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Abstract

Implicit probabilistic models are models defined naturally in terms of a sampling
procedure and often induces a likelihood function that cannot be expressed explic-
itly. We develop a simple method for estimating parameters in implicit models that
does not require knowledge of the form of the likelihood function or any derived
quantities, but can be shown to be equivalent to maximizing likelihood under some
conditions. Our result holds in the non-asymptotic parametric setting, where both
the capacity of the model and the number of data examples are finite. We also
demonstrate encouraging experimental results.

1 Introduction

Probabilistic models are a cornerstone of machine learning and can be divided into two categories:
prescribed models and implicit models (Diggle & Gratton, 1984; Mohamed & Lakshminarayanan,
2016). Prescribed models are defined by an explicit specification of the density, and so their
unnormalized complete likelihood can be usually expressed in closed form. Implicit models, on the
other hand, are defined most naturally in terms of a (simple) sampling procedure, like the following:

1. Sample z ∼ N (0, I)

2. Return x := Tθ(z)

where Tθ(·) is a deterministic parameterized transformation like a neural net. Examples of the former
include mixture of Gaussians (Everitt, 1985) and Boltzmann machines (Hinton & Sejnowski, 1986),
and examples of the latter include generative adversarial nets (GANs) (Goodfellow et al., 2014;
Gutmann et al., 2014) and generative moment matching nets (GMMNs) (Li et al., 2015; Dziugaite
et al., 2015). Some models like variational autoencoders (Kingma & Welling, 2013; Rezende et al.,
2014) belong to both categories.

Ideally, probabilistic models should be trained using the principle of maximum likelihood (Fisher,
1912; Edgeworth, 1908), which has a number of appealing properties: under mild regularity conditions,
it is asymptotically consistent and efficient 1. Unfortunately, doing so is often computationally
challenging. For prescribed models, maximizing likelihood directly requires computing the partition
function, which is intractable for all but the simplest models. However, many powerful techniques
have been developed to attack this problem, including variational methods (Jordan et al., 1999),
contrastive divergence (Hinton, 2002; Welling & Hinton, 2002), score matching (Hyvärinen, 2005)
and pseudolikelihood maximization (Besag, 1975), among others.

Unfortunately, such techniques are not applicable for implicit models, as there is no term in the
log-likelihood function that is in closed form; evaluating any term requires computing an intractable

1More justification for maximum likelihood from a practical perspective and responses to possible criticisms
of maximum likelihood are found in the appendix.
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integral. As a result, implicit models must be trained using likelihood-free approaches, which do not
require evaluating likelihood. Popular training objectives include adversarial loss used by GANs, and
moment matching used by GMMNs. Unfortunately, these methods have limitations. For example,
GANs suffer from a number of well-documented issues, such as mode dropping/collapse (Goodfellow
et al., 2014; Arora & Zhang, 2017), vanishing gradients (Arjovsky & Bottou, 2017; Sinn & Rawat,
2017) and training instability (Goodfellow et al., 2014; Arora et al., 2017). Perhaps the most
significant from a modelling perspective is mode dropping, which deprives the model designer of
control over which data examples are modelled and which are not. Effectively, the model can choose
which data examples it wants to model and disregard the rest, and so likelihood of the data could be
zero under the learned model.

1.1 Our Contribution

In this paper, we present an alternative method for estimating parameters in implicit models. Even
though the method is likelihood-free, it can be shown to be equivalent to maximizing likelihood under
some conditions. Unlike prior methods, our result holds when the capacity of the model is finite and
the number of data examples is finite.

Our method relies on the following observation: under a model distribution that maximizes the
likelihood of the data, because likelihood is the product of densities evaluated at all data examples, the
model density at each data example should be high. Suppose we don’t observe the model distribution
directly, and instead only observe independent and identically distributed (i.i.d.) samples drawn from
the model. Because the density at data examples is high, then there would be more samples in the
neighbourhood of each data example than elsewhere. Therefore, to maximize likelihood, we need to
make this happen by adjusting parameters of the model so that each data example is close to some
sample. Note that this is the opposite of what adversarial loss does – it ensures that each sample is
close to some data example. Some data examples may not be chosen by any sample, resulting in
mode dropping.

To make each data example close to some sample, the proposed method works by minimizing the
distance from each data example to the nearest sample. This objective can sidestep the three common
issues of existing methods: mode collapse, vanishing gradients and training instability. Modes are not
dropped because the loss ensures each data example has a sample nearby at optimality; gradients do
not vanish because the gradient of the distance between a data example and its nearest sample does not
become zero unless they coincide; training is stable because the estimator is the solution to a simple
minimization problem. By leveraging recent advances in fast nearest neighbour search algorithms (Li
& Malik, 2016, 2017), this approach is able to scale to large, high-dimensional datasets.

2 Implicit Maximum Likelihood Estimator

2.1 Definition

We are given a set of n data examples x1, . . . ,xn and some unknown parameterized probability
distribution Pθ with density pθ. We also have access to an oracle that allows us to draw independent
and identically distributed (i.i.d.) samples from Pθ.

