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Lecture 13: Parsing I

Dan Klein – UC Berkeley

Phrase Structure Parsing

� Phrase structure parsing 

organizes syntax into 

constituents or brackets

� In general, this involves 

nested trees

� Linguists can, and do, 

argue about details

� Lots of ambiguity

� Not the only kind of 

syntax…

new art critics write reviews with computers
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Example Parse

Hurricane Emily howled toward Mexico 's Caribbean 
coast on Sunday packing 135 mph winds and 

torrential rain and causing panic in Cancun , where 
frightened tourists squeezed into musty shelters .

Constituency Tests

� How do we know what nodes go in the tree?

� Classic constituency tests:
� Substitution by proform

� Question answers

� Semantic gounds
� Coherence

� Reference

� Idioms

� Dislocation

� Conjunction

� Cross-linguistic arguments, too

Conflicting Tests

� Constituency isn’t always clear

� Units of transfer:

� think about ~ penser à

� talk about ~ hablar de

� Phonological reduction:

� I will go → I’ll go

� I want to go → I wanna go

� a le centre → au centre

� Coordination

� He went to and came from the store.

La   vélocité  des ondes sismiques

Non-Local Phenomena

� Dislocation / gapping
� Why did the postman think that the neighbors were home?

� A debate arose which continued until the election.

� Binding
� Reference

� The IRS audits itself

� Control
� I want to go

� I want you to go
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Regularity of Rules

� Argumentation

� Adjunction

� Coordination

� X’ Theory

PP Attachment

PP Attachment Attachments

� I cleaned the dishes from dinner

� I cleaned the dishes with detergent

� I cleaned the dishes in my pajamas

� I cleaned the dishes in the sink

Syntactic Ambiguities I

� Prepositional phrases:
They cooked the beans in the pot on the stove with 
handles.

� Particle vs. preposition:
The puppy tore up the staircase.

� Complement structures
The tourists objected to the guide that they couldn’t hear.
She knows you like the back of her hand.

� Gerund vs. participial adjective
Visiting relatives can be boring.
Changing schedules frequently confused passengers.

Syntactic Ambiguities II

� Modifier scope within NPs
impractical design requirements
plastic cup holder

� Multiple gap constructions
The chicken is ready to eat.
The contractors are rich enough to sue.

� Coordination scope:
Small rats and mice can squeeze into holes or cracks in 
the wall.



3

Human Processing

� Garden pathing:

� Ambiguity maintenance

Classical NLP: Parsing

� Write symbolic or logical rules:

� Use deduction systems to prove parses from words
� Minimal grammar on “Fed raises” sentence: 36 parses

� Simple 10-rule grammar: 592 parses

� Real-size grammar: many millions of parses

� This scaled very badly, didn’t yield broad-coverage tools

Grammar (CFG) Lexicon

ROOT → S

S → NP VP

NP → DT NN

NP → NN NNS

NN → interest

NNS → raises

VBP → interest

VBZ → raises

…

NP → NP PP

VP → VBP NP

VP → VBP NP PP

PP → IN NP

Probabilistic Context-Free Grammars

� A context-free grammar is a tuple <N, T, S, R>
� N : the set of non-terminals

� Phrasal categories: S, NP, VP, ADJP, etc.

� Parts-of-speech (pre-terminals): NN, JJ, DT, VB

� T : the set of terminals (the words)

� S : the start symbol

� Often written as ROOT or TOP

� Not usually the sentence non-terminal S

� R : the set of rules

� Of the form X → Y1 Y2 … Yk, with X, Yi ∈ N

� Examples: S → NP VP,   VP → VP CC VP

� Also called rewrites, productions, or local trees

� A PCFG adds:
� A top-down production probability per rule P(Y1 Y2 … Yk | X)

Treebank Sentences

Treebank Grammars

� Need a PCFG for broad coverage parsing.

� Can take a grammar right off the trees (doesn’t work well):

� Better results by enriching the grammar (e.g., lexicalization).

� Can also get reasonable parsers without lexicalization.

ROOT → S 1

S → NP VP . 1

NP → PRP 1

VP → VBD ADJP 1

…..

PLURAL NOUN

NOUNDET

DET

ADJ

NOUN

NP NP

CONJ

NP PP

Treebank Grammar Scale

� Treebank grammars can be enormous
� As FSAs, the raw grammar has ~10K states, excluding the 

lexicon

� Better parsers usually make the grammars larger, not smaller
NP
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Dark Ambiguities

� Dark ambiguities: most analyses are shockingly bad 
(meaning, they don’t have an interpretation you can 
get your mind around)

� Unknown words and new usages

� Solution: We need mechanisms to focus attention on 
the best ones, probabilistic techniques do this

This analysis corresponds 

to the correct parse of 

“This will panic buyers ! ”

Chomsky Normal Form

� Chomsky normal form:
� All rules of the form X → Y Z or X → w

� In principle, this is no limitation on the space of (P)CFGs
� N-ary rules introduce new non-terminals

� Unaries / empties are “promoted”

� In practice it’s kind of a pain:
� Reconstructing n-aries is easy

� Reconstructing unaries is trickier

� The straightforward transformations don’t preserve tree scores

� Makes parsing algorithms simpler!

