Statistical NLP
Spring 2009

University of
California J\/

N L E

Berkeley

Lecture 15: Parsing Il

Dan Klein — UC Berkeley

Classical NLP: Parsing

= Write symbolic or logical rules:

Grammar (CFG) Lexicon
ROOT —» S NP — NP PP NN — interest
S > NP VP VP — VBP NP NNS — raises
NP — DT NN VP — VBP NP PP VBP — interest
NP — NN NNS PP — IN NP VBZ — raises

= Use deduction systems to prove parses from words
= Minimal grammar on “Fed raises” sentence: 36 parses
= Simple 10-rule grammar: 592 parses
= Real-size grammar: many millions of parses

= This scaled very badly, didn’t yield broad-coverage tools

Probabilistic Context-Free Grammars

= A context-free grammar is a tuple <N, T, S, R>
= N :the set of non-terminals
= Phrasal categories: S, NP, VP, ADJP, etc.
= Parts-of-speech (pre-terminals): NN, JJ, DT, VB
= T:the set of terminals (the words)
= S the start symbol
= Often written as ROOT or TOP
= Not usually the sentence non-terminal S
= R:the set of rules
= Oftheform X > Y, Y, ... Y, with X, Y, e N
= Examples: S - NP VP, VP — VP CC VP
= Also called rewrites, productions, or local trees

= APCFG adds:
= A top-down production probability per rule P(Y; Y, ... Y, | X)

Treebank Sentences

((S (NP-SBJ The move)
(VP followed
(NP (NP a round)
(PP of
(NP (NP similar 1increases)

(PP by
(NP other Tlenders))

(PP against
(NP Arizona real estate loans)))))

(S-ADV (NP-SB] *)
(VP reflecting
(NP (NP a continuing decline)
(PP-LOC 1in
(NP that market))))))
)

Treebank Grammars

= Need a PCFG for broad coverage parsing.
= Can take a grammar right off the trees (doesn’t work well):

ROOT
S[ROOT — S 1
T~ S—> NPVP. 1
NP VP .
FO ‘ NP> PRP |
PRP VBD ADJP .
o VP - VBD ADJP 1
He was 7]
) g|m

= Better results by enriching the grammar (e.g., lexicalization).
= Can also get reasonable parsers without lexicalization.

Treebank Grammar Scale

» Treebank grammars can be enormous

= As FSAs, the raw grammar has ~10K states, excluding the
lexicon

N-PBetter parsers usually make the grammars larger, not smaller

\&\U\

Chomsky Normal Form

= Chomsky normal form:
= Allrules ofthe form X > Y Zor X > w

= In principle, this is no limitation on the space of (P)CFGs
= N-ary rules introduce new non-terminals

VP
[VP —> VBD NP PP o]
VBD NP PP PP : [VPHVBD NPl
5 NP PP PP

= Unaries / empties are “promoted”
= In practice it's kind of a pain:

= Reconstructing n-aries is easy

= Reconstructing unaries is trickier

= The straightforward transformations don’t preserve tree scores
= Makes parsing algorithms simpler!

A Recursive Parser

bestScore (X,1i,3,s)
if (j = i+1)
return tagScore(X,s[i])
else
return max score (X->YZ) *
bestScore(Y,i, k) *
bestScore (Z,k, j)

= Will this parser work?
= Why or why not?
= Memory requirements?

A Memoized Parser

= One small change:

bestScore (X,1i,3,s)
if (scores[X][i][j] == null)
if (3 = i+1)
score = tagScore (X,s[i])
else
score = max score (X->YZ) *
bestScore(Y,i,k) *
bestScore (Z,k, j)
scores[X] [i][j] = score
return scores[X][i][]j]

A Bottom-Up Parser (CKY)

= Can also organize things bottom-up

bestScore (s)
for (i : [0,n-1])
for (X : tags[s[i]l])
score[X] [1i] [i+1] =
tagScore (X,s[i])
for (diff : [2,n])
for (i : [0,n-diff])
j =i+ diff
for (X->YZ : rule)
for (k : [i+1l, j-1])
score[X][i][j] = max score[X][i][]j],
score (X->YZ) *
score[Y] [i] [k] *
score[Z] [k][]]