Let x̃θ1, . . . , x̃
θ
m be i.i.d. samples from Pθ, where m ≥ n. The implicit maximum likelihood estimator

θ̂IMLE is defined as:

θ̂IMLE := arg min
θ

Ex̃θ1,...,x̃
θ
m

[
n∑
i=1

min
j∈[m]

∥∥x̃θj − xi
∥∥2

2

]

2.2 Algorithm

We outline the proposed parameter estimation procedure in Algorithm 1. In each outer iteration, we
draw m i.i.d. samples from the current model Pθ. We then randomly select a batch of examples from
the dataset and find the nearest sample from each data example. We then run a standard iterative
optimization algorithm, like stochastic gradient descent (SGD), to minimize a sample-based version
of the Implicit Maximum Likelihood Estimator (IMLE) objective.
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Algorithm 1 Implicit maximum likelihood estimation (IMLE) procedure

Require: The dataset D = {xi}ni=1 and a sampling mechanism for the implicit model Pθ
Initialize θ to a random vector
for k = 1 to K do

Draw i.i.d. samples x̃θ1, . . . , x̃
θ
m from Pθ

Pick a random batch S ⊆ {1, . . . , n}
σ(i)← arg minj

∥∥xi − x̃θj
∥∥2

2
∀i ∈ S

for l = 1 to L do
Pick a random mini-batch S̃ ⊆ S
θ ← θ − η∇θ

(
n
|S̃|

∑
i∈S̃

∥∥∥xi − x̃θσ(i)

∥∥∥2

2

)
end for

end for
return θ

Because our algorithm needs to solve a nearest neighbour search problem in each outer iteration,
the scalability of our method depends on our ability to find the nearest neighbours quickly. This
was traditionally considered to be a hard problem, especially in high dimensions. However, this
is no longer the case, due to recent advances in nearest neighbour search algorithms (Li & Malik,
2016, 2017), which avoid the curse of dimensionality in time complexity that often arises in nearest
neighbour search.

3 Equivalence to Maximum Likelihood

Below we illustrate the intuition behind why the proposed estimator is equivalent to maximum
likelihood under some conditions. For simplicity, we will consider the special case where we only
have a single data example x1 and a single sample x̃θ1. Consider the total density of Pθ inside a ball
of radius of t centred at x1 as a function of t, a function that will be denoted as F̃ θ(t). If the density
in the neighbourhood of x1 is high, then F̃ θ(t) would grow rapidly as t increases. If, on the other
hand, the density in the neighbourhood of x1 is low, then F̃ θ(t) would grow slowly. So, maximizing
likelihood is equivalent to making F̃ θ(t) grow as fast as possible. To this end, we can maximize
the area under the function F̃ θ(t), or equivalently, minimize the area under the function 1− F̃ θ(t).
Observe that F̃ θ(t) can be interpreted as the cumulative distribution function (CDF) of the Euclidean
distance between x1 and x̃θ1, which is a random variable because x̃θ1 is random and will be denoted as
R̃θ. Because R̃θ is non-negative, recall that E

[
R̃θ
]

=
∫∞

0
Pr
(
R̃θ > t

)
dt =

∫∞
0

(
1− F̃ θ(t)

)
dt,

which is exactly the area under the function 1 − F̃ θ(t). Therefore, we can maximize likelihood
of a data example x1 by minimizing E

[
R̃θ
]
, or in other words, minimizing the expected distance

between the data example and a random sample. To extend this reasoning to the case with multiple
data examples, we show in the appendix that if we have an objective function that is a summation,
applying a monotonic transformation to each term and then reweighting appropriately preserves the
optimizer under some conditions. The precise theoretical result and the proofs are in the appendix.

4 Experiments

We trained implicit probabilistic models using the proposed method on three standard benchmark
datasets, MNIST, the Toronto Faces Dataset (TFD) and CIFAR-10. All models take the form of
feedforward neural nets with isotropic Gaussian noise as input.

It is important to note that evaluation for implicit probabilistic models remains an open problem. Vari-
ous evaluation metrics have been proposed, including estimated log-likelihood and visual assessment
of sample quality. While recent literature has focused more on the latter and less on the former, it
should be noted that they evaluate different properties – sample quality reflects precision, i.e.: how ac-
curate the model samples are compared to the ground truth, whereas estimated log-likelihood focuses
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(a) MNIST (b) TFD (c) CIFAR-10

Figure 1: Representative random samples from the model trained on (a) MNIST, (b) Toronto Faces
Dataset and (c) CIFAR-10.

on recall, i.e.: how much of the diversity in the data distribution the model captures. Consequently,
both are important metrics; one is not a replacement for the other.

Solely focusing on precision can be misleading – two models that achieve different levels of precision
may simply be at different points on the same precision-recall curve, and so an improvement in
precision may not mean better modelling performance if it comes at the expense of recall. Historically,
because most generative models maximized likelihood or a lower bound on the likelihood, full recall
was guaranteed, and so the only property that differed across models was precision. As a result,
sample quality correlated with estimated log-likelihood and was a reliable indicator of modelling
performance. However, with the advent of models that may drop modes, both precision and recall
need to be measured.

Method MNIST TFD

DBN (Bengio et al., 2013) 138± 2 1909± 66
SCAE (Bengio et al., 2013) 121± 1.6 2110± 50
DGSN (Bengio et al., 2014) 214± 1.1 1890± 29
GAN (Goodfellow et al., 2014) 225± 2 2057± 26
GMMN (Li et al., 2015) 147± 2 2085± 25
IMLE (Proposed) 257± 6 2139± 27

Figure 2: Log-likelihood of the test data under the Gaussian
Parzen window density estimated from samples generated by
different methods.

