Statistical NLP
Spring 2009

University of
California

g
N O E

Berkeley

Lecture 15: Parsing Il

Dan Klein — UC Berkeley

Classical NLP: Parsing

= Write symbolic or logical rules:

Grammar (CFG) Lexicon
ROOT —» § NP — NP PP NN — interest
S —NPVP VP — VBP NP NNS — raises
NP — DT NN VP — VBP NP PP VBP — interest
NP — NN NNS PP — IN NP VBZ - raises

= Use deduction systems to prove parses from words
= Minimal grammar on “Fed raises” sentence: 36 parses
= Simple 10-rule grammar: 592 parses
= Real-size grammar: many millions of parses

= This scaled very badly, didn’t yield broad-coverage tools

Probabilistic Context-Free Grammars

= A context-free grammar is a tuple <N, T, S, R>
= N: the set of non-terminals
= Phrasal categories: S, NP, VP, ADJP, etc.
= Parts-of-speech (pre-terminals): NN, JJ, DT, VB
= T:the set of terminals (the words)
= S: the start symbol
= Often written as ROOT or TOP
= Not usually the sentence non-terminal S
= R:the setof rules
= Ofthe form X - Y, Y, ... Y, with X, Y, e N
= Examples: S - NP VP, VP —» VP CC VP
= Also called rewrites, productions, or local trees

= A PCFG adds:
= Atop-down production probability per rule P(Y; Y, ... Y, | X)

Treebank Sentences

((S (NP-SBJ The move)
(VP followed
(NP (NP a round)
(PP of
(NP (NP similar increases)

(PP by
(NP other lenders))

(PP against
(NP Arizona real estate loans)))))

(S-ADV (NP-SBJ *)
(VP reflecting
(NP (NP a continuing decline)
(PP-LOC in
(NP that market))))))

Treebank Grammars

Need a PCFG for broad coverage parsing.
Can take a grammar right off the trees (doesn’t work well):

Treebank Grammar Scale

ROOT
! ROOT - S 1
T~ S—>NPVP. 1
NP VP .
| - NP > PRP 1
PRP VBD ADJP .
[| VP — VBD ADJP 1
He was]

Better results by enriching the grammar (e.g., lexicalization).
Can also get reasonable parsers without lexicalization.

= Treebank grammars can be enormous

= As FSAs, the raw grammar has ~10K states, excluding the
lexicon

N-PBetter parsers usually make the grammars larger, not smaller

y
Ju]

Chomsky Normal Form

= Chomsky normal form:
= Allrules oftheform X > Y ZorX > w

= In principle, this is no limitation on the space of (P)CFGs
= N-ary rules introduce new non-terminals

VP
VP
N [VP - VBD NP PP o]
VBD NP PP PP : [VP > VBD NP]
vBD NP PP PP

= Unaries / empties are “promoted”
= In practice it's kind of a pain:

= Reconstructing n-aries is easy

= Reconstructing unaries is trickier

= The straightforward transformations don’t preserve tree scores
= Makes parsing algorithms simpler!

A Recursive Parser

bestScore(X,1i,3,s)
if (j = i+1)
return tagScore (X,s[i]
else
return max score (X->YZ) *
bestScore(Y,i,k) *
bestScore(Zz,k,J)

= Will this parser work?
= Why or why not?
= Memory requirements?

A Memoized Parser

= One small change:

bestScore(X,i,j,s)
if (scores[X][i][j] == null)
if (j = i+1)
score = tagScore (X,s[i])
else
score = max score (X->YZ) *
bestScore(Y,i,k) *
bestScore(Zz,k,j)
scores[X] [i] [J] = score
return scores[X][i][]]

A Bottom-Up Parser (CKY)

= Can also organize things bottom-up

bestScore (s)
for (i : [0,n-1])
for (X : tags[s[il])
score[X] [1] [i+1] =
tagScore (X,s[i])
for (diff : [2,n])
for (i : [0,n-diff])
j =i + diff
for (X->YZ : rule)
for (k : [i+1, j-1])
score[X] [i] [J] = max score[X][i][]],
score (X->YZ) *
score[Y] [i] [k] *

score[2] [k] []]

