
Fast k-Nearest Neighbour Search via Prioritized DCI

Ke Li Jitendra Malik
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, CA 94720

United States
{ke.li,malik}@eecs.berkeley.edu

Abstract

Most exact methods for k-nearest neighbour search suffer from the curse of dimen-
sionality; that is, their query times exhibit exponential dependence on either the
ambient or the intrinsic dimensionality. Dynamic Continuous Indexing (DCI) (Li
& Malik, 2016) offers a promising way of circumventing the curse and successfully
reduces the dependence of query time on intrinsic dimensionality from exponential
to sublinear. In this paper, we propose a variant of DCI, which we call Prioritized
DCI, and show a remarkable improvement in the dependence of query time on
intrinsic dimensionality. In particular, a linear increase in intrinsic dimensionality,
or equivalently, an exponential increase in the number of points near a query, can be
mostly counteracted with just a linear increase in space. We also demonstrate em-
pirically that Prioritized DCI significantly outperforms prior methods. In particular,
relative to Locality-Sensitive Hashing (LSH), Prioritized DCI reduces the number
of distance evaluations by a factor of 14 to 116 and the memory consumption by a
factor of 21.

1 Introduction

The method of k-nearest neighbours is a fundamental building block of many machine learning
algorithms. Consequently, it has for decades intrigued the artificial intelligence and theoretical
computer science communities alike. Unfortunately, the myriad efforts at devising efficient algorithms
have encountered a recurring obstacle: the curse of dimensionality, which describes the phenomenon
of query time complexity depending exponentially on dimensionality. As a result, even on datasets
with moderately high dimensionality, practitioners often have resort to naïve exhaustive search.

Two notions of dimensionality are commonly considered. The more familiar notion, ambient
dimensionality, refers to the dimensionality of the space data points are embedded in. On the other
hand, intrinsic dimensionality1 characterizes the intrinsic properties of the data and measures the rate
at which the number of points inside a ball grows as a function of its radius. More precisely, for a
dataset with intrinsic dimension d′, any ball of radius r contains at most O(rd

′
) points. Intuitively, if

the data points are uniformly distributed on a manifold, then the intrinsic dimensionality is roughly
the dimensionality of the manifold.

Most existing methods suffer from some form of curse of dimensionality. Early methods like
k-d trees (Bentley, 1975) and R-trees (Guttman, 1984) have query times that grow exponentially
in ambient dimensionality. Later methods (Krauthgamer & Lee, 2004; Beygelzimer et al., 2006;
Dasgupta & Freund, 2008) overcame the exponential dependence on ambient dimensionality, but

1The measure of intrinsic dimensionality used throughout this paper is the expansion dimension, also known
as the KR-dimension, which is defined as log2 c, where c is the expansion rate introduced by Karger & Ruhl
(2002).

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

have not been able to escape from an exponential dependence on intrinsic dimensionality. Indeed,
since a linear increase in the intrinsic dimensionality results in an exponential increase in the number
of points near a query, the problem seems fundamentally hard when intrinsic dimensionality is high.

Li & Malik (2016) proposed a method known as Dynamic Continuous Indexing (DCI), which
successfully reduces the dependence on intrinsic dimensionality from exponential to sublinear,
thereby making high-dimensional nearest neighbour search more practical. In this paper, we propose
a variant of DCI, known as Prioritized DCI, which achieves a significant improvement in the
dependence of query time on intrinsic dimensionality. Specifically, we show a remarkable result: a
linear increase in intrinsic dimensionality, which could mean an exponential increase in the number
of points near a query, can be mostly counteracted with a corresponding linear increase in the number
of indices. In other words, Prioritized DCI can make a dataset with high intrinsic dimensionality
seem almost as easy as a dataset with low intrinsic dimensionality, with just a linear increase in space.
To our knowledge, there had been no exact method that can cope with high intrinsic dimensionality;
Prioritized DCI represents the first method that can do so.

We also demonstrate empirically that Prioritized DCI significantly outperforms prior methods. In
particular, compared to LSH, it achieves a 14- to 116-fold reduction in the number of distance
evaluations and a 21-fold reduction in the memory usage.

2 Related Work

There is a vast literature on algorithms for nearest neighbour search. They can be divided into
two categories: exact algorithms and approximate algorithms. Early exact algorithms are deter-
ministic and store points in tree-based data structures. Examples include k-d trees (Bentley, 1975),
R-trees (Guttman, 1984) and X-trees (Berchtold et al., 1996, 1998). While their query times are loga-
rithmic in the size of the dataset, they exhibit exponential dependence on the ambient dimensionality.
Spill trees (Liu et al., 2004), RP trees (Dasgupta & Freund, 2008) and virtual spill trees (Dasgupta
& Sinha, 2015) extend the ideas behind k-d trees by randomizing the orientations of dividing hy-
perplanes. While randomization enables them to avoid exponential dependence on the ambient
dimensionality, their query times still scale exponentially in the intrinsic dimensionality. Other
algorithms (Karger & Ruhl, 2002; Krauthgamer & Lee, 2004; Beygelzimer et al., 2006; Houle & Nett,
2015) use local search or coarse-to-fine strategies. Unfortunately, the query times of these methods
again scale exponentially in the intrinsic dimensionality. Figure 1 shows the query time complexities
of various exact algorithms as a function of intrinsic dimensionality.

Karger & Ruhl
Navigating Net
Cover Tree
Rank Cover Tree

Spill Tree
RP Tree

DCI

Prioritized DCI
(Proposed Method)

Figure 1: Visualization of the query time complexities of
various exact algorithms as a function of the intrinsic dimen-
sionality d′. Each curve represents an example from a class
of similar query time complexities. Algorithms that fall into
each particular class are shown next to the corresponding
curve.

