Statistical NLP
Spring 2009

University of
California

N O E

Berkeley

Lecture 13: Parsing |

Dan Klein — UC Berkeley

Phrase Structure Parsing

= Phrase structure parsing
organizes syntax into
constituents or brackets

NPy VP
o [l S
= In general, this involves DT NN P Tises to ...
| | —_—
nested trees The velocity IN NPy

1
of the seismic waves

= Linguists can, and do,
argue about details
= Lots of ambiguity s
/\ VP
Not the only kind of NP

PP
NP
syntax. .. ﬁ N ‘ ﬁNP
~ |

new art critics write reviews with computers

Example Parse

Hurricane Emily howled toward Mexico 's Caribbean
coast on Sunday packing 135 mph winds and
torrential rain and causing panic in Cancun , where
frightened tourists squeezed into musty shelters .

Constituency Tests

= How do we know what nodes go in the tree?

= Classic constituency tests:
= Substitution by proform

= Question answers T
. NP P

= Semantic gounds PN o~

- COherence DT NNS P rp

= Reference Tl‘ve thMLren \\m/\w i) NP

= |dioms (AN

. . ate DT NN with DT NN
= Dislocation [|
. Conjunction the cake a spoon

= Cross-linguistic arguments, too

Conflicting Tests

= Constituency isn’t always clear
= Units of transfer:

= think about ~ penser a

= talk about ~ hablar de
NPy,

. . DT NN PP
= Phonological reduction: The velocity 1N New
. ’ e ———
= | willgo — I'll go of Theselsmicwaves

= | want to go — | wanna go
= ale centre — au centre La vélocité des ondes sismiques
= Coordination

= He went to and came from the store.

Non-Local Phenomena

= Dislocation / gapping
= Why did the postman think that the neighbors were home?
= A debate arose which continued until the election.

= Binding ’
= Reference - =)
= The IRS audits itself s S
= Control Whichbook MD S

| e
should NP VP
/ \‘\ /,/ \\
Peter VB NP
I

e

= | want to go
= | want you to go

buy

Regularity of Rules

= Argumentation
= Adjunction
= Coordination

NP
= X' Theory b N
the /\Vl;x)) N
L/h’//'lm“\"; I\/ i Iil’

study of subcategorization

PP Attachment

S S
e T
NP W NP P
T W i e
) S
DT NNS VP PP 4 D
| | T
| The children ate NP I
The children VED NP I N AL~
DT ONN N NP
ate DT NN with DT NN | | | PN
‘ ‘ the cake with DT NN
the cake 2 spoon |

a spoon

The board approved [ithacquisitionNby Royal Trustco Ltd.]
of Toronto]

[for $27 a share]

at its monthly meeting].

PP Attachment

v N1 P N2 Attachment

join board as director V

is chairman of N.V. N

using crocidolite in filters V

bring attention to problem V

is asbestos in products N

making paper for filters N

including three with cancer N
Method Accuracy
Always noun attachment 59.0
Most likely for each preposition 722
Average Human (4 head words only) 88.2
Average Human (whole sentence) 93.2

Attachments

| cleaned the dishes from dinner
| cleaned the dishes with detergent
| cleaned the dishes in my pajamas

| cleaned the dishes in the sink

Syntactic Ambiguities |

= Prepositional phrases:
They cooked the beans in the pot on the stove with
handles.

= Particle vs. preposition:
The puppy tore up the staircase.

= Complement structures
The tourists objected to the guide that they couldn’t hear.
She knows you like the back of her hand.

= Gerund vs. participial adjective
Visiting relatives can be boring.
Changing schedules frequently confused passengers.

Syntactic Ambiguities Il

Modifier scope within NPs
impractical design requirements
plastic cup holder

Multiple gap constructions
The chicken is ready to eat.
The contractors are rich enough to sue.

Coordination scope:
Small rats and mice can squeeze into holes or cracks in
the wall.

Human Processing

= Garden pathing:
the man who hunts ducks out on weekends
the cotton shirts are made [rom grows in Mississippi

the danghter of the king’s son loves himsell

= Ambiguity maintenance

Have the police ... eaten their supper?
come in and look around.
taken out and shot.

