Statistical NLP
Spring 2009

University of
California J\/

N L E

Berkeley

Lecture 21: Compositional Semantics

Dan Klein — UC Berkeley

Includes examples from Johnson, Jurafsky and Gildea, Luo, Palmer

Semantic Role Labeling (SRL)

Characterize clauses as relations with roles:

[udge She | blames [goatuee the Government | [geqson for failing to do enough
tohelp].

aricm thic ao belamato o i]
erise tnis as DIaAming [puaiyee (1€ POOT | .

The letter quotes Black as saying that [40 Wwhite and Navajo ranchers |
misrepresent their livestock losses and blame [geqson everything | [goaiuee 011
coyotes | .

Want to more than which NP is the subject (but not much more):
Relations like subject are syntactic, relations like agent or message
are semantic
Typical pipeline:

= Parse, then label roles

= Almost all errors locked in by parser

= Really, SRL is quite a lot easier than parsing

SRL Example

He heard the sound of liquid slurping in a metal container a Farrell approached him from behind
Theme target Goal Source
‘ommunication ognition eee
\\‘\" ere
e Questioning
i Cloments: SPeak) R
Conversation Elements: Af‘&dl:;‘! Judgment ¥ egorization
Elements: Protagonist-1 Message rame Elements; Judge Fran nts: Cognizer
Protagonist-2 Tople Evaluee ltem
Protagonists i Reasan Category
Topic Role Criterion
Medium —
— \ \\ Frame: Statement blam oy B
aroue— ¢ Ele : Speak fault—
argue-v \ debate—y | Frame Elements A;;:;«?e:;ee fault—n
i - tiff—n Message admire—v - .
banter—v \ dispute—n Topie dispute—n
converse—v i -
. "“w“”" admiration—n ‘o -
discussion—n ses ZOSSIPTYV o ees disapprove—v

FrameNet: roles shared between verbs

PropBank: each verb has it's own roles

PropBank more used, because it's layered over the treebank (and
so has greater coverage, plus parses)

Note: some linguistic theories postulate even fewer roles than
FrameNet (e.g. 5-20 total: agent, patient, instrument, etc.)

PropBank Example

fall.01 sense: move downward

roles: Argl:
Arg2:
Arg3:
Argd:

thing falling

extent, distance fallen
start point

end point

Sales fell to $251.2 million from $278.7 million.

argl: Sales
rel: fell

argd: to $251.2 million

arg3: from $278.7 million

PropBank Example

rotate.(2 sense: shift from one thing to another

roles: Arg0:
Argl:
Arg2:
Arg3:

causer of shift

thing being changed
old thing

new thing

Many of Wednesday’s winners were losers yesterday as investors
quickly took profits and rotated their buying to other issues, traders

said.
arg: investors
rel: rotated
argl: their buying
arg3: to other issues

(wsj_1723)

PropBank Example

aim.01 sense: intend, plan
roles: Arg0: aimer, planner
Argl: plan, intent

The Central Council of Church Bell Ringers aims *trace® to

improve relations with vicars. (ws)_0089)
argd: The Central Council of Church Bell Ringers
rel: aims

argl: *trace® to improve relations with vicars

aim.02 sense: point (weapon) at
roles: Arg0: aimer
Argl: weapon, etc.
Arg2: target

Banks have been aiming packages at the elderly.
arg): Banks
rel: aiming
argl: packages
arg2: at the elderly

Shared Arguments

(NP-SBJ (J] massive) (1] internal) (NN debt))
(VP (VBZ has)
(VP (VBN forced)
(S

AN I

T 1 /Ty ANINT min
DDJ-1 { LS

tnej (ININ governineint) j

3
R
-
]

{INF
(VP
(VP (TO to)
(VP (VB borrow)
(ADVP-MNR (RB massively))...