There has also been extensive work
on approximate algorithms. Under
the approximate setting, returning any
point whose distance to the query is
within a factor of 1 + ε of the distance
between the query and the true near-
est neighbour is acceptable. Meth-
ods based on tree-based space parti-
tioning (Arya et al., 1998) and local
search (Arya & Mount, 1993) have
been developed; like many exact al-
gorithms, their query times also scale
exponentially in the ambient dimen-
sionality. Locality-Sensitive Hash-
ing (LSH) (Indyk & Motwani, 1998;
Datar et al., 2004; Andoni & Indyk,
2006) partitions the space into reg-
ular cells, whose shapes are implic-
itly defined by the choice of the hash
function. It achieves a query time
of O(dnρ) using O(dn1+ρ) space,
where d is the ambient dimensionality, n is the dataset size and ρ ≈ 1/(1 + ε)2 for large n in
Euclidean space.

2

Property Complexity

Construction O(m(dn+ n logn))

Query O
(
dkmax(log(n/k), (n/k)1−m/d

′
) +mk logm

(
max(log(n/k), (n/k)1−1/d′)

))
Insertion O(m(d+ logn))
Deletion O(m logn)
Space O(mn)

Table 1: Time and space complexities of Prioritized DCI.

Our work is most closely related to Dynamic Continuous Indexing (DCI) (Li & Malik, 2016),
which is an exact randomized algorithm for Euclidean space whose query time is linear in ambient
dimensionality, sublinear in dataset size and sublinear in intrinsic dimensionality and uses space
linear in the dataset size.

3 Prioritized DCI

DCI constructs a data structure consisting of multiple composite indices of data points, each of which
in turn consists of a number of simple indices. Each simple index orders data points according to
their projections along a particular random direction. Given a query, for every composite index, the
algorithm finds points that are near the query in every constituent simple index, which are known
as candidate points, and adds them to a set known as the candidate set. The true distances from the
query to every candidate point are evaluated and the ones that are among the k closest to the query
are returned.

More concretely, each simple index is associated with a random direction and stores the projections
of every data point along the direction. At query time, the algorithm projects the query along the
projection directions associated with each simple index and finds the position where the query would
have been inserted in each simple index. It then iterates over, or visits, data points in each simple
index in the order of their distances to the query under projection, which takes constant time for each
iteration. As it iterates, it keeps track of how many times each data point has been visited across all
simple indices of each composite index. If a data point has been visited in every constituent simple
index, it is added to the candidate set and is said to have been retrieved from the composite index.

Prioritized DCI differs from standard DCI in the order in which points from different simple indices
are visited. In standard DCI, the algorithm cycles through all constituent simple indices of a
composite index at regular intervals and visits exactly one point from each simple index in each pass.
In Prioritized DCI, the algorithm assigns a priority to each constituent simple index; in each iteration,
it visits the upcoming point from the simple index with the highest priority and updates the priority
at the end of the iteration. The priority of a simple index is set to the negative absolute difference
between the query projection and the next data point projection in the index.

Intuitively, this ensures data points are visited in the order of their distances to the query under
projection. Because data points are only retrieved from a composite index when they have been
visited in all constituent simple indices, data points are retrieved in the order of the maximum of their
distances to the query along multiple projection directions. Since distance under projection forms a
lower bound on the true distance, the maximum projected distance approaches the true distance as
the number of projection directions increases. Hence, in the limit as the number of simple indices
approaches infinity, data points are retrieved in the ideal order, that is, the order of their true distances
to the query.

The construction and querying procedures of Prioritized DCI are presented formally in Algorithms 1
and 2 in the appendix. The time and space complexities of Prioritized DCI are summarized in Table
1. The analysis can be found in the appendix.

4 Experiments

We compare the performance of Prioritized DCI to that of standard DCI (Li & Malik, 2016), product
quantization (Jégou et al., 2011) and LSH (Datar et al., 2004), which is perhaps the algorithm that is

3

1.15 1.20 1.25 1.30 1.35 1.40
Approximation Ratio

0

200

400

600

800

1000

1200

N
u
m

b
e
r

o
f

D
is

ta
n
ce

 E
v
a
lu

a
ti

o
n
s

LSH
PQ
DCI (m=25, L=2)
Prioritized DCI (m=25, L=2)
Prioritized DCI (m=10, L=2)

(a)

1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.30
Approximation Ratio

0

2000

4000

6000

8000

10000

12000

14000

N
u
m

b
e
r

o
f

D
is

ta
n
ce

 E
v
a
lu

a
ti

o
n
s

LSH
PQ
DCI (m=15, L=3)
Prioritized DCI (m=15, L=3)
Prioritized DCI (m=10, L=2)

(b)

1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.30
Approximation Ratio

0

1000

2000

3000

4000

5000

6000

N
u
m

b
e
r

o
f

D
is

ta
n
ce

 E
v
a
lu

a
ti

o
n
s

LSH
PQ
DCI (m=15, L=3)
Prioritized DCI (m=15, L=3)
Prioritized DCI (m=10, L=2)

(c)

Figure 2: Comparison of the number of distance evaluations needed by different algorithms to achieve
varying levels of approximation quality on (a) CIFAR-100 and (b,c) MNIST. Each curve represents
the mean over ten folds and the shaded area represents ±1 standard deviation. Lower values are
better. (c) Close-up view of the figure in (b).

most widely used in high-dimensional settings. Because LSH operates under the approximate setting,
in which the performance metric of interest is how close the returned points are to the query rather
than whether they are the true k-nearest neighbours. All algorithms are evaluated in terms of the time
they would need to achieve varying levels of approximation quality.