Unary Rules

= Unary rules?

bestScore(X,i,j,s)
if (§ = i+l1)
return tagScore(X,s[i])
else
return max max score (X->YZ) *
bestScore(Y,i,k) *
bestScore(Z,k,j)
max score (X->Y) *

bestScore (Y,i,3)

CNF + Unary Closure

= We need unaries to be non-cyclic
= Can address by pre-calculating the unary closure

= Rather than having zero or more unaries, always
have exactly one

VP

SBAR
vp —
e veD NP | SBAR
VBD N D | s = |
— NP | VP
DT NN — vp
DT NN

= Alternate unary and binary layers
= Reconstruct unary chains afterwards

Alternating Layers

bestScoreB(X,i,j,s)
return max max score (X->YZ) *
bestScoreU(Y,i, k) *
bestScoreU(Z,k,j)

bestScoreU(X,1i,j,s)
if (§ = i+l)
return tagScore(X,s[i])
else
return max max score (X->Y) *

bestScoreB(Y,i,3j)

Memory

= How much memory does this require?
= Have to store the score cache
= Cache size: |symbols|*n? doubles
= For the plain treebank grammar:
= X~ 20K, n =40, double ~ 8 bytes = ~ 256 MB
= Big, but workable.

= Pruning: Beams
= score[X][i][j] can get too large (when?)

= Can keep beams (truncated maps scorel[i][j]) which only store the best
few scores for the span [ij]

= Pruning: Coarse-to-Fine
= Use a smaller grammar to rule out most X([i,j]
= Much more on this later...

Time: Theory

= How much time will it take to parse?

= For each diff (<= n)
= For each i (<=n)
= Foreachrule X >Y Z
= For each split point k
Do constant work

= Total time: |rules|*n3

= Something like 5 sec for an unoptimized
parse of a 20-word sentences

Time: Practice

= Parsing with the vanilla treebank grammar:

~ 20K Rules

3 300 (notan
§ 2 .~ optimized
é 180 parser!)
‘; 120 Observed
< exponent:

60

o 3-6

0 10 20 30 40 50
Sentence Length

= Why’s it worse in practice?
= Longer sentences “unlock” more of the grammar
= All kinds of systems issues don’t scale

Same-Span Reachability

ADIP ADVP
FRAG INTJ NP
PPPRN QP S
SBAR UCP VP
WHNP

Rule State Reachability

Example: NP CC o

PO NP . .0—C .o 1Alignment
0 n-1 n

PSR | @@ mmm— - - - N Alignments

n-k-1 n-k n
= Many states are more likely to match larger spans!

Agenda-Based Parsing

= Agenda-based parsing is like graph search (but over a
hypergraph)
= Concepts:
= Numbering: we number fenceposts between words
= “Edges” or items: spans with labels, e.g. PP[3,5], represent the
sets of trees over those words rooted at that label (cf. search
states)
= A chart: records edges we've expanded (cf. closed set)
= An agenda: a queue which holds edges (cf. a fringe or open set)

PP

c e e e

critics write reviews 3 with 4 computers

Word Items

= Building an item for the first time is called discovery.
Iltems go into the agenda on discovery.
= Toinitialize, we discover all word items (with score 1.0).

AGENDA
critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5]

CHART [EMPTY]

[[J [J [J [J [J

0 1 2 3 4 5
critics write reviews with computers

Unary Projection

= When we pop a word item, the lexicon tells us the tag
item successors (and scores) which go on the agenda

critics[0,1] write[1,2] reviews[2,3] with[3,4] computers[4,5]
NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[4,5]

critics ‘1 write'2 reviews ‘3 with '4 computers

critics write reviews with computers

ltem Successors

= When we pop items off of the agenda:
= Graph successors: unary projections (NNS — critics, NP — NNS)

YIi,jl with X — Y forms Xi,j]

= Hypergraph successors: combine with items already in our chart
Y[i,jl and Z[j,k] with X — Y Z form X[i,k]

= Enqueue/ promote resulting items (if not in chart already)
= Record backtraces as appropriate X
= Stick the popped edge in the chart (closed set)

= Queries a chart must support:
= |s edge X:[i,j] in the chart? (Whatscore?)
= Whatedges with label Y end at position j?
= Whatedges with label Z start at position i?