We report the estimated log-likelihood
in Table 2 and visualize randomly cho-
sen samples in Figure 1. As shown
in Figure 1, despite its simplicity, the
proposed method is able to generate
reasonably good samples for MNIST,
TFD and CIFAR-10. A high estimated
log-likelihood in Table 2 suggests that
the model did not suffer from signifi-
cant mode dropping. While our sam-
ple quality may not yet be state-of-the-
art, it is important to remember that
these results are obtained under the
setting of full recall. The fact that our
method is able to generate more plau-
sible samples on CIFAR-10 than other
methods at similar stages of development, such as the initial versions of GAN (Goodfellow et al.,
2014) and PixelRNN (van den Oord et al., 2016), despite the minimal sophistication of our method
and architecture, shows the promise of the approach.

5 Conclusion

We presented a simple method for parameter estimation for implicit probabilistic models, which
works by minimizing the distance from each data example to the nearest sample. We showed that
performing this estimator is equivalent to maximum likelihood under some conditions. The proposed
method can capture the full diversity of the data and avoids common issues like mode collapse,
vanishing gradients and training instability. The method combined with vanilla model architectures is
able to achieve encouraging results on MNIST, TFD and CIFAR-10.
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6 Appendix I: Additional Results

(a) MNIST (b) TFD (c) CIFAR-10

Figure 3: Linear interpolation between samples in the latent variable space. The first image in
every row is an independent sample; all other images are interpolated between the previous and the
subsequent sample. Images along the path of interpolation are shown in the figure arranged from
left to right, top to bottom. They also wrap around, so that images in the last row are interpolations
between the last and first samples.

(a) MNIST (b) TFD (c) CIFAR-10

Figure 4: Comparison of samples and their nearest neighbours in the training set. Images in odd-
numbered columns are samples; to the right of each sample is its nearest neighbour in the training
set.

In Figure 4, we show samples and their nearest neighbours in the training set. Each sample is quite
different from its nearest neighbour in the training set, suggesting that the model has not overfitted to
examples in the training set. If anything, it seems to be somewhat underfitted, and further increasing
the capacity of the model may improve sample quality.

Next, we visualize the learned manifold by walking along a geodesic on the manifold between pairs
of samples. More concretely, we generate five samples, arrange them in arbitrary order, perform
linear interpolation in latent variable space between adjacent pairs of samples, and generate an image
from the interpolated latent variable. As shown in Figure 3, the images along the path of interpolation
appear visually plausible and do not have noisy artifacts. In addition, the transition from one image to
the next appears smooth, including for CIFAR-10, which contrasts with findings in the literature that
suggest the transition between two natural images tends to be abrupt. This indicates that the support
of the model distribution has not collapsed to a set of isolated points and that the proposed method
is able to learn the geometry of the data manifold, even though it does not learn a distance metric
explicitly.
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Finally, we illustrate the evolution of samples as training progresses in Figure 5. As shown, the
samples are initially blurry and become sharper over time. Importantly, sample quality consistently
improves over time, which demonstrates the stability of training.

7 Appendix II: Discussion

7.1 Why Maximum Likelihood

Figure 5: Samples corresponding to the same la-
tent variable values at different points in time while
training the model on CIFAR-10. Each row corre-
sponds to a sample, and each column corresponds
to a particular point in time.

There has been debate (Huszár, 2015) over
whether maximizing likelihood of the data is
the appropriate objective for the purposes of
learning generative models. Recall that max-
imizing likelihood is equivalent to minimiz-
ing DKL (pdata ‖pθ ), where pdata denotes the
empirical data distribution and pθ denotes the
model distribution. One proposed alterna-
tive is to minimize the reverse KL-divergence,
DKL (pθ ‖pdata ), which is suggested (Huszár,
2015) to be better because it severely penal-
izes the model for generating an implausible
sample, whereas the standard KL-divergence,
DKL (pdata ‖pθ ), severely penalizes the model
for assigning low density to a data example. As
a result, when the model is underspecified, i.e.
has less capacity than what’s necessary to fit all
the modes of the data distribution, minimizing
DKL (pθ ‖pdata ) leads to a narrow model dis-
tribution that concentrates around a few modes,
whereas minimizing DKL (pdata ‖pθ ) leads to
a broad model distribution that hedges between
modes. The success of GANs in generating
good samples is often attributed to the former
phenomenon (Arjovsky & Bottou, 2017).

