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The Noisy Channel Model
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= Search through space of all possible sentences.

= Pick the one that is most probable given the
waveform.
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Speech Recognition Architecture
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Thanks to Bryan Pellom for this slide!

Frame Extraction

= Aframe (25 ms wide) extracted every 10 ms

a; a, a Figure from Simon Arnfield

Mel Freq. Cepstral Coefficients

= Do FFT to get spectral information
= Like the spectrogram/spectrum we saw earlier

= Apply Mel scaling

= Linear below 1kHz, log above, equal samples above
and below 1kHz

= Models human ear; more sensitivity in lower freqs

= Plus Discrete Cosine Transformation




Final Feature Vector

= 39 (real) features per 10 ms frame:
= 12 MFCC features
= 12 Delta MFCC features
= 12 Delta-Delta MFCC features
= 1 (log) frame energy
= 1 Delta (log) frame energy
= 1 Delta-Delta (log frame energy)
= So each frame is represented by a 39D
vector

HMMs for Continuous Observations?

Before: discrete, finite set of observations
Now: spectral feature vectors are real-valued!
Solution 1: discretization
Solution 2: continuous emissions models
= Gaussians
= Multivariate Gaussians
= Mixtures of Multivariate Gaussians
A state is progressively:
= Context independent subphone (~3 per phone)
= Context dependent phone (=triphones)
= State tying of CD phone

Vector Quantization

= Idea: discretization

= Map MFCC vectors
onto discrete symbols

= Compute probabilities
just by counting
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= This is called Vector
Quantization or VQ

= Not used for ASR any
more; too simple

Compare 1o T
= Useful to consider as a
starting point

Output index
of best vector

Gaussian Emissions

= VQ is insufficient for real ASR
* Instead: Assume the possible values of the

observation vectors are normally distributed.

= Represent the observation likelihood function as

a Gaussian with mean y; and variance csj2
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Gaussians for Acoustic Modeling

A Gaussian is parameterized by a mean and

a variance: M&reni means

" P(Olq) P(o|q) is highest here at mean

P(olq is low here, very far from mean)
P(olq)

Multivariate Gaussians

= Instead of a single mean p and variance o:
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= Vector of means p and covariance matrix
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= Usually assume diagonal covariance

= This isn’t very true for FFT features, but is fine for
MFCC features




Gaussian Intuitions: Size of

= 1=[00] u=[00] u=[00]
= Y= > =0.6l > =2l
= As X becomes larger, Gaussian becomes more

spread out; as X becomes smaller, Gaussian
more compressed

Text and figures from Andrew Ng’s lecture notes_for CS229

Gaussians: Off—Diag_;onaI
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= As we increase the off diagonal entries, more correlation

between value of x and value of y

Text and figures from Andrew Ng’s lecture notes_for CS229

But we’re not there yet

= Single Gaussian may do a bad job of modeling
distribution in any dimension:

Bad News!!!

= Solution: Mixtures of Gaussians

Figure from Chen, Picheney et al slides
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Mixtures of Gaussians

= M mixtures of Gaussians:
M
Sf(x ‘lujkazjk) = chkN(xalujkﬂzjk)
k=1
M
by(0)= D¢ N0 1143 5)

k=1
= For diagonal covariance:
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GMMs

= Summary: each state has a likelihood function
parameterized by:
= M mixture weights
= M mean vectors of dimensionality D
= Either
= M covariance matrices of DxD
= Or often
= M diagonal covariance matrices of DxD
which is equivalent to
= M variance vectors of dimensionality D




HMMs for Speech
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Need to Use Subphones
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Phones Aren’t Homogeneous
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A Word with Subphones

ASR Lexicon: Markov Models
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Figure from Huang ct al page 618




Training Mixture Models

= Forced Alignment

= Computing the “Viterbi path” over the training data
(where the transcription is known) is called “forced
alignment”

= We know which word string to assign to each
observation sequence.

= We just don’t know the state sequence.

= So we constrain the path to go through the correct
words (by using a special example-specific language
model)

= And otherwise do normal Viterbi

= Result: state sequence!

Modeling phonetic context
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“‘Need” with triphone models
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Implications of Cross-Word Triphones

= Possible triphones: 50x50x50=125,000

= How many triphone types actually occur?

20K word WSJ Task (from Bryan Pellom)

= Word internal models: need 14,300 triphones

= Cross word models: need 54,400 triphones

= But in training data only 22,800 triphones occur!

= Need to generalize models.

State Tying / Clustering

= [Young, Odell,

Woodland 1994] Initial set of untied states
= How do we decide
which triphones to L-Nasal?

cluster together?
= Use phonetic features
(or ‘broad phonetic
classes’)
= Stop
= Nasal
= Fricative
= Sibilant

R-Liquid?
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= Creating CD phones: 00 008 099 099
= Start with monophone, PP S0 a0 o0
do EM training

= Clone Gaussians into ® ‘ " f f
triphones !

= Build decision tree and
cluster Gaussians

= Clone and train
mixtures (GMMs




Standard subphone/mixture HMM
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Model Error rate

HMM Baseline | 25.1%

Standard Model
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Hierarchical Baum-Welch Training
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Refinement of the /ih/-phone
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Refinement of the /ih/-phone
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Refinement of the /ih/-phone
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HMM states per phone

Inference
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= State sequence:
d,-dg-dg-d,-aes-ae,-ae;-aey-d,-d,-ds-d,-ds

Viterbi
= Phone sequence:
d-d-d-d-ae-ae-ae-ae-d-d-d-d-d L
- Variational
= Transcription
d - ae - d 292