Approximation quality is measured using the approximation ratio, which is defined to be the ratio of
the radius of the ball containing the set of true k-nearest neighbours to the radius of the ball containing
the set of approximate k-nearest neighbours returned by the algorithm. The closer the approximation
ratio is to 1, the higher the approximation quality. In high dimensions, the time taken to compute
true distances between the query and the candidate points dominates query time, so the number of
distance evaluations can be used as an implementation-independent proxy for the query time.

We plot the number of distance evaluations that each algorithm requires to achieve each desired
level of approximation ratio in Figure 2. As shown, on CIFAR-100, under the same hyperparameter
setting used by standard DCI, Prioritized DCI requires 87.2% to 92.5% fewer distance evaluations
than standard DCI, 91.7% to 92.8% fewer distance evaluations than product quantization, and
90.9% to 93.8% fewer distance evaluations than LSH to achieve same levels approximation quality,
which represents a 14-fold reduction in the number of distance evaluations relative to LSH on
average. Under the more space-efficient hyperparameter setting, Prioritized DCI achieves a 6-fold
reduction compared to LSH. On MNIST, under the same hyperparameter setting used by standard
DCI, Prioritized DCI requires 96.4% to 97.0% fewer distance evaluations than standard DCI, 87.1%
to 89.8% fewer distance evaluations than product quantization, and 98.8% to 99.3% fewer distance
evaluations than LSH, which represents a 116-fold reduction relative to LSH on average. Under the
more space-efficient hyperparameter setting, Prioritized DCI achieves a 32-fold reduction compared
to LSH.

In terms of space efficiency, Prioritized DCI uses 95.5% less space on CIFAR-100 and 95.3% less
space on MNIST compared to LSH. This represents a 22-fold reduction in memory consumption on
CIFAR-100 and a 21-fold reduction on MNIST. In terms of wall-clock time, our implementation of
Prioritized DCI takes 1.18 seconds to construct the data structure and execute 100 queries on MNIST,
compared to 104.71 seconds taken by LSH.

5 Conclusion

In this paper, we presented a new exact randomized algorithm for k-nearest neighbour search, which
we refer to as Prioritized DCI. We showed that Prioritized DCI achieves a significant improvement in
terms of the dependence of query time complexity on intrinsic dimensionality compared to standard
DCI. Specifically, Prioritized DCI can to a large extent counteract a linear increase in the intrinsic
dimensionality, or equivalently, an exponential increase in the number of points near a query, using
just a linear increase in the number of simple indices. Empirical results validated the effectiveness of
Prioritized DCI in practice, demonstrating the advantages of Prioritized DCI over prior methods in
terms of speed and memory usage.

4

References
Andoni, Alexandr and Indyk, Piotr. Near-optimal hashing algorithms for approximate nearest neighbor in high

dimensions. In Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, pp.
459–468. IEEE, 2006.

Arya, Sunil and Mount, David M. Approximate nearest neighbor queries in fixed dimensions. In SODA,
volume 93, pp. 271–280, 1993.

Arya, Sunil, Mount, David M, Netanyahu, Nathan S, Silverman, Ruth, and Wu, Angela Y. An optimal algorithm
for approximate nearest neighbor searching fixed dimensions. Journal of the ACM (JACM), 45(6):891–923,
1998.

Bentley, Jon Louis. Multidimensional binary search trees used for associative searching. Communications of the
ACM, 18(9):509–517, 1975.

Berchtold, Stefan, Keim, Daniel A., and peter Kriegel, Hans. The X-tree: An index structure for high-dimensional
data. In Very Large Data Bases, pp. 28–39, 1996.

Berchtold, Stefan, Ertl, Bernhard, Keim, Daniel A, Kriegel, H-P, and Seidl, Thomas. Fast nearest neighbor
search in high-dimensional space. In Data Engineering, 1998. Proceedings., 14th International Conference
on, pp. 209–218. IEEE, 1998.

Beygelzimer, Alina, Kakade, Sham, and Langford, John. Cover trees for nearest neighbor. In Proceedings of the
23rd International Conference on Machine Learning, pp. 97–104. ACM, 2006.

Dasgupta, Sanjoy and Freund, Yoav. Random projection trees and low dimensional manifolds. In Proceedings
of the Fortieth Annual ACM Symposium on Theory of Computing, pp. 537–546. ACM, 2008.

Dasgupta, Sanjoy and Sinha, Kaushik. Randomized partition trees for nearest neighbor search. Algorithmica, 72
(1):237–263, 2015.

Datar, Mayur, Immorlica, Nicole, Indyk, Piotr, and Mirrokni, Vahab S. Locality-sensitive hashing scheme based
on p-stable distributions. In Proceedings of the twentieth annual symposium on Computational geometry, pp.
253–262. ACM, 2004.

Guttman, Antonin. R-trees: a dynamic index structure for spatial searching. In Proceedings of the 1984 ACM
SIGMOD International Conference on Management of Data, pp. 47–57, 1984.

Houle, Michael E and Nett, Michael. Rank-based similarity search: Reducing the dimensional dependence.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 37(1):136–150, 2015.

Indyk, Piotr and Motwani, Rajeev. Approximate nearest neighbors: towards removing the curse of dimensionality.
In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 604–613. ACM, 1998.

Jégou, Hervé, Douze, Matthijs, and Schmid, Cordelia. Product quantization for nearest neighbor search. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 33(1):117–128, 2011.