force
T
a0 a.rgll \{52
massive the T T
internal govarnment homow
debt ‘w/\m

massvely

Path Features

He ate some pancakes
Path Description
VBTVP|PP PP argument/adjunct
VBTVP]S|NP subject
VBTVP|NP object
VBIVPTVP|S|NP subject (embedded VP)
VBTVP |ADVP adverbial adjunct
NNTNPTNP|PP prepositional complement of noun
= Features:

= Path from target to filler

Target’s identity

Filler's syntactic type, headword, case

Sentence voice, etc.
Lots of other second-order features

= Gold vs parsed source trees

.) CORE ARGM

= SRL is fairly easy on gold trees L | e | T | Acc.
. CORE ARGM

= Harder on automatic parses T | Ac | 7T [A«

841 | 665 814 | 556

Interaction with Empty Elements

S

T

NP

VP
/\\ .
NN NNS
HD!!‘S!!IU l@b!lJ!es VBT . \
= VBD NP* S
| \
persuaded NNP
‘ NP VP
Congress 4|1
TO VP
\
to
VB NP PP
raise DT NN 10§124875

|
the ceiling

Empty Elements

» In the PTB, three kinds of empty elements:
» Null items (usually complementizers)

» Dislocation (WH-traces, topicalization, relative
clause and heavy NP extraposition)

» Control (raising, passives, control, shared
argumentation)

» Need to reconstruct these (and resolve
any indexation)

Example: English

NNP VBD ADIJP

| T
Farmers was 1] S NN NP VP
\
quick *ICH*-2 yesterday *-3 TO VP
T
to VB PRT NP

//\-\
point RP NP SBAR
RN)
out DT NN WHNP-1 S
| | | s
the problems 0 NP VP
| SN
PRP VBZ NP

it sees *T*-]

Example: German

AP-2 S, VP-1 S
— N T T |
ADV NP ADID wird *72* PP VVPP_~ NP vz
PN will S PN S
Erst ADJA NN spiter PROAV *T7*begonnen ART NE PTKZU VVINF
not until later be begun ‘
lange Zeit damit den RMV zu schaffen
with it the RMV to Sform

long time

Types of Empties

Antecedent POS Label | Count Description
NP NP * 18,334 | NP trace (e.g., Sam was seen *)
NP * 9,812 to sleep is nice)
WHNP |y NP *T* 8,620 | WH trace (e.g., the woman who you saw *T%)
U 7478 | Empty units (e.g., $ 25 *U*)
0 Empty complementizers (e.g., Sam said 0 Sasha snores)
3 S KT * > Moved clauses (e.g., Sam had to go, Sasha explained *T*)
WHADVP ADVP *T* WH-trace (e.g., Sam explained how to leave *T*)
SBAR 2,033 | Empty clauses (e.g., Sam had to go, Susha explained (SBA
[WHNP 0 1,759 | Empty relative pronouns (e.g., the woman 0 we saw)
WHADVP 0 Empty relative pronouns (e.g.. no reason 0 to leave)
NP
8
N — 7\\\
DT NN WHND-1 5

[[o~

_—
the mzn -NONE- NP

3
$ TN
NNP VBZt NP
L 4
Sam likes —NONZ-— changesoccured —~NONE-

ol o

A Pattern-Matching Approach

= [Johnson 02]

SBAR
WHNP-1 5
/‘\
— N - D \\'p
N NONE- NP v
e T PNy
}Jﬁ’ S‘EAR 0 VBZ_L NP
. o~ |
EdN = -~ 0
DT KN WHNE-1 g NONE
the man —ICO{NE— KB VP ATH-
g P NP
NNE VBY_t NP e
NP SBAR
Sam likes —-NONE- . |
l DT NN S
*Tx-1 | P
the man NP Vo

?II‘\TP VB‘IZ_

Sam likes

Pattern-Matching Details

Something like transformation-based learning

Extract patterns

» Details: transitive verb marking, auxiliaries
= Details: legal subtrees

Rank patterns

» Pruning ranking: by correct / match rate

= Application priority: by depth

Pre-order traversal

Greedy match

Top Patterns Extracted

Count | Match Pattern

5816 6223 S (NP (-NONE- *)) VP)
5605 7895 SBAR (—-NONE- 0) 83)