Classical NLP: Parsing

= Write symbolic or logical rules:

Grammar (CFG) Lexicon
ROOT —» § NP — NP PP NN — interest
S —NPVP VP — VBP NP NNS — raises
NP — DT NN VP — VBP NP PP VBP — interest
NP — NN NNS PP — IN NP VBZ - raises

= Use deduction systems to prove parses from words
= Minimal grammar on “Fed raises” sentence: 36 parses
= Simple 10-rule grammar: 592 parses
= Real-size grammar: many millions of parses

= This scaled very badly, didn’t yield broad-coverage tools

Probabilistic Context-Free Grammars

= A context-free grammar is a tuple <N, T, S, R>
= N: the set of non-terminals
= Phrasal categories: S, NP, VP, ADJP, etc.
= Parts-of-speech (pre-terminals): NN, JJ, DT, VB
= T:the set of terminals (the words)
= S: the start symbol
= Often written as ROOT or TOP
= Not usually the sentence non-terminal S
= R:the setof rules
= Ofthe form X - Y, Y, ... Y, with X, Y, e N
= Examples: S - NP VP, VP —» VP CC VP
= Also called rewrites, productions, or local trees

= A PCFG adds:
= Atop-down production probability per rule P(Y; Y, ... Y, | X)

Treebank Sentences

((S (NP-SBJ The move)
(VP followed
(NP (NP a round)
(PP of
(NP (NP similar increases)

(PP by
(NP other lenders))

(PP against
(NP Arizona real estate loans)))))

(S-ADV (NP-SBJ *)
(VP reflecting
(NP (NP a continuing decline)
(PP-LOC in
(NP that market))))))

Treebank Grammars

= Need a PCFG for broad coverage parsing.
= Can take a grammar right off the trees (doesn’t work well):

Treebank Grammar Scale

ROOT
! ROOT - S 1
T~ S—>NPVP. 1
NP VP .
| - NP > PRP 1
PRP VBD ADJP .
[| VP — VBD ADJP 1
He was]

= Better results by enriching the grammar (e.g., lexicalization).
= Can also get reasonable parsers without lexicalization.

= Treebank grammars can be enormous

= As FSAs, the raw grammar has ~10K states, excluding the
lexicon

N-PBetter parsers usually make the grammars larger, not smaller

y
Ju]

Dark Ambiguities

Chomsky Normal Form

= Dark ambiguities: most analyses are shockingly bad
(meaning, they don’t have an interpretation you can

get your mind around) ROOT
;
This analysis corresponds M\
to the correct parse of P ™
“This will panic buyers !'” T,]“.S ,L \,B/\NI,
panic NN
buying

= Unknown words and new usages

= Solution: We need mechanisms to focus attention on
the best ones, probabilistic techniques do this

= Chomsky normal form:
= Allrules oftheform X > Y ZorX > w
= In principle, this is no limitation on the space of (P)CFGs
= N-ary rules introduce new non-terminals

\id

VP
N : [VP > VBD NP PP o]
VBD NP PP PP [VP > VBD NP]
VBD NP PP PP

= Unaries / empties are “promoted”
= In practice it's kind of a pain:

= Reconstructing n-aries is easy

= Reconstructing unaries is trickier

= The straightforward transformations don’t preserve tree scores
= Makes parsing algorithms simpler!

A Recursive Parser

A Recursive Parser

= Here’s a recursive (CNF) parser:

bestParse (X,i,j,s)
if (j = i+1)
return X -> s[i]

(X->YZ,k) = argmax score (X->YZ) *
bestScore(Y,i,k,s) *
bestScore(Z,k,j,s)

parse.parent = X

parse.leftChild = bestParse(Y,i, k,s)

parse.rightChild = bestParse(Z,k,Jj,s)

return parse

bestScore (X,i,3,s)
if (j = i+1)
return tagScore (X,s[i])
else
return max score (X->YZ) *
bestScore (Y,i, k) *
bestScore (Z,k,J)

= Will this parser work?
= Why or why not?
= Memory requirements?