Karger, David R and Ruhl, Matthias. Finding nearest neighbors in growth-restricted metrics. In Proceedings of
the Thiry-fourth Annual ACM Symposium on Theory of Computing, pp. 741–750. ACM, 2002.

Krauthgamer, Robert and Lee, James R. Navigating nets: simple algorithms for proximity search. In Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 798–807. Society for Industrial
and Applied Mathematics, 2004.

Li, Ke and Malik, Jitendra. Fast k-nearest neighbour search via Dynamic Continuous Indexing. In Proceedings
of The 33rd International Conference on Machine Learning, pp. 671–679, 2016.

Liu, Ting, Moore, Andrew W, Yang, Ke, and Gray, Alexander G. An investigation of practical approximate
nearest neighbor algorithms. In Advances in Neural Information Processing Systems, pp. 825–832, 2004.

5

6 Appendix I: Algorithm

Below we present the pseudocode of the proposed algorithm.

Algorithm 1 Data structure construction procedure

Require: A dataset D of n points p1, . . . , pn, the number of simple indices m that constitute a composite index
and the number of composite indices L
function CONSTRUCT(D,m,L)
{ujl}j∈[m],l∈[L] ← mL random unit vectors in Rd
{Tjl}j∈[m],l∈[L] ← mL empty binary search trees or skip lists
for j = 1 to m do

for l = 1 to L do
for i = 1 to n do

pijl ← 〈pi, ujl〉
Insert (pijl, i) into Tjl with pijl being the key and i being the value

end for
end for

end for
return {(Tjl, ujl)}j∈[m],l∈[L]

end function

Algorithm 2 k-nearest neighbour querying procedure

Require: Query point q in Rd, binary search trees/skip lists and their associated projection vectors
{(Tjl, ujl)}j∈[m],l∈[L], the number of points to retrieve k0 and the number of points to visit k1 in each
composite index
function QUERY(q, {(Tjl, ujl)}j,l)

Cl ← array of size n with entries initialized to 0 ∀l ∈ [L]
qjl ← 〈q, ujl〉 ∀j ∈ [m], l ∈ [L]
S ← ∅
Pl ← empty priority queue ∀l ∈ [L]
for l = 1 to L do

for j = 1 to m do
(p

(1)
jl , h

(1)
jl)← the node in Tjl whose key is the closest to qjl

Insert (p(1)jl , h
(1)
jl) with priority −

∣∣∣p(1)jl − qjl∣∣∣ into Pl
end for

end for
for i′ = 1 to k1 − 1 do

for l = 1 to L do
if |Sl| < k0 then

(p
(i)
jl , h

(i)
jl)← the node with the highest priority in Pl

Remove (p
(i)
jl , h

(i)
jl) from Pl and insert the node in Tjl whose key is the next closest to qjl,

which is denoted as (p(i+1)
jl , h

(i+1)
jl), with priority −|p(i+1)

jl − qjl| into Pl
Cl[h

(i)
jl]← Cl[h

(i)
jl] + 1

if Cl[h(i)
jl] = m then

Sl ← Sl ∪ {h(i)
jl }

end if
end if

end for
end for
return k points in

⋃
l∈[L] Sl that are the closest in Euclidean distance in Rd to q

end function

7 Appendix II: Analysis

We analyze the time and space complexities of Prioritized DCI below and derive the stopping
condition of the algorithm. Because the algorithm uses standard data structures, analysis of the

6

construction time, insertion time, deletion time and space complexity is straightforward. Hence, this
section focuses mostly on analyzing the query time.

In high-dimensional space, query time is dominated by the time spent on evaluating true distances
between candidate points and the query. Therefore, we need to find the number of candidate points
that must be retrieved to ensure the algorithm succeeds with high probability. To this end, we derive
an upper bound on the failure probability for any given number of candidate points. The algorithm
fails if sufficiently many distant points are retrieved from each composite index before some of the
true k-nearest neighbours. We decompose this event into multiple (dependent) events, each of which
is the event that a particular distant point is retrieved before some true k-nearest neighbours. Since
points are retrieved in the order of their maximum projected distance, this event happens when the
maximum projected distance of the distant point is less than that of a true k-nearest neighbour. We
start by finding an upper bound on the probability of this event. To simplify notation, we initially
consider displacement vectors from the query to each data point, and so relationships between
projected distances of triplets of points translate relationships between projected lengths of pairs of
displacement vectors.

We start by examining the event that a vector under random one-dimensional projection satisfies
some geometric constraint. We then find an upper bound on the probability that some combinations
of these events occur, which is related to the failure probability of the algorithm.

Lemma 1. Let vl, vs ∈ Rd be such that
∥∥vl∥∥

2
>
∥∥vs∥∥

2
,
{
u′j
}M
j=1

be i.i.d. unit vectors in Rd drawn

uniformly at random. Then Pr
(
maxj

{∣∣〈vl, u′j〉∣∣} ≤ ∥∥vs∥∥2) =
(
1− 2

π cos−1
(∥∥vs∥∥

2
/
∥∥vl∥∥

2

))M
.

Proof. The event
{

maxj
{∣∣〈vl, u′j〉∣∣} ≤ ‖vs‖2} is equivalent to the event that{∣∣〈vl, u′j〉∣∣ ≤ ‖vs‖2 ∀j}, which is the intersection of the events

{∣∣〈vl, u′j〉∣∣ ≤ ‖vs‖2}. Be-
cause u′j’s are drawn independently, these events are independent.