This argument, however, relies on the assumption that we have access to an infinite number of samples
from the true data distribution. In practice, however, this assumption rarely holds: if we had access to
the true data distribution, then there is usually no need to fit a generative model, since we can simply
draw samples from the true data distribution. What happens when we only have the empirical data
distribution? Recall that DKL (p ‖q ) is defined and finite only if p is absolutely continuous w.r.t. q,
i.e.: q(x) = 0 implies p(x) = 0 for all x. In other words, DKL (p ‖q ) is defined and finite only if the
support of p is contained in the support of q. Now, consider the difference between DKL (pdata ‖pθ )
and DKL (pθ ‖pdata ): minimizing the former, which is equivalent to maximizing likelihood, ensures
that the support of the model distribution contains all data examples, whereas minimizing the latter
ensures that the support of the model distribution is contained in the support of the empirical data
distribution, which is just the set of data examples. In other words, maximum likelihood disallows
mode dropping, whereas minimizing reverse KL-divergence forces the model to assign zero density
to unseen data examples and effectively prohibits generalization. Furthermore, maximum likelihood
discourages the model from assigning low density to any data example, since doing so would make
the likelihood, which is the product of the densities at each of the data examples, small.

From a modelling perspective, because maximum likelihood is guaranteed to preserve all modes, it
can make use of all available training data and can therefore be used to train high-capacity models
that have a large number of parameters. In contrast, using an objective that permits mode dropping
allows the model to pick and choose which data examples it wants to model. As a result, if the goal is
to train a high-capacity model that can learn the underlying data distribution, we would not be able to
do so using such an objective because we have no control over which modes the model chooses to
drop. Put another way, we can think about the model’s performance along two axes: its ability to
generate plausible samples (precision) and its ability to generate all modes of the data distribution
(recall). A model that successfully learns the underlying distribution should score high along both
axes. If mode dropping is allowed, then an improvement in precision may be achieved at the expense
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of lower recall and could represent a move to a different point on the same precision-recall curve.
As a result, since sample quality is an indicator of precision, improvement in sample quality in this
setting may not mean an improvement in density estimation performance. On the other hand, if mode
dropping is disallowed, since full recall is always guaranteed, an improvement in precision is achieved
without sacrificing recall and so implies an upwards shift in the precision-recall curve. In this case,
an improvement in sample quality does signify an improvement in density estimation performance,
which may explain sample quality historically was an important way to evaluate the performance
of generative models, most of which maximized likelihood. With the advent of generative models
that permit mode dropping, however, sample quality is no longer a reliable indicator of density
estimation performance, since good sample quality can be trivially achieved by dropping all but a
few modes. In this setting, sample quality can be misleading, since a model with low recall on a
lower precision-recall curve can achieve a better precision than a model with high recall on a higher
precision-recall curve. Since it is hard to distinguish whether an improvement in sample quality is
due to a move along the same precision-recall curve or a real shift in the curve, an objective that
disallows mode dropping is critical tool that researchers can use to develop better models, since they
can be sure that an apparent improvement in sample quality is due to a shift in the precision-recall
curve.

7.2 Frequently Asked Questions

In this section, we consider and address some possible criticisms of maximum likelihood and/or the
proposed method.

7.2.1 Does Maximizing Likelihood Necessarily Lead to Poor Sample Quality?

It has been suggested (Huszár, 2015) that maximizing likelihood leads to poor sample quality because
when the model is underspecified, it will try to cover all modes of the empirical data distribution
and therefore assign high density to regions with few data examples. There is also empirical
evidence (Grover et al., 2017) for a negative correlation between sample quality and log likelihood,
suggesting an inherent trade-off between maximizing likelihood and achieving good sample quality.
A popular solution is to minimize reverse KL-divergence instead, which trades off recall for precision.
This is an imperfect solution, as the ultimate goal is to model all the modes and generate high-quality
samples.

Note that this apparent trade-off exists that the model capacity is assumed to be fixed. We argue
that a more promising approach would be to increase the capacity of the model, so that it is less
underspecified. As the model capacity increases, avoiding mode dropping becomes more important,
because otherwise there will not be enough training data to fit the larger number of parameters to.
This is precisely a setting appropriate for maximum likelihood. As a result, it is possible that a
combination of increasing the model capacity and maximum likelihood training can achieve good
precision and recall simultaneously.

7.2.2 Would Minimizing Distance to the Nearest Samples Cause Overfitting?

When the model has infinite capacity, minimizing distance from data examples to their nearest
samples will lead to a model distribution that memorizes data examples. The same is true if we
maximize likelihood. Likewise, minimizing any divergence measure will lead to memorization of
data examples, since the minimum divergence is zero and by definition, this can only happen if the
model distribution is the same as the empirical data distribution, whose support is confined to the set
of data examples. This implies that whenever we have a finite number of data examples, any method
that learns a model with infinite capacity will memorize the data examples and will hence overfit.

To get around this, most methods learn a parametric model with finite capacity. In the parametric
setting, the minimum divergence is not necessarily zero; the same is true for the minimum distance
from data examples to their nearest samples. Therefore, the optimum of these objective functions
is not necessarily a model distribution that memorizes data examples, and so overfitting will not
necessarily occur.
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7.2.3 Does Disjoint Support Break Maximum Likelihood?

Arjovsky et al. (2017) observes that the data distribution and the model distribution are supported on
low-dimensional manifolds and so they are unlikely to have a non-negligible intersection. They point
out DKL (pdata ‖pθ ) would be infinite in this case, or equivalently, the likelihood would be zero.
While this does not invalidate the theoretical soundness of maximum likelihood, since the maximum
of a non-negative function that is zero almost everywhere is still well-defined, it does cause a lot of
practical issues for gradient-based learning, as the gradient is zero almost everywhere. This is believed
to be one reason that models like variational autoencoders (Kingma & Welling, 2013; Rezende et al.,
2014) use a Gaussian distribution with high variance for the conditional likelihood/observation model
rather than a distribution close to the Dirac delta, so that the support of the model distribution is
broadened to cover all the data examples (Arjovsky et al., 2017).

