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Treebank PCFGs [Charniak 96]

= Use PCFGs for broad coverage parsing
= Can take a grammar right off the trees (doesn’t work well):
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= Not every NP expansion can fill every NP slot
= A grammar with symbols like “NP” won’t be context-free
= Statistically, conditional independence too strong

Non-Independence

= Independence assumptions are often too strong.
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= Example: the expansion of an NP is highly dependent
on the parent of the NP (i.e., subjects vs. objects).
= Also: the subject and object expansions are correlated!

c

£291 Grammar Refinement

Berk

= Example: PP attachment
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= Structure Annotation [Johnson '98, Klein&Manning '03]
= Lexicalization [Collins 99, Charniak '00]
= Latent Variables [Matsuzaki et al. 05, Petrov et al. '06]




The Game of Designing a Grammar
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= Annotation refines base treebank symbols to
improve statistical fit of the grammar

= Structural annotation

Typical Experimental Setup

= Corpus: Penn Treebank, WSJ

Training: sections  02-21
Test: section 23

= Accuracy — F1: harmonic mean of per-node labeled
precision and recall.
= Here: also size — number of symbols in grammar.
= Passive / complete symbols: NP, NPAS
= Active / incomplete symbols: NP — NP CC e
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Horizontal Markovization
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= Examples:

= Raw treebank:
= Johnson 98:
= Collins 99:

= BestF1:
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Model F1 Size

Base: v=h=2v 77.8 |7.5K

Unary Splits
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Tag Splits

Other Tag Splits

[ ] - P
Problem: Treebank A~
tags are too coarse. TIO VP
to VB SBAR
E le: Sentential l IN”SNT/\S
= Example: Sentential, s
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= Partial Solution: Annotation F1 Size
Previous 78.3 8.0K

= Subdivide the IN tag. SPLITIN 03 181K

F1 Size

UNARY-DT: mark demonstratives as DTAU 80.4 |8.1K
(“the X" vs. “those”)

UNARY-RB: mark phrasal adverbs as RBAU [80.5 [8.1K
(“quickly” vs. “very”)

TAG-PA: mark tags with non-canonical 81.2 |8.5K
parents (“not” is an RBAVP)

SPLIT-AUX: mark auxiliary verbs with —AUX [81.6 |9.0K
[cf. Charniak 97]

SPLIT-CC: separate “but” and “&” from other [81.7 [9.1K
conjunctions

SPLIT-%: “%” gets its own tag. 81.8 |9.3K

A Fully Annotated (Unlex) Tree

Some Test Set Results
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Parser LP LR F1 CB 0CB
Magerman 95 |84.9 [84.6 |84.7 |1.26 |56.6
Collins 96 86.3 |85.8 |86.0 [1.14 |59.9
Unlexicalized |86.9 [85.7 |86.3 |1.10 |60.3
Charniak 97 |87.4 |87.5 |87.4 |1.00 |62.1
Collins 99 88.7 |88.6 |88.6 |0.90 |67.1

= Beats “first generation” lexicalized parsers.
= Lots of room to improve — more complex models next.

The Game of Designing a Grammar

Problems with PCFGs

S
NP-she VP
|

—_—
PRP VBD NP-noise
I | —
She heard DT NN
I I
the noise

= Annotation refines base treebank symbols to
improve statistical fit of the grammar

= Structural annotation [Johnson '98, Klein and
Manning 03]
= Head lexicalization [Collins '99, Charniak '00]
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= If we do no annotation, these trees differ only in one rule:
= VP> VPPP
= NP NPPP
= Parse will go one way or the other, regardless of words
= We addressed this in one way with unlexicalized grammars (how?)
= Lexicalization allows us to be sensitive to specific words




Problems with PCFGs
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= What's different between basic PCFG scores here?
= What (lexical) correlations need to be scored?

