
and indexers, and that you’ll essentially have to do parts 1 and 2 of this assignment together. If
you are feeling slightly adventurous, you could also build a structured perceptron model, which
has the same linear form and feature locality as a CRF, but training does not require expectation
computations. If you’re feeling that the assignments are easy, try one of these for more of a
challenge.

Part 2. A Better Decoder: With your improved scorer, your results should have gone up
substantially. However, you may have noticed that the tester is now complaining about “decoder
sub-optimalities.” This is because of the second ingredient of the POSTagger, the decoder. The
supplied implementation is a greedy decoder (equivalent to a beam decoder with beam size 1).

2

Your final task in this assignment is to upgrade the greedy implementation with a Viterbi decoder.
Decoders implement the TrellisDecoder interface, which takes a Trellis and produces a path.
Trellises are just directed, acyclic graphs, whose nodes are states in a Markov model and whose
arcs are transitions in that model, with weights attached. In this concrete case, those states are
State objects, which encode a pair of tags and a position in the sentence. The arc weights are scores
from your local scorer. In this part of the assignment, it doesn’t really matter where the Trellis
came from. Take a look at the GreedyDecoder. It starts at the Trellis.getStartState() state,
and walks forward greedily until it hits the dedicated end state. Your decoder will similarly return
a list of states in which the first state is the start state and the last is the end state, but yours will
instead return the sequence of least sum weight (recall that weights are log probabilities produced
by your scorer and so should be added). A necessary (but not sufficient) condition for your Viterbi
decoder to be correct is that the tester should show no decoder sub-optimalities — these are cases
where your model gave the gold answer a higher score than the decoder’s allegedly model-optimal
output. As a target, accuracies of 94+ are good, and 96+ are basically state-of-the-art. Unknown
word accuracies of 60+ are reasonable, 80+ are good.

Note: if you want to write your decoder before your scorer, you can construct the MostFre-
quentTagScorer with an argument of true, which will cause it to restrict paths to tag trigrams seen
in training - this boosts scores slightly and exposes the greedy decoder as suboptimal.

Write-up: For the write-up, I mainly just want you to describe what you’ve built. For a maxent
model, you should mention what feature schemas you used and how well they worked. A good
tool for this kind of analysis is a table showing how well each feature class does on its own (when
added to a core set of features) or how much loss in performance your best model suffers when
that feature class is removed (an ablation study). For an HMM model, you should discuss how you
modeled unknown words, as this will be the key to good performance. In either case, you should
look through the errors and tell me if you can think of any ways you might fix them, be it with
features, model changes, or something else (whether you do fix them or not does no matter here).
Pay special attention to unknown words - in practice it’s the unknown word behavior of a tagger
that’s most important. While no extension in particular is required, a top-scoring submission should
have explored something more than simply writing a vanilla HMM. That could be extensive work
on unknown words, features, a tricker model like a CRF or structured perceptron, a comparison of
two model types, a faster decoder of some kind, etc.

Coding Tips: If you find yourself waiting on a local maxent classifier, and want to optimize it,
you will likely find that your code spends all of its time taking logs and exps in its inner loop. You
can often avoid a good amount of this work using the logAdd(x,y) and logAdd(x[]) functions in
math.SloppyMath. Also, you’ll notice that the object-heavy trellis and state representations are
horribly slow. If you want, you are free to optimize these to array-based representations. It’s not
required (or particularly recommended, really, unless you build a CRF) but if you wanted to do
this re-architecting, you might find util.Indexer of use. You can also speed things up by avoiding
the construction of the entire trellis — there are several good ways to do this, and I’ll leave it to
you to find them.

3