This issue does not affect our method, as our loss function is different from the log-likelihood function,
even though their optima are the same (under some conditions). As the result, the gradients of our loss
function are different from those of log-likelihood. When the supports of the data distribution and the
model distribution do not overlap, each data example is likely far away from its nearest sample and
so the gradient is large. Moreover, the farther the data examples are from the samples, the larger the
gradient gets. Therefore, even when the gradient of log-likelihood can be tractably computed, there
may be situations when the proposed method would work better than maximizing likelihood directly.

8 Appendix III: Theoretical Analysis

8.1 Key Result

We first state the key theoretical result that establishes equivalence between the proposed estimator
and maximum likelihood:
Theorem 1. Consider a set of observations x1, . . . ,xn, a parameterized family of distributions
Pθ with probability density function (PDF) pθ(·) and a unique maximum likelihood solution θ∗.
For any m ≥ 1, let x̃θ1, . . . , x̃

θ
m ∼ Pθ be i.i.d. random variables and define r̃θ :=

∥∥x̃θ1∥∥2

2
, Rθ :=

minj∈[m]

∥∥x̃θj∥∥2

2
and Rθi := minj∈[m]

∥∥x̃θj − xi
∥∥2

2
. Let F θ(·) be the cumulative distribution function

(CDF) of r̃θ and Ψ(z) := minθ
{
E
[
Rθ
]
|pθ(0) = z

}
.

If Pθ satisfies the following:

• pθ(x) is differentiable w.r.t. θ and continuous w.r.t. x everywhere.

• ∀θ,v, there exists θ′ such that pθ(x) = pθ′(x + v) ∀x.

• For any θ1, θ2, there exists θ0 such that F θ0(t) ≥ max
{
F θ1(t), F θ2(t)

}
∀t ≥ 0 and

pθ0(0) = max {pθ1(0), pθ2(0)}.

• ∃τ > 0 such that ∀i ∈ [n] ∀θ /∈ Bθ∗(τ), pθ(xi) < pθ∗(xi), where Bθ∗(τ) denotes the ball
centred at θ∗ of radius τ .

• Ψ(z) is differentiable everywhere.

• For all θ, if θ 6= θ∗, there exists j ∈ [d] such that〈
Ψ′(pθ(x1))pθ(x1)

Ψ′(pθ∗ (x1))pθ∗ (x1)

...
Ψ′(pθ(xn))pθ(xn)

Ψ′(pθ∗ (xn))pθ∗ (xn)

 ,

 ∇θ (log pθ(x1))j
...

∇θ (log pθ(xn))j

〉 6= 0.

Then,

arg min
θ

n∑
i=1

E
[
Rθi
]

Ψ′(pθ∗(xi))pθ∗(xi)
= arg max

θ

n∑
i=1

log pθ(xi)

Furthermore, if pθ∗(x1) = · · · = pθ∗(xn), then,

arg min
θ

n∑
i=1

E
[
Rθi
]

= arg max
θ

n∑
i=1

log pθ(xi)

10



Now, we examine the restrictiveness of each condition. The first condition is satisfied by nearly
all analytic distributions. The second condition is satisfied by nearly all distributions that have an
unrestricted location parameter, since one can simply shift the location parameter by v. The third
condition is satisfied by most distributions that have location and scale parameters, like a Gaussian
distribution, since the scale can be made arbitrarily low and the location can be shifted so that the
constraint on pθ(·) is satisfied. The fourth condition is satisfied by nearly all distributions, whose
density eventually tends to zero as the distance from the optimal parameter setting tends to infinity.
The fifth condition requires minθ

{
E
[
Rθ
]
|pθ(0) = z

}
to change smoothly as z changes. The final

condition requires the two n-dimensional vectors, one of which can be chosen from a set of d vectors,
to be not exactly orthogonal. As a result, this condition is usually satisfied when d is large, i.e. when
the model is richly parameterized.

There is one remaining difficulty in applying this theorem, which is that the quantity
1/Ψ′(pθ∗(xi))pθ∗(xi), which appears as an coefficient on each term in the proposed objective,
is typically not known. If we consider a new objective that ignores the coefficients, i.e.

∑n
i=1 E

[
Rθi
]
,

then minimizing this objective is equivalent to minimizing an upper bound on the ideal objective,∑n
i=1 E

[
Rθi
]
/Ψ′(pθ∗(xi))pθ∗(xi). The tightness of this bound depends on the difference between

the highest and lowest likelihood assigned to individual data points at the optimum, i.e. the maximum
likelihood estimate of the parameters. Such a model should not assign high likelihoods to some points
and low likelihoods to others as long as it has reasonable capacity, since doing so would make the
overall likelihood, which is the product of the likelihoods of individual data points, low. Therefore,
the upper bound is usually reasonably tight.