Problems with PCFGs
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= Another example of PCFG indifference
= Left structure far more common
* How to model this?
= Really structural: “chicken with potatoes with gravy”
= Lexical parsers model this effect, but not by virtue of being lexical

Lexicalized Trees

= Add “headwords” to s
each phrasal node T
= Syntactic vs. semantic s Py
heads Lowhe 1A
= Headship not in (most) e
treebanks

= Usually use head rules, M
eg.

S(questioned)

Lexicalized PCFGs?

= NP:
= Take leftmost NP
= Takerightmost N* NP(lawyer) VP(questioned)
= Take rightmost JJ -
= Take rright child DT(the) NN(awyer) .
= VP: | | Vt(questioned) NP(witness)
= Take leftmost VB* the lawyer
. Take leftmost VP questoned TRy NN(witness)
+ Take left child !

the witness

= Problem: we now have to estimate probabilities like

VP(saw) -> VBD(saw) NP-C(her) NP(today)

= Never going to get these atomically off of a treebank

= Solution: break up derivation into smaller steps

e (sau)
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Lexical Derivation Steps

= Derivation of a local tree [simplified Charniak 97]

VP [saw]
VBD[saw] NP[her] NP[today] PP[on]

3

(VP->VED. . .PP o) [saw]
—

VP [saw]

(VP->VBD. ..NP e) [saw] PP[on]

(VP->VBD. ..NP o) [saw] NP[today]

(VP->VBD o) [saw] NP[her]

VBD [saw]

Still have to smooth
with mono- and non-
lexical backoffs

—_—
P(STOP|VBD[saw], VP, PP)
P(PP[on]|VBD[saw], VP, NP)
P(NP[today]|VBD[saw], VP, NP)
P(NP[her]|VBD[saw], VP, START)

P(VBD[saw]|[VP[saw])

Lexical Derivation Steps

= Another derivation of a local tree [Collins 99]

VE (saw)
Choose a head tag and word
VED (saw)
VE (saw)
Choose a complement bag
VED (saw) {wp-c( )}
VE (saw)
Generate children (incl. adjuncts)
VBD(saw) NB-C( ) NE( )
VE (saw)

Recursively derive children
VBD(saw) NP-C(her) NP(today)




Naive Lexicalized Parsing

= Can, in principle, use CKY on lexicalized PCFGs
= O(Rn3) time and O(Sn?) memory
= ButR=rV2and S =sV
= Result is completely impractical (why?)
= Memory: 10K rules * 50K words * (40 words)? " 8 bytes ~ 6TB

= Can modify CKY to exploit lexical sparsity
= Lexicalized symbols are a base grammar symbol and a pointer
into the input sentence, not any arbitrary word
= Result: O(rn%) time, O(sn3)
= Memory: 10K rules * (40 words)?* 8 bytes ~ 5GB

Lexicalized CKY

(VB->VBD. ..NP o) [saw]

(VP->VED o) [saw] NP[her]

bestScore (X,i,3j,h)
if (= i+l)
return tagScore (X,s[i])
else
return
max max score(X[h]->Y[h] Z[h']) *
bestScore (Y,i k,h) *
bestScore (Z,k,j,h’)
. max score(X[R]->Y[h'] Z[h]) *
bestScore(Y,i, k,h’) *
bestScore (Z,k,j,h)

Quartic Parsing

= Turns out, you can do (a little) better [Eisner 99]

X[h]

= Gives an O(n*) algorithm
= Still prohibitive in practice if not pruned

Pruning with Beams

= The Collins parser prunes with

per-cell beams [Collins 99]

= Essentially, run the O(n%) CKY

Remember only a few hypotheses for
each span <i,j>.
If we keep K hypotheses at each
span, then we do at most O(nK?2)
work per span (why?)
Keeps things more or less cubic

= Also: certain spans are forbidden
entirely on the basis of
punctuation (crucial for speed)

Pruning with a PCFG

= The Charniak parser prunes using a two-pass
approach [Charniak 97+]
= First, parse with the base grammar
= For each X:[i,j] calculate P(X]i,j,s)
= This isn't trivial, and there are clever speed ups
= Second, do the full O(n5) CKY
= Skip any X :[i,j] which had low (say, < 0.0001) posterior
= Avoids almost all work in the second phase!