Let θj be the angle between vl and u′j , so that 〈vl, u′j〉 =
∥∥vl∥∥

2
cos θj . Since u′j is drawn uniformly,

θj is uniformly distributed on [0, 2π]. Hence,

Pr

(
max
j

{∣∣∣〈vl, u′j〉∣∣∣} ≤ ‖vs‖2)
=

M∏
j=1

Pr
(∣∣∣〈vl, u′j〉∣∣∣ ≤ ‖vs‖2)

=

M∏
j=1

Pr

(
|cos θj | ≤

‖vs‖2
‖vl‖2

)

=

M∏
j=1

(
2Pr

(
θj ∈

[
cos−1

(
‖vs‖2
‖vl‖2

)
, π − cos−1

(
‖vs‖2
‖vl‖2

)]))

=

(
1− 2

π
cos−1

(
‖vs‖2
‖vl‖2

))M

Lemma 2. For any set of events {Ei}Ni=1, the probability that at least k′ of them happen is at most
1
k′

∑N
i=1 Pr (Ei).

Proof. For any set T ⊆ [N], define ẼT to be the intersection of events indexed by T and complements
of events not indexed by T , i.e. ẼT =

(⋂
i∈T Ei

)
∩
(⋂

i/∈T Ei
)
. Observe that

{
ẼT

}
T⊆[N]

are

disjoint and that for any I ⊆ [N],
⋂
i∈I Ei =

⋃
T⊇I ẼT . The event that at least k′ of Ei’s happen

is
⋃
I⊆[N]:|I|=k′

⋂
i∈I Ei, which is equivalent to

⋃
I⊆[N]:|I|=k′

⋃
T⊇I ẼT =

⋃
T⊆[N]:|T |≥k′ ẼT . We

will henceforth use T to denote {T ⊆ [N] : |T | ≥ k′}. Since T is a finite set, we can impose an
ordering on its elements and denote the lth element as Tl. The event can therefore be rewritten as⋃|T |
l=1 ẼTl

.

7

Define E′i,j to be Ei \
(⋃|T |

l=j+1 ẼTl

)
. We claim that

∑N
i=1 Pr

(
E′i,j

)
≥ k′

∑j
l=1 Pr

(
ẼTl

)
for all

j ∈ {0, . . . , |T |}. We will show this by induction on j.

For j = 0, the claim is vacuously true because probabilities are non-negative. For j > 0, we observe
that E′i,j =

(
E′i,j \ ẼTj

)
∪
(
E′i,j ∩ ẼTj

)
= E′i,j−1 ∪

(
E′i,j ∩ ẼTj

)
for all i. Since E′i,j \ ẼTj

and

E′i,j ∩ ẼTj
are disjoint, Pr

(
E′i,j

)
= Pr

(
E′i,j−1

)
+ Pr

(
E′i,j ∩ ẼTj

)
.

Consider the quantity
∑
i∈Tj

Pr
(
E′i,j

)
, which is

∑
i∈Tj

(
Pr
(
E′i,j−1

)
+ Pr

(
E′i,j ∩ ẼTj

))
by the

above observation. For each i ∈ Tj , ẼTj
⊆ Ei, and so ẼTj

\
(⋃|T |

l=j+1 ẼTl

)
⊆ Ei\

(⋃|T |
l=j+1 ẼTl

)
=

E′i,j . Because
{
ẼTl

}|T |
l=j

are disjoint, ẼTj \
(⋃|T |

l=j+1 ẼTl

)
= ẼTj . Hence, ẼTj ⊆ E′i,j and so

E′i,j ∩ ẼTj
= ẼTj

. Thus,
∑
i∈Tj

Pr
(
E′i,j

)
= |Tj |Pr

(
ẼTj

)
+
∑
i∈Tj

Pr
(
E′i,j−1

)
.

It follows that
∑N
i=1 Pr

(
E′i,j

)
= |Tj |Pr

(
ẼTj

)
+
∑
i∈Tj

Pr
(
E′i,j−1

)
+
∑
i/∈Tj

Pr
(
E′i,j

)
. Because

Pr
(
E′i,j

)
= Pr

(
E′i,j−1

)
+ Pr

(
E′i,j ∩ ẼTj

)
≥ Pr

(
E′i,j−1

)
and |Tj | ≥ k′,

∑N
i=1 Pr

(
E′i,j

)
≥

k′Pr
(
ẼTj

)
+
∑N
i=1 Pr

(
E′i,j−1

)
. By the inductive hypothesis,

∑N
i=1 Pr

(
E′i,j−1

)
≥

k′
∑j−1
l=1 Pr

(
ẼTl

)
. Therefore,

∑N
i=1 Pr

(
E′i,j

)
≥ k′

∑j
l=1 Pr

(
ẼTl

)
, which concludes the in-

duction argument.

The lemma is a special case of this claim when j = |T |, since E′i,|T | = Ei and
∑|T |
l=1 Pr

(
ẼTl

)
=

Pr
(⋃|T |

l=1 ẼTl

)
.

Combining the above yields the following theorem, the proof of which is found in the supplementary
material.

Theorem 1. Let
{
vli
}N
i=1

and
{
vsi′
}N ′

i′=1
be sets of vectors such that

∥∥vli∥∥2 >
∥∥vsi′∥∥2 ∀i ∈

[N], i′ ∈ [N ′]. Furthermore, let
{
u′ij
}
i∈[N],j∈[M]

be random uniformly distributed unit
vectors such that u′i1, . . . , u

′
iM are independent for any given i. Consider the events{

∃vsi′ s.t. maxj
{∣∣〈vli, u′ij〉∣∣} ≤ ∥∥vsi′∥∥2}Ni=1

. The probability that at least k′ of these events oc-

cur is at most 1
k′

∑N
i=1

(
1− 2

π cos−1
(∥∥vsmax

∥∥
2
/
∥∥vli∥∥2))M , where

∥∥vsmax

∥∥
2

= maxi′
{∥∥vsi′∥∥2}.