8.2 Proofs

Before proving the main result, we first prove the following intermediate results:
Lemma 1. Let Ω ⊆ Rd and V ⊆ R. For i ∈ [N ], let fi : Ω → V be differentiable on Ω and
Φ : V → R be differentiable on V and strictly increasing. Assume arg minθ∈Ω

∑N
i=1 fi(θ) exists and

is unique. Let θ∗ := arg minθ∈Ω

∑N
i=1 fi(θ) and wi := 1/Φ′(fi(θ

∗)). If the following conditions
hold:

• There is a bounded set S ⊆ Ω such that bd(S) ⊆ Ω, θ∗ ∈ S and ∀fi, ∀θ ∈ Ω \S, fi(θ) >
fi(θ

∗), where bd(S) denotes the boundary of S.

• For all θ ∈ Ω, if θ 6= θ∗, there exists j ∈ [d] such that〈 w1Φ′(f1(θ))
...

wnΦ′(fn(θ))

 ,

 ∂f1/∂θj(θ)
...

∂fn/∂θj(θ)

〉 6= 0.

Then arg minx∈Ω

∑N
i=1 wiΦ(fi(θ)) exists and is unique. Furthermore,

arg minθ∈Ω

∑N
i=1 wiΦ(fi(θ)) = arg minθ∈Ω

∑N
i=1 fi(θ).

Proof. Let S ⊆ Ω be the bounded set such that bd(S) ⊆ Ω, θ∗ ∈ S and ∀fi, ∀θ ∈ Ω \ S, fi(θ) >
fi(θ

∗). Consider the closure of S := S ∪ bd(S), denoted as S̄. Because S ⊆ Ω and bd(S) ⊆ Ω,
S̄ ⊆ Ω. Since S is bounded, S̄ is bounded. Because S̄ ⊆ Ω ⊆ Rd and is closed and bounded, it is
compact.

Consider the function
∑N
i=1 wiΦ(fi(·)). By the differentiability of fi’s and Φ,

∑N
i=1 wiΦ(fi(·))

is differentiable on Ω and hence continuous on Ω. By the compactness of S̄ and the
continuity of

∑N
i=1 wiΦ(fi(·)) on S̄ ⊆ Ω, Extreme Value Theorem applies, which im-

plies that minθ∈S̄
∑N
i=1 wiΦ(fi(θ)) exists. Let θ̃ ∈ S̄ be such that

∑N
i=1 wiΦ(fi(θ̃)) =

minθ∈S̄
∑N
i=1 wiΦ(fi(θ)).

By definition of S, ∀fi, ∀θ ∈ Ω \ S, fi(θ) > fi(θ
∗), implying that Φ(fi(θ)) > Φ(fi(θ

∗))

since Φ is strictly increasing. Because Φ′(·) > 0, wi > 0 and so
∑N
i=1 wiΦ(fi(θ)) >∑N

i=1 wiΦ(fi(θ
∗)) ∀θ ∈ Ω \ S. At the same time, since θ∗ ∈ S ⊂ S̄, by definition of θ̃,∑N

i=1 wiΦ(fi(θ̃)) ≤
∑N
i=1 wiΦ(fi(θ

∗)). Combining these two facts yields
∑N
i=1 wiΦ(fi(θ̃)) ≤

11



∑N
i=1 wiΦ(fi(θ

∗)) <
∑N
i=1 wiΦ(fi(θ)) ∀θ ∈ Ω \ S. Since the inequality is strict, this implies that

θ̃ /∈ Ω \ S, and so θ̃ ∈ S̄ \ (Ω \ S) ⊆ Ω \ (Ω \ S) = S.

In addition, because θ̃ is the minimizer of
∑N
i=1 wiΦ(fi(·)) on S̄,

∑N
i=1 wiΦ(fi(θ̃)) ≤∑N

i=1 wiΦ(fi(θ)) ∀θ ∈ S̄. So,
∑N
i=1 wiΦ(fi(θ̃)) ≤

∑N
i=1 wiΦ(fi(θ)) ∀θ ∈ S̄ ∪ (Ω \ S) ⊇ S ∪

(Ω \ S) = Ω. Hence, θ̃ is a minimizer of
∑N
i=1 wiΦ(fi(·)) on Ω, and so minθ∈Ω

∑N
i=1 wiΦ(fi(θ))

exists. Because
∑N
i=1 wiΦ(fi(·)) is differentiable on Ω, θ̃ must be a critical point of

∑N
i=1 wiΦ(fi(·))

on Ω.

On the other hand, since Φ is differentiable on V and fi(θ) ∈ V for all θ ∈ Ω, Φ′(fi(θ)) exists for
all θ ∈ Ω. So,

∇

(
N∑
i=1

wiΦ(fi(θ))

)
=

N∑
i=1

wi∇ (Φ(fi(θ)))

=

N∑
i=1

wiΦ
′(fi(θ))∇fi(θ)

=

N∑
i=1

Φ′(fi(θ))

Φ′(fi(θ∗))
∇fi(θ)

At θ = θ∗,

∇

(
N∑
i=1

wiΦ(fi(θ
∗))

)
=

N∑
i=1

Φ′(fi(θ
∗))

Φ′(fi(θ∗))
∇fi(θ∗)

=

N∑
i=1

∇fi(θ∗)

Since each fi is differentiable on Ω,
∑N
i=1 fi is differentiable on Ω. Combining this with the fact

that θ∗ is the minimizer of
∑N
i=1 fi on Ω, it follows that ∇

(∑N
i=1 fi(θ

∗)
)

=
∑N
i=1∇fi(θ∗) = 0.

