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The Noisy Channel Model
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If music be the

food of love... = — If music be the

?Alice was beginning to get.
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W 2If music be the Tgood of love... food of love.
?If music be the foot of dove..
» Search through space of all possible sentences.

= Pick the one that is most probable given the
waveform.




Speech Recognition Architecture

Continuous Microphone

Sound Discrete
pressure Digital

wave Samples

Thanks to Bryan Pellom for this slide!




Frame Extraction

= Aframe (25 ms wide) extracted every 10 ms
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a, a, a, Figure from Simon Arnfield

Mel Freq. Cepstral Coefficients

» Do FFT to get spectral information
= Like the spectrogram/spectrum we saw earlier

= Apply Mel scaling

= Linear below 1kHz, log above, equal samples above
and below 1kHz

» Models human ear; more sensitivity in lower freqs

= Plus Discrete Cosine Transformation




Final Feature Vector

= 39 (real) features per 10 ms frame:
» 12 MFCC features
» 12 Delta MFCC features
» 12 Delta-Delta MFCC features
= 1 (log) frame energy
= 1 Delta (log) frame energy
» 1 Delta-Delta (log frame energy)
= So each frame is represented by a 39D
vector

HMMs for Continuous Observations?

= Before: discrete, finite set of observations
= Now: spectral feature vectors are real-valued!
Solution 1: discretization

Solution 2: continuous emissions models
= Gaussians

= Multivariate Gaussians

= Mixtures of Multivariate Gaussians

A state is progressively:
= Context independent subphone (~3 per phone)
= Context dependent phone (=triphones)
= State tying of CD phone




Vector Quantization

= |dea: discretization

= Map MFCC vectors
onto discrete symbols

= Compute probabilities Codebook of 256
just by counting (N
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= Thisis called Vector  p . peawre Vector (MMM 4
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Compare to Codebook

= Not used for ASR any
more; too simple

Output index

* Useful to consider as a M ©F best vector
starting point I

Gaussian Emissions

= VQ is insufficient for real ASR

» |nstead: Assume the possible values of the
observation vectors are normally distributed.

» Represent the observation likelihood function as
a Gaussian with mean y; and variance ;2
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Gaussians for Acoustic Modeling

A Gaussian is parameterized by a mean and

" P(Olq) P(o|q) is highest here at mean

P(o|q is low here, very far from mean)
P(olq)

Multivariate Gaussians

» |nstead of a single mean p and variance o:

1 (x—p)’
X O)= eXp(—

f(Iﬂa)m/% p( 202)

= Vector of means p and covariance matrix

1D = Pt exp(—%(x ) T —u)J

» Usually assume diagonal covariance

= This isn’t very true for FFT features, but is fine for
MFCC features




Gaussian Intuitions: Size of X

" u=[00] n=[00] n=1[00]
= Y= > =0.6l > =2l
= As X becomes larger, Gaussian becomes more

spread out; as £ becomes smaller, Gaussian
more compressed

Text and figures from Andrew Ng’s lecture notes for CS229

Gaussians: Off-Diagonal

z

=

B = o o 2 3 =

1 0 1 0.5 1 08
E_[O 1]’ E_[O.F) 1 ]’ 'E_[().E% 1 ]
= As we increase the off diagonal entries, more correlation

between value of x and value of y

Text and figures from Andrew Ng’s lecture notes for CS229




But we're not there yet

= Single Gaussian may do a bad job of modeling
distribution in any dimension:

Bad News!!!

/
N

= Solution: Mixtures of Gaussians

Figure from Chen, Picheney et al slides

Scatter Plots
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Mixtures of Gaussians

= M mixtures of Gaussians:

M
S| g2 ) = chkN(x,yjk,ij)

k=1

M
bj(ot) = chkN(Ot"uﬂf’zﬂf)

k=1
= For diagonal covariance:

M

¢, 1 (X — 1)’
by(0) =23 ——exp(~ 2
k=190 /ZHUJde d=1 Jkd

d=1

GMMs

» Summary: each state has a likelihood function
parameterized by:
= M mixture weights
= M mean vectors of dimensionality D

= Either
= M covariance matrices of DxD
= Or often
= M diagonal covariance matrices of DxD
which is equivalent to
= M variance vectors of dimensionality D




HMMs for Speech
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Need to Use Subphones

Phone Model
b0)/ \bi(o) bi{"ﬁf e by(o,)
¥ b
Observation 1
Sequence
(spectral feature
vectors) _ _

A Word with Subphones
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ASR Lexicon: Markov Models

Word model for "on"

Word model for "the"
80
s () ©
0202020 (aa)

Word model for "need"” Word model for "I

Markov Process with Bigrams
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Figure from Huang et al page 618
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Training Mixture Models

= Forced Alignment

Computing the “Viterbi path” over the training data
(where the transcription is known) is called “forced
alignment”

We know which word string to assign to each
observation sequence.

We just don’t know the state sequence.

So we constrain the path to go through the correct
words (by using a special example-specific language
model)

And otherwise do normal Viterbi

» Result: state sequence!

Modeling phonetic context
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“Need” with triphone models

#—-n+iy n—iy+d iy—d+#

Implications of Cross-Word Triphones

» Possible triphones: 50x50x50=125,000
= How many triphone types actually occur?

= 20K word WSJ Task (from Bryan Pellom)
= Word internal models: need 14,300 triphones
= Cross word models: need 54,400 triphones
= But in training data only 22,800 triphones occur!

» Need to generalize models.
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State Tying / Clustering

= [Young, Odell,
Woodland 1994] Initial set of untied states

= How do we decide
which triphones to Nacal?
cluster together? L-Nasal’

= Use phonetic features
(or ‘broad phonetic
classes’)
= Stop

Nasal

Fricative

Sibilant

Vowel

lateral

R-Liquid?

Tie states in each leaf node

iy
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tiy+n t-iy+ng f-ay+l s-iy+l

State Tying

» Creating CD phones: 108 008 08 094
= Start with monophone, {0 PP oo o>
do EM training

= Clone Gaussians into @

t1y+n t-iy+ng fiy+l s-iy+

triphones

= Build decision tree and
cluster Gaussians

= Clone and train
mixtures (GMMs




Standard subphone/mixture HMM
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Hierarchical Baum-Welch Training
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Refinement of the /ih/-phone
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HMM states per phone

Inference

= State sequence:
d»]'dS‘d6'd4‘aes'aez‘aea'aeo‘d2'd2‘d3'd7‘d5

Viterbi
= Phone sequence:
d-d-d-d-ae-ae-ae-ae-d-d-d-d-d L
- Variational
= Transcription
d - ae - d 229
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