Unary Rules

= Unary rules?

bestScore (X,i,j,s)
if (J = i+1)
return tagScore(X,s[i])
else
return max max score (X->YZ) *
bestScore(Y,i,k) *
bestScore (Z,k, j)
max score (X->Y) *
bestScore(Y,1i,])

CNF + Unary Closure

» We need unaries to be non-cyclic
= Can address by pre-calculating the unary closure

= Rather than having zero or more unaries, always
have exactly one

VP
w v SBAR
VBD N = | s (— |
—~— NP | VP
DT NN —~ VP
DT NN

= Alternate unary and binary layers
= Reconstruct unary chains afterwards

Alternating Layers

bestScoreB(X,i,],s)
return max max score (X->YZ) *
bestScoreU(Y,i, k) *
bestScoreU(Z,k, j)

bestScoreU(X,i,],s)
if (J = i+1)
return tagScore(X,s[i])
else
return max max score (X->Y) *
bestScoreB(Y,1i,])

Memory

= How much memory does this require?
= Have to store the score cache
= Cache size: |symbols|*nZ doubles

= For the plain treebank grammar:
= X~ 20K, n =40, double ~ 8 bytes = ~ 256MB
= Big, but workable.

= Pruning: Beams
= score[X][i][j] can get too large (when?)
= Can keep beams (truncated maps scoreli][j]) which only store the best
few scores for the span [i,j]

= Pruning: Coarse-to-Fine
= Use a smaller grammar to rule out most X[i,j]
= Much more on this later...

Time: Theory

= How much time will it take to parse?

» For each diff (<= n)

= Foreachi(<=n)
= Foreachrule X >YZ
= For each split point k
Do constant work

= Total time: |rules|*n3

» Something like 5 sec for an unoptimized
parse of a 20-word sentences

Time: Practice

» Parsing with the vanilla treebank grammar:

360 ~ 20K Rules
' (notan
240 | —— optimized
180 parser!)
Observed
exponent:
10 20 30 40 50

Sentence Length

&
=]
=]

Avg. Time (seconds)
]
[=]

=2}
[=]

[=]

= Why’s it worse in practice?
= Longer sentences “unlock” more of the grammar
= All kinds of systems issues don’t scale

Same-Span Reachability

ADIP ADVP
FRAG INT] NP
PPPRNQP S
SBAR UCP VP
WHNP

Rule State Reachability

Example: NP CC o

PO N e -e—CC .o 1Alignment

0 n-1 n

PO A A @@ —m = = -e N Alignments

n- n
= Many states are more likely to match larger spans!

Agenda-Based Parsing

= Agenda-based parsing is like graph search (but over a
hypergraph)
= Concepts:
= Numbering: we number fenceposts between words
= “Edges” or items: spans with labels, e.g. PP[3,5], represent the
sets of trees over those words rooted at that label (cf. search
states)
= A chart: records edges we’ve expanded (cf. closed set)
= An agenda: a queue which holds edges (cf. a fringe or open set)

PP

critics ® write ® reviews with ® computers

Word Items

= Building an item for the first time is called discovery.
Items go into the agenda on discovery.

= Toinitialize, we discover all word items (with score 1.0).

AGENDA

critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5]

CHART [EMPTY]

o o o o o o

0 1 2 3 4 5
critics write reviews with computers

10

Unary Projection

= When we pop a word item, the lexicon tells us the tag
item successors (and scores) which go on the agenda

critics[0,1] write[1,2] reviews[2,3] with[3,4] computers[4,5]

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[4,5]
® critics ® write ® reviews ® with ® computers ®
0 1 2 3 4 5

critics write reviews with computers

ltem Successors

= When we pop items off of the agenda:
= Graph successors: unary projections (NNS — critics, NP — NNS)

Y[i,j] with X — Y forms X[i,j]

= Hypergraph successors: combine with items already in our chart
Y[i,jl and Z[j,k] with X — Y Z form X[i,k]

= Enqueue / promote resulting items (if not in chart already)
= Record backtraces as appropriate X
Stick the popped edge in the chart (closed set)

= Queries a chart must support:
= Is edge X[i,j] in the chart? (What score?)
= What edges with label Y end at position j?
= What edges with label Z start at position i?