5312 5338 SBAR WHNP-1 (S (NP (-NCNE- *T*-1)) VP))
4434 5217 NP QP (-NONE- *Ux))

1682 1682 NP $ CD (-NONE- *U*))

1327 1593 VP VBN.t (NP (-NONE- *)) PP)

700 700 ADJP QP (-NONE- *U*))

(
(
(
(
(
(
(
662 1219 | (SBAR (WHNP-1 (-NONE- 0)) (S (NP (-NONE- *T*-1)) VP))
(
(
(
(
(
(
(

(
618 635 S 5-1 , NP (VP VBD (SBAR (-NONE- 0) (S (-NONE- *T*-1)))) .)
499 512 SINV 'Y s-1, " (VP VBZ (S (-NONE- *T#-1))) NP .)
361 369 SINV ‘' 5-1 , '’ (VP VBD (5 (-NONE- *T*-1))) NP .)
352 320 S NP-1 (VP VBZ (S (NP (-NONE- *-1)) VP)))
346 273 S NP-1 (VP AUX (VP VBNt (NP (-NONE- *-1)) PP)))
322 467 VP VBD-t (NP (-NONE- *)) PP)
269 275 s ‘Y s-1, "’ NP (VP VBD (S (-NONE- *T*-1))) .)

Results

Empty node Section 23 Parser output

POS Label | P R f r R I
(Overall) 093 0.83 088085 074 079

NP * 095 0.87 091|086 079 082

NP *T+ 1093 088 091085 077 038l
0 094 099 096|086 0.89 0.88
*Ux 1 092 098 095087 096 0.92

S *T+ (098 083 090087 0681 0388
ADVP *T+* | 091 052 0.66 | 084 042 056
SBAR 090 0.63 074|088 038 0.70

WHNP 0 075 079 077|048 046 047

A Machine-Learning Approach

» [Levy and Manning 04]

= Build two classifiers:
= First one predicts where empties go
= Second one predicts if/where they are bound

= Use syntactic features similar to SRL (paths,
categories, heads, etc)

Performance on gold trees Performance on parsed trees
ID Rel Combo ID Combo
P R F1 Acc P R Fl P R Fl p R Fl

WSI(full) [92.0 [829 [872 [95.0 [[89.6 [80.1 | 84.6 || 34.5 [47.6 [40.0 || 17.5 | 243 [20.5
WSJ(sm) | 923 [79.5 | 855 | 933 |[90.4 [77.2 | 83.2 || 38.0 | 47.3 [42.1 |[19.7 | 243 [21.7
NEGRA | 739 [6406 [69.0 | 851 | 633|554 [59.1| 483|397]|43.6] 209|172] 189

o

Semantic Interpretation

= Back to meaning!
= A very basic approach to computational semantics
= Truth-theoretic notion of semantics (Tarskian)
= Assign a “meaning” to each word
= Word meanings combine according to the parse structure
= People can and do spend entire courses on this topic
= We'll spend about an hour!

= What's NLP and what isn’t?
= Designing meaning representations?
= Computing those representations?
= Reasoning with them?

= Supplemental reading will be on the web page.

Meaning

= “Meaning”
= Whatis meaning?
= “The computer in the corner.”
= “Bob likes Alice.”
= “I think | am a gummi bear.”
= Knowing whether a statement is true?
= Knowing the conditions under which it’s true?
= Being able to react appropriately to it?
= “Who does Bob like?”
= “Close the door.”