Furthermore, if k′ = N , it is at most mini∈[N]

{(
1− 2

π cos−1
(∥∥vsmax

∥∥
2
/
∥∥vli∥∥2))M}.

Proof. The event that ∃vsi′ s.t. maxj
{∣∣〈vli, u′ij〉∣∣} ≤

∥∥vsi′∥∥2 is equivalent to the event
that maxj

{∣∣〈vli, u′ij〉∣∣} ≤ maxi′
{∥∥vsi′∥∥2} =

∥∥vsmax

∥∥
2
. Take Ei to be the event that

maxj
{∣∣〈vli, u′ij〉∣∣} ≤ ∥∥vsmax

∥∥
2
. By Lemma 1, Pr(Ei) ≤

(
1− 2

π cos−1
(∥∥vsmax

∥∥
2
/
∥∥vli∥∥2))M .

It follows from Lemma 2 that the probability that k′ of Ei’s occur is at most
1
k′

∑N
i=1 Pr (Ei) ≤ 1

k′

∑N
i=1

(
1− 2

π cos−1
(∥∥vsmax

∥∥
2
/
∥∥vli∥∥2))M . If k′ = N , we use the

fact that
⋂N
i′=1Ei′ ⊆ Ei ∀i, which implies that Pr

(⋂N
i′=1Ei′

)
≤ mini∈[N] Pr (Ei) ≤

mini∈[N]

{(
1− 2

π cos−1
(∥∥vsmax

∥∥
2
/
∥∥vli∥∥2))M}.

We now apply the results above to analyze specific properties of the algorithm. For convenience,
instead of working directly with intrinsic dimensionality, we will analyze the query time in terms of a
related quantity, global relative sparsity, as defined in (Li & Malik, 2016). We reproduce its definition
below for completeness.

8

Definition 1. Given a dataset D ⊆ Rd, let Bp(r) be the set of points in D that are within a ball of
radius r around a point p. A dataset D has global relative sparsity of (τ, γ) if for all r and p ∈ Rd
such that |Bp(r)| ≥ τ , |Bp(γr)| ≤ 2 |Bp(r)|, where γ ≥ 1.

Global relative sparsity is related to the expansion rate (Karger & Ruhl, 2002) and intrinsic dimen-
sionality in the following way: a dataset with global relative sparsity of (τ, γ) has (τ, 2(1/ log2 γ))-
expansion and intrinsic dimensionality of 1/ log2 γ.

Below we derive two upper bounds on the probability that some of the true k-nearest neighbours
are missing from the set of candidate points retrieved from a given composite index, which are in
expressed in terms of k0 and k1 respectively. These results inform us how k0 and k1 should be chosen
to ensure the querying procedure returns the correct results with high probability. In the results that
follow, we use {p(i)}ni=1 to denote a re-ordering of the points {pi}ni=1 so that p(i) is the ith closest
point to the query q. Proofs are found in the supplementary material.

Lemma 3. Consider points in the order they are retrieved from a composite index that
consists of m simple indices. The probability that there are at least n0 points that
are not the true k-nearest neighbours but are retrieved before some of them is at most

1
n0−k

∑n
i=2k+1

(
1− 2

π cos−1
(∥∥p(k) − q∥∥

2
/
∥∥p(i) − q∥∥

2

))m
.

Proof. Points that are not the true k-nearest neighbours but are retrieved before some of them will
be referred to as extraneous points and are divided into two categories: reasonable and silly. An
extraneous point is reasonable if it is one of the 2k-nearest neighbours, and is silly otherwise. For
there to be n0 extraneous points, there must be n0 − k silly extraneous points. Therefore, the
probability that there are n0 extraneous points is upper bounded by the probability that there are
n0 − k silly extraneous points.

Since points are retrieved from the composite index in the order of increasing maximum pro-
jected distance to the query, for any pair of points p and p′, if p is retrieved before p′, then
maxj {|〈p− q, ujl〉|} ≤ maxj {|〈p′ − q, ujl〉|}, where {ujl}mj=1 are the projection directions as-
sociated with the constituent simple indices of the composite index.

By Theorem 1, if we take
{
vli
}N
i=1

to be
{
p(i) − q

}n
i=2k+1

,
{
vsi′
}N ′

i′=1
to be

{
p(i) − q

}k
i=1

, M to be
m,
{
u′ij
}
j∈[M]

to be {ujl}j∈[m] for all i ∈ [N] and k′ to be n0 − k, we obtain an upper bound for

the probability of there being a subset of
{
p(i)
}n
i=2k+1

of size n0 − k such that for all points p in

the subset, maxj {|〈p− q, ujl〉|} ≤ ‖p′ − q‖2 for some p′ ∈
{
p(i) − q

}k
i=1

. In other words, this is
the probability of there being n0 − k points that are not the 2k-nearest neighbours whose maximum
projected distances are no greater than the distance from some k-nearest neighbours to the query,
which is at most 1

n0−k
∑n
i=2k+1

(
1− 2

π cos−1
(∥∥p(k) − q∥∥

2
/
∥∥p(i) − q∥∥

2

))m
.

Since the event that maxj {|〈p− q, ujl〉|} ≤ maxj {|〈p′ − q, ujl〉|} is contained in the event that
maxj {|〈p− q, ujl〉|} ≤ ‖p′ − q‖2 for any p, p′, this is also an upper bound for the probability of
there being n0 − k points that are not the 2k-nearest neighbours whose maximum projected distances
do not exceed those of some of the k-nearest neighbours, which by definition is the probability that
there are n0 − k silly extraneous points. Since this probability is no less than the probability that
there are n0 extraneous points, the upper bound also applies to this probability.