11

An Example

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4] NP[0,1] VP[1,2] NP[2,3] NP[4,5] S[0,2]
VP[1,3] PP[3,5] ROOT[0,2] S[0,3] VP[1,5] NP[2,5] ROOT[0,3] S[0,5] ROOTI[0,5]
ROOT

Empty Elements

= Sometimes we want to posit nodes in a parse tree that
don’t contain any pronounced words:
| want you to parse this sentence
Iwant[]to parse this sentence
= These are easy to add to a chart parser!

= For each position i, add the “word” edge &]i,i]
= Add rules like NP — ¢ to the grammar

= That's it!
NP VP
€ € € € € €
Q | g like to parse empties
0 1 3 4 5

12

UCS /A*

= With weighted edges, order matters

= Must expand optimal parse from
bottom up (subparses first)

= CKY does this by processing
smaller spans before larger ones

= UCS pops items off the agenda in
order of decreasing Viterbi score

= A* search also well defined

= You can also speed up the search
without sacrificing optimality

= Can select which items to process
first

= Can do with any “figure of merit”
[Charniak 98]

= If your figure-of-merit is a valid A*
heuristic, no loss of optimiality
[Klein and Manning 03]

(Speech) Lattices

» There was nothing magical about words spanning
exactly one position.

» When working with speech, we generally don’'t know
how many words there are, or where they break.

» We can represent the possibilities as a lattice and
parse these just as easily.

Ivan

eyes

m awe
|

saw ‘ve van

13

Non-Independence |

» |Independence assumptions are often too strong.

All NPs NPs under S NPs under VP
0,
21% 23%
11%
9% 9% 9%
6% 7%
4%
NP PP DTNN NP PP DT NN PRP NP PP DT NN

= Example: the expansion of an NP is highly dependent
on the parent of the NP (i.e., subjects vs. objects).

= Also: the subject and object expansions are correlated!

Non-Independence I

= Who cares?
= NB, HMMs, all make false assumptions!
= For generation, consequences would be obvious.
= For parsing, does it impact accuracy?

NP

= Symptoms of overly strong assumptions: Pl

= Rewrites get used where they don’t belong. /NP\]|] NlN

= Rewrites get used too often or too rarely. NNP POS new ad

Fidelity s

NP In the PTB, this

/K NP/ m construction is

NNP NNP I NN AN &Ssesswes
| | | | NNP NNP \ composite trading

Big Board composite trading | |
Big Board

14

Breaking Up the Symbols

» We can relax independence assumptions by
encoding dependencies into the PCFG symbols:

Parent annotation Marking
Johnson 98] possessive NPs
STROOT NP
NP'S VP'S . NP-POS J] NN
||
PRP VBD ADVPVP . NNP POS wnew ad
| | AN 1
He was right Fidelity s

= \What are the most useful “features” to encode?

Lexicalization

Lexical heads important for certain classes
of ambiguities (e.g., PP attachment): VP-announce

announce WNP-rates PP-in
Lexicalizing grammar creates a much | =~
rafes in January
larger grammar. (cf. next week)
= Sophisticated smoothing needed
= Smarter parsing algorithms

VP-announce

= More data needed
T
announce N'P—rates
How necessary is lexicalization? m,gs/ }rj_ﬁ,r

= Bilexical vs. monolexical selection
= Closed vs. open class lexicalization

Sfor January

15

Typical Experimental Setup

= Corpus: Penn Treebank, WSJ

Training: sections 02-21

Test: section 23

= Accuracy — F1: harmonic mean of per-node labeled
precision and recall.
= Here: also size — number of symbols in grammar.
= Passive / complete symbols: NP, NPAS
= Active / incomplete symbols: NP — NP CC »