= A distinction:
= Linguistic (semantic) meaning
= “The door is open.”
= Speaker (pragmatic) meaning

= Today: assembling the semantic meaning of sentence from its parts

11

Entailment and Presupposition

= Some notions worth knowing:

= Entailment:
= A entails B if A being true necessarily implies B is true
= ? “Twitchy is a big mouse” — “Twitchy is a mouse”
= ? “Twitchy is a big mouse” — “Twitchy is big”
= ? “Twitchy is a big mouse” — “Twitchy is furry”

= Presupposition:
= A presupposes B if A is only well-defined if B is true

= “The computer in the corner is broken” presupposes that
there is a (salient) computer in the corner

Truth-Conditional Semantics

= Linguistic expressions: S sings(bob)

= “Bob sings”
)) NP VP
= Logical translations: | |
= sings(bob) .
« Could be p_1218(e_397) Bob sings
bob Ly.sings(y)

= Denotation:
= [[bob]] = some specific person (in some context)
= [[sings(bob)]] = ???

= Types on translations:
= bob:e (for entity)
= sings(bob): t (for truth-value)

12

Truth-Conditional Semantics

= Proper names:
= Refer directly to some entity in the world

= Bob : bob [[bob]W > 27? S sings(bob)
/\
= Sentences: NP VP
= Are either true or false (given | _|
how the world actually is) Bob sings
= Bob sings : sings(bob) bob Ly.sings(y)

= So what about verbs (and verb phrases)?
= sings must combine with bob to produce sings(bob)

= The A-calculus is a notation for functions whose arguments are
not yet filled.

= sings : AX.sings(x)

= This is predicate — a function which takes an entity (type e) and
produces a truth value (type t). We can write its type as e—t.

= Adjectives?

Compositional Semantics

= So now we have meanings for the words
= How do we know how to combine words?
= Associate a combination rule with each grammar rule:

= S:B(a) >NP:a VP:B (function application)
" VP X . a(X)AB(X)>VP:a and:<d VP :B (intersection)
= Example:
sings(bob) A dances(bob)
S [Ax.sings(x) A dances(x)](bob)

NP VP Ax.sings(x) A dances(x)
I
Bob VP and VP
bob | |
sings dances

Ly.sings(y) Az.dances(z)

13

Denotation

» What do we do with logical translations?
» Translation language (logical form) has fewer

ambiguities

= Can check truth value against a database
= Denotation (“evaluation”) calculated using the database
= More usefully: assert truth and modify a database
= Questions: check whether a statement in a corpus
entails the (question, answer) pair:
= “Bob sings and dances” — “Who sings?” + “Bob”

= Chain together facts and use them for comprehension

Other Cases

Transitive verbs:
v likes : Ax.Ay.likes(y,x)

= Two-place predicates of type e—>(e—t).

= likes Amy : Ly.likes(y,Amy) is just like a one-place predicate.

Quantifiers:

= What does “Everyone” mean here?

= Everyone : Af.Vx.f(x)

= Mostly works, but some problems
= Have to change our NP/VP rule.
= Won't work for “Amy likes everyone.”

= “Everyone likes someone.”
= This gets tricky quickly!

vx.likes(x,amy)
S [Af.Vxf(x)](1y.likes(y,amy))

/\
NP VP Ly.likes(y,amy)
| PN
Everyone VBP NP
2E.%.5(x) | |
likes Amy

Ax.Ay.likes(y,x) amy

14

Indefinites

= First try
= “Bob ate a waffle” : ate(bob,waffle)
= “Amy ate a waffle” : ate(amy,waffle)

= Can’t be right!

= 3 x: waffle(x) A ate(bob,x) S
= What does the translation o
of “a” have to be? NP VP
= What about “the”? | SN
= What about “every”? Bob V?D '\/IE
ate a waffle

Grounding

= Grounding

= So why does the translation likes : Ax.Ly.likes(y,x) have anything
to do with actual liking?

= It doesn’t (unless the denotation model says so)

= Sometimes that’s enough: wire up bought to the appropriate
entry in a database

= Meaning postulates
= [nsist, e.g Vx,y.likes(y,x) — knows(y,x)
= This gets into lexical semantics issues

= Statistical version?