A Memoized Parser

Memory: Theory

= One small change:

bestScore (X,i,j,s)
if (scores[X][i][j] == null)
if (j = i+1)
score = tagScore(X,s[i])
else
score = max score (X->YZ) *
bestScore(Y,i,k) *
bestScore(Z,k,J)
scores[X] [i] [J] = score

return scores([X][i][j]

= How much memory does this require?
= Have to store the score cache
= Cache size: [symbols|*n? doubles

= For the plain treebank grammar:
= X ~ 20K, n =40, double ~ 8 bytes = ~ 256MB
= Big, but workable.

= What about sparsity?

Time: Theory

= How much time will it take to parse?
= Have to fill each cache element (at worst)
= Each time the cache fails, we have to:

= |terate over each rule X — Y Z and split point k
= Do constant work for the recursive calls

= Total time: |rules|*n3
= Cubic time

= Something like 5 sec for an unoptimized
parse of a 20-word sentences

Unaries in Grammars

TOP TOP TOP TOP TOP
| | |
S-HLN S S S
PN N |
NP-SUB] VP NP VP VP
| | |
-NONE- VB -NONE- VB VB VB
N |
€ Atone € Atone Atone Atone Atone
PTBTree NoTransform NoEmpties ~ High Low
NoUnaries

Unary Rules

= Unary rules?

bestScore (X,i,j,s)
if (j = i+1)
return tagScore (X,s[i])
else
return max max score (X->YZ) *
bestScore(Y,i, k) *
bestScore(Zz,k,J)
max score (X->Y) *
bestScore(Y,i,]j)

CNF + Unary Closure

= We need unaries to be non-cyclic
= Can address by pre-calculating the unary closure

= Rather than having zero or more unaries, always
have exactly one

v
w L SBAR
— VBD NP I SBAR
VBD [I s = !
— NP | VP
DT NN — vP
DT NN

= Alternate unary and binary layers
= Reconstruct unary chains afterwards

Same-Span Reachability

ADIP ADVP
FRAG INTJ NP
PPPRN QP S
SBAR UCP VP
WHNP

Alternating Layers

bestScoreB(X,1i,j,s)
return max max score (X->YZ) *
bestScoreU(Y,i,k) *
bestScoreU(Z,k,j)

bestScoreU(X,i,j,s)
if (J = i+1)
return tagScore(X,s[i])
else
return max max score (X->Y) *
bestScoreB(Y,i,Jj)

A Bottom-Up Parser (CKY)

= Can also organize things bottom-up

bestScore(s)
for (i : [0,n-1])
for (X : tags[s[il])
score[X] [i][i+1] =
tagScore (X,s[i])
for (diff : [2,n])
for (i : [0,n-diff])
j =i+ diff
for (X->YZ : rule)
for (k : [i+1, j-1])
score[X][i][j] = max score[X][i][]j],
score (X->YZ) *
score[Y] [i] [k] *
score[Z] [k] []]

Efficient CKY

= Lots of tricks to make CKY efficient

= Most of them are little engineering details:

= E.g., first choose k, then enumerate through the Y:[i,k] which
are non-zero, then loop through rules by left child.

= Optimal layout of the dynamic program depends on
grammar, input, even system details.

= Another kind is more critical:

= Many X:[i,j] can be suppressed on the basis of the input
string

= We'll see this next class as figures-of-merit or A* heuristics

Memory: Practice

= Memory:
= Still requires memory to hold the score table

= Pruning:
= score[X][i][j] can get too large (when?)
= can instead keep beams scores]i][j] which

only record scores for the top K symbols
found to date for the span [i,j]

Time: Theory

= How much time will it take to parse?

= For each diff (<= n)
= For each i (<=n)
= Foreachrule X > Y Z
= For each split point k
Do constant work

= Total time: |rules|*n3

Runtime: Practice

= Parsing with the vanilla treebank grammar:

~ 20K Rules
00 (not an
240 .— optimized
parser!)
120 Observed
exponent:
60
’ 3.6

o 10 20 30 40 50
Sentence Length

Avg. Time (seconds)
>
g

= Why’s it worse in practice?
= Longer sentences “unlock” more of the grammar
= All kinds of systems issues don’t scale

Rule State Reachability

Example: NP CC o

PO NP . .0—C .o 1Alignment

0 n-1 n

PSR | @@ mmm— - - - N Alignments

= Many states are more likely to match larger spans!