An Example

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4] NP[0,1] VP[1,2] NP[2,3] NP[4,5] S[0,2]
VP[1,3] PP[3,5] ROOT[0,2] S[0,3] VP[1,5] NP[2,5] ROOT[0,3] S[0,5] ROOTI0,5]
ROOT

critics write reviews with computers

Empty Elements

= Sometimes we want to posit nodes in a parse tree that
don’t contain any pronounced words:
| want you to parse this sentence
Iwant[]to parse this sentence
= These are easy to add to a chart parser!

= For each position i, add the “word” edge &:ii]
= Add rules like NP — ¢ to the grammar

= That's it!
NP VP
(\ e
€ € € f € € N
a | Q like g to parse Q empties
0 1 2 3 4 5

UCS/A*

= With weighted edges, order matters
= Must expand optimal parse from
bottom up (subparses first)
CKY does this by processing
smaller spans before larger ones
UCS pops items off the agenda in
order of decreasing Viterbi score
A* search also well defined

= You can also speed up the search
without sacrificing optimality

= Can select which items to process
first

= Can do with any “figure of merit”
[Charniak 98]

= If your figure-of-merit is a valid A*
heuristic, no loss of optimiality
[Klein and Manning 03]

(Speech) Lattices

= There was nothing magical about words spanning
exactly one position.

= When working with speech, we generally don’t know
how many words there are, or where they break.

= We can represent the possibilities as a lattice and
parse these just as easily.

Non-Independence |

= Independence assumptions are often too strong.

All NPs NPs under S NPs under VP
21% 23%

119
% 9% 9% 9%
6% 7%
4%

NPPP DTNN PRP NPPP DTNN PRP NPPP DTNN PRP

= Example: the expansion of an NP is highly dependent
on the parent of the NP (i.e., subjects vs. objects).

= Also: the subject and object expansions are correlated!

Non-Independence Il

= Who cares?
= NB, HMMs, all make false assumptions!
= For generation, consequences would be obvious.
= For parsing, does it impact accuracy?
NP
= Symptoms of overly strong assumptions: P
= Rewrites get used where they don’t belong. /NP\]ll NlN
= Rewrites get used too often or too rarely. NNP POS new ad

Breaking Up the Symbols

= We can relax independence assumptions by
encoding dependencies into the PCFG symbols:

Parent annotation Marking

[Johnson 98] possessive NPs
SROOT NP
N~

NP'S VP'S . NP-POS I NN
| A | N |

PRP VBD ADVP'VP . NNP POS new ad
VAN 1

He was right Fidelity s

= What are the most useful “features” to encode?

Fidelity 's
NP :
In the PTB, this
NP ,
P Np/ m construction is
NNP NNP i} NN PN | | for possessives
[| | NNP NNP \ composite ~ trading
Big Board composite trading | |
Big Board
= Lexical heads important for certain classes
of ambiguities (e.g., PP attachment): VP-announce

announce NP-rates PP-in
Lexicalizing grammar creates a much
larger grammar. (cf. next week)

= Sophisticated smoothing needed

= Smarter parsing algorithms

= More data needed

rates i January

'VP-announce

announce NP-rates
How necessary is lexicalization? ,,,mm
= Bilexical vs. monolexical selection
Tor January

= Closed vs. open class lexicalization

Typical Experimental Setup

= Corpus: Penn Treebank, WSJ

Training: sections 02-21
Test: section 23

= Accuracy — F1: harmonic mean of per-node labeled
precision and recall.