Horizontal Markovization

Order 1 Order 00
NP
NP
NP
NNP NP-—... NNPe NNP NP—NNPe

NNP NNP NNP
NNP NP—NNP NNPe

| NNP

NNP NP—... NNPe

NNP
74% 12000
73% w 9000
°
72% -g 6000
S
1% 3000 ~
70% 0 A
0 1 2v 2 inf 0 1 2v 2 inf
Horizontal Markov Order Horizontal Markov Order

16

Vertical Markovization

. Order 1
= Vertical Markov

order: rewrites s

depend on past k G T

ancestor nodes. | |

PRP VBD ADJP .

(cf. parent | 21

annotation) He was right
79% 25000 +
78% - il
77% | P 20000
76% - 'S 15000 -
75% € 10000 -
] “ 5000 -
72% -t 0

1 2v. 2 3 3
Vertical Markov Order

Order 2
SROOT

NPS VPSS

PRP VED ADVP'VP .

I AN

He was right

1 2v 2 3v 3
Vertical Markov Order

Vertical and Horizontal

80%

78%
76%
74%
72%
70%
68%
66%
0

3

2 Vertical
Order

2v 2

inf

Horizontal Order

= Examples:

Symbols

3

2 Vertical
Order

1

0 2V 2 jnf

1

Horizontal Order

= Raw treebank:
= Johnson 98:

= Collins 99: Model F1

Size

2
=2v Base: v=h=2v 77.8

= Best F1:

7.5K

17

Unary Splits

= Problem: unary RO|OT
rewrites used to S
T
transmute NP Vb :
i /‘\
categoriessoa |, s . |
i - ili M\
hlgh prObabIIIty Revlnue wlas NP , PP
rule can be | |
used. x e X
. $ 444.9 million including net interest
= Solution: Mark 8
u.rtlary ri\}:vrﬁe Annotation F1 Size
SItes wi Base 77.8 7.5K
UNARY 78.3 |8.0K
Tag Splits
= Problem: Treebank vP
tags are too coarse. TiD VP
to VB SBAR
= Example: Sentential, IN”]iNT S
PP, and other g NPwp
prepositions are all W vz
marked IN adverfismg zr)olrks
= Partial Solution: Annotation |F1 _ |Size
= Subdivide the IN tag. Previous 783 |8.0K
SPLIT-IN 80.3 |[8.1K

18

Other Tag Splits

F1 Size

= UNARY-DT: mark demonstratives as DTAU 804 |8.1K
(“the X” vs. “those”)

= UNARY-RB: mark phrasal adverbs as RBAU [80.5 |8.1K
(“quickly” vs. “very”)

= TAG-PA: mark tags with non-canonical 81.2 |8.5K
parents (“not” is an RBAVP)

= SPLIT-AUX: mark auxiliary verbs with —AUX [81.6 |9.0K
[cf. Charniak 97]

= SPLIT-CC: separate “but” and “&” from other [81.7 |9.1K
conjunctions

= SPLIT-%: “%" gets its own tag. 81.8 |9.3K

A Fully Annotated (Unlex) Tree

ROOT
|
SROOT-v

“S NP'SB VP'S VBE-v 5 7S
| | T~ .
“ DTUNP VBZBEVP NPVPB 1o

| | N

This is NNNP NN'NP

paric buying

19

Some Test Set Results

Parser LP LR F1 CB 0CB
Magerman 95 |84.9 |84.6 [84.7 |1.26 |56.6
Collins 96 86.3 |85.8 [86.0 |1.14 |59.9
Unlexicalized [86.9 |85.7 |86.3 [1.10 |60.3
Charniak 97 |87.4 |87.5 |87.4 |1.00 |62.1
Collins 99 88.7 |88.6 |88.6 |0.90 |67.1

= Beats “first generation” lexicalized parsers.
= Lots of room to improve — more complex models next.

20