= Charniak et al 06: can use more passes
= Petrov et al 07: can use many more passes

Pruning with A*

= You can also speed up
the search without
sacrificing optimality
= For agenda-based
parsers:
= Can select which items to
process first
= Can do with any “figure of
merit” [Charniak 98]
= If your figure-of-merit is a
valid A* heuristic, no loss
of optimiality [Klein and
Manning 03]




Projection-Based A*
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= Total time dominated by calculation of A* tables in each
projection... O(n3)

Results

= Some results
= Collins 99 — 88.6 F1 (generative lexical)

= Charniak and Johnson 05 —89.7 / 91.3 F1
(generative lexical / reranked)

= Petrov et al 06 — 90.7 F1 (generative unlexical)
= McClosky et al 06 — 92.1 F1 (gen + rerank + self-train)

= However
= Bilexical counts rarely make a difference (why?)

= Gildea 01 — Removing bilexical counts costs < 0.5 F1

= Bilexical vs. monolexical vs. smart smoothing

The Game of Designing a Grammar
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= Annotation refines base treebank symbols to
improve statistical fit of the grammar
= Structural annotation
= Head lexicalization
= Automatic clustering?

| Latent Variable Grammars
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Learning Latent Annotations

EM algorithm: Forward
= Brackets are known
= Base categories are known
= Only induce subcategories

S[X1]
P N,
NP[X] VP[X4] 1X7]
| |
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PRP[X3] VBD[X5] ADJP[Xg]

1 I —
He was right

Just like Forward-Backward
for HMMs. Backward




Refinement of the DT tag
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= Splitting all categories equally is wasteful:
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Adaptive Splitting

= Want to split complex categories more

= |dea: split everything, roll back splits which
were least useful
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Adaptive Splitting Results

Parsing acotracy (F1)

" . : Model F1

Previous 88.4

Total Number of grammar symbcls

With 50% Merging |89.5




Number of Phrasal Subcategories

Number of Lexical Subcategories
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Learned Splits
= Proper Nouns (NNP):
NNP-14 Oct. Nov. Sept.
NNP-12 John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters
NNP-15 New San Wall
NNP-3 York Francisco Street
= Personal pronouns (PRP):
PRP-0 It He |
PRP-1 it he they
PRP-2 it them him

Learned Splits

= Relative adverbs (RBR):

Coarse-to-Fine Inference

RBR-0 further lower higher
RBR-1 more less More
RBR-2 earlier Earlier later
= Cardinal Numbers (CD):
CD-7 one two Three
CD-4 1989 1990 1988
CD-11 million billion trillion
CD-0 1 50 100
CD-3 1 30 31
CD-9 78 58 34
Prune?

= Example: PP attachment
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a  point of order

For each chart item XTi,j], compute posterior probability:

Pl\'(Xa l]) ) POI?T(X7Z'7]')
Py (root,0,n)

< threshold

E.g. consider the span 5 to 12:

coarse:

refined:




Bracket Posteriors
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Hierarchical Pruning

coarse:
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split in two:

splitin four: . PRI DD+ ]

splitineight: .. [ [ [ [ [ [ [l T[]

Final Results (Accuracy)

<40 words all
F1 F1
m | Charniak&Johnson ‘05 (generative) 90.1 89.6
z
2] Split / Merge 90.6 90.1
r“; Dubey ‘05 76.3 -
A Split / Merge 80.8 80.1
o Chiang et al. ‘02 80.0 76.6
=
z Split / Merge 86.3 83.4

Still higher numbers from reranking / self-training methods