Lemma 4. Consider point projections in a composite index that consists of m simple indices in
the order they are visited. The probability that there are n0 point projections that are not the true
k-nearest neighbours but are visited before all true k-nearest neighbours have been retrieved is at
most m

n0−mk
∑n
i=2k+1

(
1− 2

π cos−1
(∥∥p(k) − q∥∥

2
/
∥∥p(i) − q∥∥

2

))
.

Proof. Projections of points that are not the true k-nearest neighbours but are visited before the
k-nearest neighbours have all been retrieved will be referred to as extraneous projections and are
divided into two categories: reasonable and silly. An extraneous projection is reasonable if it is of
one of the 2k-nearest neighbours, and is silly otherwise. For there to be n0 extraneous projections,
there must be n0 −mk silly extraneous projections, since there could be at most mk reasonable
extraneous projections. Therefore, the probability that there are n0 extraneous projections is upper
bounded by the probability that there are n0 −mk silly extraneous projections.

9

Since point projections are visited in the order of increasing projected distance to the query, each
extraneous silly projection must be closer to the query projection than the maximum projection of
some k-nearest neighbour.

By Theorem 1, if we take
{
vli
}N
i=1

to be
{
p(2k+b(i−1)/mc+1) − q

}m(n−2k)
i=1

,
{
vsi′
}N ′

i′=1
to be{

p(b(i−1)/mc+1) − q
}mk
i=1

, M to be 1, {u′i1}
N
i=1 to be

{
u(i mod m),l

}m(n−2k)
i=1

and k′ to be n0 −mk,
we obtain an upper bound for the probability of there being n0 − mk point projections that
are not of the 2k-nearest neighbours whose distances to their respective query projections are
no greater than the true distance between the query and some k-nearest neighbour, which is

1
n0−mk

∑n
i=2k+1m

(
1− 2

π cos−1
(
‖p(k)−q‖

2

‖p(i)−q‖
2

))
.

Because maximum projected distances are no more than true distances, this is also an upper bound
for the probability of there being n0 −mk silly extraneous projections. Since this probability is no
less than the probability that there are n0 extraneous projections, the upper bound also applies to this
probability.

Lemma 5. On a dataset with global relative sparsity (k, γ), the
quantity

∑n
i=2k+1

(
1− 2

π cos−1
(∥∥p(k) − q∥∥

2
/
∥∥p(i) − q∥∥

2

))m
is at most

O
(
kmax(log(n/k), (n/k)1−m log2 γ)

)
.

Proof. By definition of global relative sparsity, for all i ≥ 2k + 1,
∥∥p(i) − q∥∥

2
> γ

∥∥p(k) − q∥∥
2
. A

recursive application shows that for all i ≥ 2i
′
k + 1,

∥∥p(i) − q∥∥
2
> γi

′ ∥∥p(k) − q∥∥
2
.

Applying the fact that 1− (2/π) cos−1 (x) ≤ x ∀x ∈ [0, 1] and the above observation yields:

n∑
i=2k+1

1− 2

π
cos−1


∥∥∥p(k) − q∥∥∥

2∥∥∥p(i) − q∥∥∥
2



m

≤
n∑

i=2k+1


∥∥∥p(k) − q∥∥∥

2∥∥∥p(i) − q∥∥∥
2


m

<

dlog2(n/k)e−1∑
i′=1

2i
′
kγ−i

′m

If γ ≥ m
√

2, this quantity is at most k log2 (n/k). On the other hand, if 1 ≤ γ < m
√

2, this quantity
can be simplified to:

k

(
2

γm

)((
2

γm

)dlog2(n/k)e−1

− 1

)
/

(
2

γm
− 1

)

= O

(
k

(
2

γm

)dlog2(n/k)e−1
)

= O

(
k
(n
k

)1−m log2 γ
)

Therefore,
∑n
i=2k+1

(∥∥p(k) − q∥∥
2
/
∥∥p(i) − q∥∥

2

)m ≤ O (kmax(log(n/k), (n/k)1−m log2 γ)
)
.

Lemma 6. For a dataset with global relative sparsity (k, γ) and a given composite index consisting of
m simple indices, there is some k0 ∈ Ω(kmax(log(n/k), (n/k)1−m log2 γ)) such that the probability
that the candidate points retrieved from the composite index do not include some of the true k-nearest
neighbours is at most some constant α0 < 1.

Proof. We will refer to the true k-nearest neighbours that are among first k0 points retrieved from the
composite index as true positives and those that are not as false negatives. Additionally, we will refer
to points that are not true k-nearest neighbours but are among the first k0 points retrieved as false
positives.

10

When not all the true k-nearest neighbours are among the first k0 candidate points, there must be
at least one false negative and so there can be at most k − 1 true positives. Consequently, there
must be at least k0 − (k − 1) false positives. To find an upper bound on the probability of the
existence of k0 − (k − 1) false positives in terms of global relative sparsity, we apply Lemma
3 with n0 set to k0 − (k − 1), followed by Lemma 5. We conclude that this probability is at
most 1

k0−2k+1O
(
kmax(log(n/k), (n/k)1−m log2 γ)

)
. Because the event that not all the true k-

nearest neighbours are among the first k0 candidate points is contained in the event that there are
k0 − (k − 1) false positives, the former is upper bounded by the same quantity. So, we can choose
some k0 ∈ Ω(kmax(log(n/k), (n/k)1−m log2 γ)) to make it strictly less than 1.