= Here: also size — number of symbols in grammar.
= Passive / complete symbols: NP, NPAS
= Active / incomplete symbols: NP — NP CC e

Horizontal Markovization

Order 1 Order 00
NP
P NP
T~ NP NPSNNPe
NNP NNP NNP NNP Nw' o~
NKP NP-5. NNPe NNP - NP-sNNP NNPe
NP NNP
. 12000
73% - @ 9000 +
o

72% 1 € 6000 |
71% A 3 3000 -
70% - 0 -

0 1 2v 2 inf 0 1 2 2 inf

Horizontal Markov Order Horizontal Markov Order

Vertical Markovization

Vertical and Horizontal

80%

78%

76%

74%

72% 3
70% 5000
68% 2 Vertical

3

Symbols
a
=]
=3
=3
3

2 vertical

. Order 1 Order 2
= Vertical Markov
order: rewrites s SROOT
depend on past k e
ancestor nodes. o | |
PRP VBD ADJP . PRP VBD ADVP'VP .
(cf. parent
annotation) ;lg wlas % fL wlas right
79% 25000
e% ,, 20000
76% g 15000
75% € 10000
-7,34: i 5000
2% 0
1 v 2 3v 3 1 2v 2 3v 3
Vertical Markov Order Vertical Markov Order
Unary Splits
= Problem: unary ROIOT
rewrites used to s
T
transmute NP VP .
. /\
categoriessoa L s < |
. . o
hlgh prObabIIIty Ruwlvnw wlns NP . PP
rule can be | |
Qr ., VBG NP
used.

$444.9 million including net interest

= Solution: Mark

unary rewrite Anmotation |F1__ | size

sites with -U Base 778 |75K

UNARY 78.3 |8.0K

66% Ord 1 Order
O 12y 5 ¢ - Ot g
Horizontal Order n Horizontal Order
= Examples:
= Raw treebank: v=1, h=x
= Johnson 98: v=2, h=o0 -
= Collins 99: v=2, h=2 Model F1 Size
= BestF1: v=3, h=2v Base: v=h=2v 77.8 |7.5K
Tag Splits
= Problem: Tri nk P
oble eeba o~
tags are too coarse. Tlo VP
to VB SBAR
E le: Sentential : IN”SNT/\S
= Example: Sentential, se
P PN
PP, and other i va vlp
prepositions are all NN VBZ
marked IN. advertising works
= Partial Solution: Annotation F1 Size
* Subdivide the IN tag. Previous |78.3 |8.0K
SPLIT-IN 80.3 |[8.1K

Other Tag Splits

A Fully Annotated (Unlex) Tree

ROOT
SROOT-v

“S NPSB VP'S VBFy 75 s
| | T T~ ||
* DTUNP VBZBEVP NPVPB P

This is NN'NP NN"NP

panic buying

F1 Size
UNARY-DT: mark demonstratives as DTAU 80.4 |8.1K
(“the X" vs. “those”)
UNARY-RB: mark phrasal adverbs as RBAU [80.5 [8.1K
(“quickly” vs. “very”)
TAG-PA: mark tags with non-canonical 81.2 |8.5K
parents (“not” is an RBAVP)
SPLIT-AUX: mark auxiliary verbs with —AUX [81.6 |9.0K
[cf. Charniak 97]
SPLIT-CC: separate “but” and “&” from other [81.7 [9.1K
conjunctions
SPLIT-%: “%” gets its own tag. 81.8 |9.3K
Some Test Set Results
Parser LP LR F1 CB 0CB
Magerman 95 (84.9 |84.6 |84.7 [1.26 |56.6
Collins 96 86.3 |85.8 |86.0 [1.14 |59.9
Unlexicalized [86.9 |85.7 |86.3 |[1.10 |60.3
Charniak 97 (87.4 |87.5 |87.4 |1.00 |62.1
Collins 99 88.7 |88.6 [88.6 |0.90 |67.1

= Beats “first generation” lexicalized parsers.

= Lots of room to improve — more complex models next.