Hence, ∇
(∑N

i=1 wiΦ(fi(θ
∗))
)

= 0 and so θ∗ is a critical point of
∑N
i=1 wiΦ(fi(·)).

Because ∀θ ∈ Ω, if θ 6= θ∗, ∃j ∈ [d] such that

〈 w1Φ′(f1(θ))
...

wnΦ′(fn(θ))

 ,

 ∂f1/∂θj(θ)
...

∂fn/∂θj(θ)

〉 6= 0,

∑N
i=1 wiΦ

′(fi(θ))∇fi(θ) = ∇
(∑N

i=1 wiΦ(fi(θ))
)
6= 0 for any θ 6= θ∗ ∈ Ω. Therefore, θ∗ is

the only critical point of
∑N
i=1 wiΦ(fi(·)) on Ω. Since θ̃ is a critical point on Ω, we can con-

clude that θ∗ = θ̃, and so θ∗ is a minimizer of
∑N
i=1 wiΦ(fi(·)) on Ω. Since any other mini-

mizer must be a critical point and θ∗ is the only critical point, θ∗ is the unique minimizer. So,
arg minθ∈Ω

∑N
i=1 fi(θ) = θ∗ = arg minθ∈Ω

∑N
i=1 wiΦ(fi(θ)).

Lemma 2. Let P be a distribution on Rd whose density p(·) is continuous at a point x0 ∈ Rd and
x ∼ P be a random variable. Let r̃ := ‖x− x0‖2, κ := πd/2/Γ

(
d
2 + 1

)
, where Γ(·) denotes the

gamma function 2, and r := κr̃d. Let G(·) denote the cumulative distribution function (CDF) of r
and ∂+G(·) denote the one-sided derivative of G from the right. Then, ∂+G(0) = p(x0).

2The constant κ is the the ratio of the volume of a d-dimensional ball of radius r̃ to a d-dimensional cube of
side length r̃.
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Proof. By definition of ∂+G(·),

∂+G(0) = lim
h→0+

G(h)−G(0)

h
= lim
h→0+

G(h)

h

= lim
h→0+

Pr (r ≤ h)

h
= lim
h→0+

Pr
(
r̃ ≤ d

√
h/κ

)
h

If we define h̃ := d
√
h/κ, the above can be re-written as:

∂+G(0) = lim
h̃→0+

Pr
(
r̃ ≤ h̃

)
κh̃d

= lim
h̃→0+

∫
Bx0

(h̃)
p(u)du

κh̃d

We want to show that limh̃→0+

(∫
Bx0 (h̃)

p(u)du
)
/κh̃d = p(x0). In other words, we want to show

∀ε > 0 ∃δ > 0 such that ∀h̃ ∈ (0, δ),
∣∣∣∣ ∫Bx0

(h̃)
p(u)du

κh̃d
− p(x0)

∣∣∣∣ < ε.

Let ε > 0 be arbitrary.

Since p(·) is continuous at x0, by definition, ∀ε̃ > 0 ∃δ̃ > 0 such that ∀u ∈ Bx0
(δ̃),

|p(u)− p(x0)| < ε̃. Let δ̃ > 0 be such that ∀u ∈ Bx0
(δ̃), p(x0) − ε < p(u) < p(x0) + ε.

We choose δ = δ̃.

Let 0 < h̃ < δ be arbitrary. Since p(x0)−ε < p(u) < p(x0)+ε ∀u ∈ Bx0
(δ̃) = Bx0

(δ) ⊃ Bx0
(h̃),∫

Bx0 (h̃)

p(u)du <

∫
Bx0 (h̃)

(p(x0) + ε) du

= (p(x0) + ε)

∫
Bx0

(h̃)

du

Observe that
∫
Bx0

(h̃)
du is the volume of a d-dimensional ball of radius h̃, so

∫
Bx0

(h̃)
du = κh̃d.

Thus,
∫
Bx0 (h̃)

p(u)du < κh̃d (p(x0) + ε), implying that
(∫

Bx0 (h̃)
p(u)du

)
/κh̃d < p(x0) + ε. By

similar reasoning, we conclude that
(∫

Bx0 (h̃)
p(u)du

)
/κh̃d > p(x0)− ε.

Hence, ∣∣∣∣∣
∫
Bx0

(h̃)
p(u)du

κh̃d
− p(x0)

∣∣∣∣∣ < ε ∀h̃ ∈ (0, δ)

Therefore,

∂+G(0) = lim
h̃→0+

∫
Bx0 (h̃)

p(u)du

κh̃d
= p(x0)

Lemma 3. Let Pθ be a parameterized family of distributions on Rd with parameter θ and probability
density function (PDF) pθ(·) that is continuous at a point xi. Consider a random variable x̃θ1 ∼
Pθ and define r̃θi :=

∥∥x̃θ1 − xi
∥∥2

2
, whose cumulative distribution function (CDF) is denoted by

F θi (·). Assume Pθ has the following property: for any θ1, θ2, there exists θ0 such that F θ0i (t) ≥
max

{
F θ1i (t), F θ2i (t)