Lemma 7. For a dataset with global relative sparsity (k, γ) and a given composite index consisting of
m simple indices, there is some k1 ∈ Ω(mkmax(log(n/k), (n/k)1−log2 γ)) such that the probability
that the candidate points retrieved from the composite index do not include some of the true k-nearest
neighbours is at most some constant α1 < 1.

Proof. We will refer to the projections of true k-nearest neighbours that are among first k1 visited
point projections as true positives and those that are not as false negatives. Additionally, we will refer
to projections of points that are not of the true k-nearest neighbours but are among the first k1 visited
point projections as false positives.

When a k-nearest neighbour is not among the candidate points that have been retrieved, some
of its projections must not be among the first k1 visited point projections. So, there must be at
least one false negative, implying that there can be at most mk − 1 true positives. Consequently,
there must be at least k1 − (mk − 1) false positives. To find an upper bound on the probability
of the existence of k1 − (mk − 1) false positives in terms of global relative sparsity, we apply
Lemma 4 with n0 set to k1 − (mk − 1), followed by Lemma 5. We conclude that this probability
is at most m

k1−2mk+1O
(
kmax(log(n/k), (n/k)1−log2 γ)

)
. Because the event that some true k-

nearest neighbour is missing from the candidate points is contained in the event that there are
k1 − (mk − 1) false positives, the former is upper bounded by the same quantity. So, we can choose
some k1 ∈ Ω(mkmax(log(n/k), (n/k)1−log2 γ)) to make it strictly less than 1.

Theorem 2. For a dataset with global relative sparsity (k, γ), for any ε > 0, there is some L,
k0 ∈ Ω(kmax(log(n/k), (n/k)1−m log2 γ)) and k1 ∈ Ω(mkmax(log(n/k), (n/k)1−log2 γ)) such
that the algorithm returns the correct set of k-nearest neighbours with probability of at least 1− ε.

Proof. For a given composite index, by Lemma 6, there is some k0 ∈
Ω(kmax(log(n/k), (n/k)1−m log2 γ)) such that the probability that some of the true k-nearest
neighbours are missed is at most some constant α0 < 1. Likewise, by Lemma 7, there is some
k1 ∈ Ω(mkmax(log(n/k), (n/k)1−log2 γ)) such that this probability is at most some constant
α1 < 1. By choosing such k0 and k1, this probability is therefore at most min{α0, α1} < 1. For the
algorithm to fail, all composite indices must miss some k-nearest neighbours. Since each composite
index is constructed independently, the algorithm fails with probability of at most (min{α0, α1})L,
and so must succeed with probability of at least 1− (min{α0, α1})L. Since min{α0, α1} < 1, there
is some L that makes 1− (min{α0, α1})L ≥ 1− ε.

Now that we have found a choice of k0 and k1 that suffices to ensure correctness with high probability,
we can derive a bound on the query time that guarantees correctness. We then analyze the time
complexity for construction, insertion and deletion and the space complexity. Proofs of the following
are found in the supplementary material.

Theorem 3. For a given number of simple indices m, the algorithm takes
O
(
dkmax(log(n/k), (n/k)1−m/d

′
) +mk logm

(
max(log(n/k), (n/k)1−1/d

′
)
))

time to

retrieve the k-nearest neighbours at query time, where d′ denotes the intrinsic dimensionality.

Proof. Computing projections of the query point along all ujl’s takes O(dm) time, since L is a
constant. Searching in the binary search trees/skip lists Tjl’s takes O(m log n) time. The total
number of point projections that are visited is at most Θ(mkmax(log(n/k), (n/k)1−log2 γ)). Be-
cause determining the next point to visit requires popping and pushing a priority queue, which takes

11

O(logm) time, the total time spent on visiting points isO(mk logmmax(log(n/k), (n/k)1−log2 γ)).
The total number of candidate points retrieved is at most Θ(kmax(log(n/k), (n/k)1−m log2 γ)).
Because true distances are computed for every candidate point, the total time spent on dis-
tance computation is O(dkmax(log(n/k), (n/k)1−m log2 γ)). We can find the k closest points
to the query among the candidate points using a selection algorithm like quickselect, which takes
O(kmax(log(n/k), (n/k)1−m log2 γ)) time on average. Since the time for visiting points and for
computing distances dominates, the entire algorithm takes O(dkmax(log(n/k), (n/k)1−m log2 γ) +
mk logmmax(log(n/k), (n/k)1−log2 γ)) time. Substituting 1/d′ for log2 γ yields the desired ex-
pression.

Theorem 4. For a given number of simple indices m, the algorithm takes O(m(dn+ n log n)) time
to preprocess the data points in D at construction time.

Proof. Computing projections of all n points along all ujl’s takes O(dmn) time, since L is a
constant. Inserting all n points intomL self-balancing binary search trees/skip lists takesO(mn log n)
time.

Theorem 5. The algorithm requiresO(m(d+log n)) time to insert a new data point andO(m log n)
time to delete a data point.

Proof. In order to insert a data point, we need to compute its projection along all ujl’s and insert it
into each binary search tree or skip list. Computing the projections takes O(md) time and inserting
them into the corresponding self-balancing binary search trees or skip lists takes O(m log n) time. In
order to delete a data point, we simply remove its projections from each of the binary search trees or
skip lists, which takes O(m log n) time.

Theorem 6. The algorithm requires O(mn) space in addition to the space used to store the data.

Proof. The only additional information that needs to be stored are the mL binary search trees or skip
lists. Since n entries are stored in each binary search tree/skip list, the total additional space required
is O(mn).

12

	Introduction
	Related Work
	Prioritized DCI
	Experiments
	Conclusion
	Appendix I: Algorithm
	Appendix II: Analysis