15

Tense and Events

= In general, you don’t get far with verbs as predicates

= Better to have event variables e
= “Alice danced” : danced(alice)
= Je:dance(e) A agent(e,alice) A (time(e) < now)
= Event variables let you talk about non-trivial tense /
aspect structures
= “Alice had been dancing when Bob sneezed”
= Je, e : dance(e) A agent(e,alice) A
sneeze(e’) A agent(e’,bob) A
(start(e) < start(e’) A end(e) = end(e’)) A
(time(e’) < now)

Adverbs

= What about adverbs?
= “Bob sings terribly”

= terribly(sings(bob))? S
/\

= (terribly(sings))(bob)? NP VP
| PN

" Je present(e) A Bob VBP ADVP
type(e, singing) A | |
agent(e,bob) A sings terribly
manner(e, terrible) ?

= |t’s really not this
simple..

16

Propositional Attitudes

= “Bob thinks that | am a gummi bear”
= thinks(bob, gummi(me)) ?
= thinks(bob, “l am a gummi bear”) ?
= thinks(bob, *gummi(me)) ?

= Usual solution involves intensions (*X) which are,
roughly, the set of possible worlds (or conditions) in
which Xis true

= Hard to deal with computationally
= Modeling other agents models, etc

= Can come up in simple dialog scenarios, e.g., if you want to talk
gbouLwhat your bill claims you bought vs. what you actually
ought

Trickier Stuff

= Non-Intersective Adjectives
= green ball : Ax.[green(x) A ball(x)]
= fake diamond : Ax.[fake(x) A diamond(x)] ? — Ax.[fake(diamond(x))
= Generalized Quantifiers
the : Af.[unique-member(f)]
all : Af. Ag [VX.f(x) > g(x)]
most?
Could do with more general second order predicates, too (why worse?)
= the(cat, meows), all(cat, meows)
= Generics
= “Cats like naps”
= “The players scored a goal”
= Pronouns (and bound anaphora)
= “If you have a dime, put it in the meter.”

... the list goes on and on!

17

Multiple Quantifiers

= Quantifier scope

= Groucho Marx celebrates quantifier order ambiguity:
“In this country a woman gives birth every 15 min.
Our job is to find that woman and stop her.”

= Deciding between readings
= “Bob bought a pumpkin every Halloween”
= “Bob put a warning in every window”

= Multiple ways to work this out
= Make it syntactic (movement)
= Make it lexical (type-shifting)

Implementation, TAG, Idioms

= Add a “sem” feature to each context-free rule
= S — NP loves NP
= S[sem=loves(x,y)] = NP[sem=x] loves NP[sem=y]
= Meaning of S depends on meaning of NPs

»= TAG version: s loves(x,y) s died(x)
NP VP NP VP
\" NP Vv NP
loves Y kicked the bucket

= Template filling: S[sem=showflights(x,y)] —
I want a flight from NP[sem=x] to NP[sem=y]

18

Modeling Uncertainty

= Gaping hole warning!
= Big difference between statistical disambiguation and statistical
reasoning.

The scout saw the enemy soldiers with night goggles.

= With probabilistic parsers, can say things like “72% belief that the PP
attaches to the NP.”

= That means that probably the enemy has night vision goggles.

= However, you can’t throw a logical assertion into a theorem prover
with 72% confidence.

= Not clear humans really extract and process logical statements
symbolically anyway.

= Use this to decide the expected utility of calling reinforcements?

= In short, we need probabilistic reasoning, not just probabilistic
disambiguation followed by symbolic reasoning!

CCG Parsing

= Combinatory

gategorial John = NP - john'

rammar shares = NP : shares'

= Fully (mono-))
lexicalized buys = (S\NP) /NP : Ax.Ay.buys'xy
grammar sleeps B S\NP : Ax.sleeps’x

= Categories encode
argument
sequences

= Very closely
related to the S
lambda calculus 0N

= Can have spurious NIP S\NP

ambiguities (why?) John (S\NP)/NP NP
' |

well = (S\NP)\(S\NP) : &/ Ax.well'(fx)

buys shares

19