VP

[VP → VBD NP •]

VBD            NP PP PP

[VP → VBD NP PP •]

VBD   NP   PP   PP

VP

A Recursive Parser

� Here’s a recursive (CNF) parser:

bestParse(X,i,j,s)

if (j = i+1)

return X -> s[i]

(X->YZ,k) = argmax score(X->YZ) *

bestScore(Y,i,k,s) *

bestScore(Z,k,j,s)

parse.parent = X

parse.leftChild = bestParse(Y,i,k,s)

parse.rightChild = bestParse(Z,k,j,s)

return parse

A Recursive Parser

� Will this parser work?

� Why or why not?

� Memory requirements?

bestScore(X,i,j,s)

if (j = i+1)

return tagScore(X,s[i])

else

return max score(X->YZ) *

bestScore(Y,i,k) *

bestScore(Z,k,j)

A Memoized Parser

� One small change:

bestScore(X,i,j,s)

if (scores[X][i][j] == null)

if (j = i+1)

score = tagScore(X,s[i])

else

score = max score(X->YZ) *

bestScore(Y,i,k) *

bestScore(Z,k,j)

scores[X][i][j] = score

return scores[X][i][j]

Memory: Theory

� How much memory does this require?

� Have to store the score cache

� Cache size: |symbols|*n2 doubles

� For the plain treebank grammar:

� X ~ 20K, n = 40, double ~ 8 bytes = ~ 256MB

� Big, but workable.

� What about sparsity?



5

Time: Theory

� How much time will it take to parse?

� Have to fill each cache element (at worst)

� Each time the cache fails, we have to:
� Iterate over each rule X → Y Z and split point k

� Do constant work for the recursive calls

� Total time: |rules|*n3

� Cubic time

� Something like 5 sec for an unoptimized 
parse of a 20-word sentences

Unaries in Grammars

TOP

S-HLN

NP-SUBJ VP

VB-NONE-

ε Atone

PTB Tree

TOP

S

NP VP

VB-NONE-

ε Atone

NoTransform

TOP

S

VP

VB

Atone

NoEmpties

TOP

S

Atone

NoUnaries

TOP

VB

Atone

High Low

Unary Rules

� Unary rules?

bestScore(X,i,j,s)

if (j = i+1)

return tagScore(X,s[i])

else

return max max score(X->YZ) *

bestScore(Y,i,k) *

bestScore(Z,k,j)

max score(X->Y) *

bestScore(Y,i,j) 

CNF + Unary Closure

� We need unaries to be non-cyclic

� Can address by pre-calculating the unary closure

� Rather than having zero or more unaries, always 

have exactly one

� Alternate unary and binary layers

� Reconstruct unary chains afterwards

NP

DT NN

VP

VBD

NP

DT NN

VP

VBD NP

VP

S

SBAR

VP

SBAR

Same-Span Reachability

ADJP ADVP
FRAG INTJ NP
PP PRN QP S
SBAR UCP VP

WHNP

TOP

LST

CONJP

WHADJP

WHADVP

WHPP

NX

NAC

SBARQ

SINV

RRCSQ X

PRT

Alternating Layers

bestScoreU(X,i,j,s)

if (j = i+1)

return tagScore(X,s[i])

else

return max max score(X->Y) *

bestScoreB(Y,i,j)

bestScoreB(X,i,j,s)

return max max score(X->YZ) *

bestScoreU(Y,i,k) *

bestScoreU(Z,k,j)
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� Can also organize things bottom-up

A Bottom-Up Parser (CKY)

bestScore(s)

for (i : [0,n-1])

for (X : tags[s[i]])

score[X][i][i+1] = 

tagScore(X,s[i])

for (diff : [2,n])

for (i : [0,n-diff])

j = i + diff

for (X->YZ : rule)

for (k : [i+1, j-1])

score[X][i][j] = max score[X][i][j],

score(X->YZ) *

score[Y][i][k] *

score[Z][k][j]

Y Z

X

i                       k                      j

Efficient CKY

� Lots of tricks to make CKY efficient

� Most of them are little engineering details:

� E.g., first choose k, then enumerate through the Y:[i,k] which 

are non-zero, then loop through rules by left child.

� Optimal layout of the dynamic program depends on 

grammar, input, even system details.

� Another kind is more critical:

� Many X:[i,j] can be suppressed on the basis of the input 

string

� We’ll see this next class as figures-of-merit or A* heuristics

Memory: Practice

� Memory:

� Still requires memory to hold the score table

� Pruning:

� score[X][i][j] can get too large (when?)

� can instead keep beams scores[i][j] which 

only record scores for the top K symbols 

found to date for the span [i,j]

Time: Theory

� How much time will it take to parse?

� For each diff (<= n)
� For each i (<= n)

� For each rule X → Y Z 

� For each split point k

Do constant work

� Total time: |rules|*n3

Y Z

X

i                       k                      j

Runtime: Practice

� Parsing with the vanilla treebank grammar:

� Why’s it worse in practice?
� Longer sentences “unlock” more of the grammar

� All kinds of systems issues don’t scale

~ 20K Rules

(not an 

optimized 

parser!)

Observed 

exponent: 
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Rule State Reachability

� Many states are more likely to match larger spans!

Example: NP CC •

NP CC

0 nn-1

1 Alignment

Example: NP CC NP •

NP CC

0 nn-k-1

n AlignmentsNP

n-k