}
∀t ≥ 0 and pθ0(xi) = max {pθ1(xi), pθ2(xi)}. For any m ≥ 1, let

x̃θ1, . . . , x̃
θ
m ∼ Pθ be i.i.d. random variables and define Rθi := minj∈[m]

∥∥x̃θj − xi
∥∥2

2
. Then the

function Ψi : z 7→ minθ
{
E
[
Rθi
]
|pθ(xi) = z

}
is strictly decreasing.
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Proof. Let rθi := κ
(
r̃θi
)d/2

= κ
∥∥x̃θ1 − xi

∥∥d
2

be a random variable and let Gθi (·) be the CDF of rθi .
Since Rθi is nonnegative,

E
[
Rθi
]

=

∫ ∞
0

Pr
(
Rθi > t

)
dt

=

∫ ∞
0

(
Pr
(∥∥x̃θ1 − xi

∥∥2

2
> t
))m

dt

=

∫ ∞
0

(
Pr
(
κ
∥∥x̃θ1 − xi

∥∥d
2
> κtd/2

))m
dt

=

∫ ∞
0

(
Pr
(
rθi > κtd/2

))m
dt

=

∫ ∞
0

(
1−Gθi

(
κtd/2

))m
dt

Also, by Lemma 2, pθ(xi) = ∂+G
θ
i (0). Using these facts, we can rewrite

minθ
{
E
[
Rθi
]
|pθ(xi) = z

}
as minθ

{∫∞
0

(
1−Gθi

(
κtd/2

))m
dt
∣∣∂+G

θ
i (0) = z

}
. By definition

of Ψi, minθ

{∫∞
0

(
1−Gθi

(
κtd/2

))m
dt
∣∣∂+G

θ
i (0) = z

}
exists for all z. Let φi(z) be a value of θ

that attains the minimum. Define G∗i (y, z) := G
φi(z)
i (y). By definition, ∂+∂yG

∗
i (0, z) = z, where

∂+
∂yG

∗
i (y, z) denotes the one-sided partial derivative from the right w.r.t. y. Also, since G∗i (·, z) is the

CDF of a distribution of a non-negative random variable, G∗i (0, z) = 0.

By definition of ∂+∂yG
∗
i (0, z), ∀ε > 0 ∃δ > 0 such that ∀h ∈ (0, δ),

∣∣∣G∗i (h,z)−G∗i (0,z)
h − z

∣∣∣ < ε.

Let z′ > z. Let δ > 0 be such that ∀h ∈ (0, δ),
∣∣∣G∗i (h,z)−G∗i (0,z)

h − z
∣∣∣ < z′−z

2 and δ′ > 0 be such

that ∀h ∈ (0, δ′),
∣∣∣G∗i (h,z′)−G∗i (0,z′)

h − z′
∣∣∣ < z′−z

2 .

Consider h ∈ (0,min(δ, δ′)). Then, G∗i (h,z)−G∗i (0,z)
h =

G∗i (h,z)
h < z + z′−z

2 = z+z′

2 and
G∗i (h,z′)−G∗i (0,z′)

h =
G∗i (h,z′)

h > z′ − z′−z
2 = z+z′

2 . So,

G∗i (h, z)

h
<
z + z′

2
<
G∗i (h, z

′)

h

Multiplying by h on both sides, we conclude that G∗i (h, z) < G∗i (h, z
′) ∀h ∈ (0,min(δ, δ′)).

Let α := d
√

min(δ, δ′)/κ. We can break
∫∞

0

(
1−G∗i

(
κtd/2, z

))m
dt into two terms:∫ ∞

0

(
1−G∗i

(
κtd/2, z

))m
dt

=

∫ α

0

(
1−G∗i

(
κtd/2, z

))m
dt+

∫ ∞
α

(
1−G∗i

(
κtd/2, z

))m
dt

We can also do the same for
∫∞

0

(
1−G∗i

(
κtd/2, z′

))m
dt.

Because G∗i (h, z) < G∗i (h, z
′) ∀h ∈ (0,min(δ, δ′)), G∗i (κt

d/2, z) < G∗i (κt
d/2, z′) ∀t ∈ (0, α).

It follows that 1 − G∗i (κt
d/2, z) > 1 − G∗i (κt

d/2, z′) and
(
1−G∗i

(
κtd/2, z

))m
>(

1−G∗i (κtd/2, z′)
)m ∀t ∈ (0, α). So,

∫ α
0

(
1−G∗i

(
κtd/2, z

))m
dt >∫ α

0

(
1−G∗i

(
κtd/2, z′

))m
dt.

We now consider the second term. First, observe that F θi (t) = Pr
(∥∥x̃θ1 − xi

∥∥2

2
≤ t
)

=

Pr
(
κ
∥∥x̃θ1 − xi

∥∥d
2
≤ κtd/2

)
= Gθi

(
κtd/2

)
for all t ≥ 0. So, by the property of Pθ, for

any θ1, θ2, there exists θ0 such that Gθ0i (κtd/2) = F θ0i (t) ≥ max
{
F θ1i (t), F θ2i (t)

}
=

max
{
Gθ1i (κtd/2), Gθ2i (κtd/2)

}
∀t ≥ 0 and ∂+G

θ0
i (0) = pθ0(xi) = max {pθ1(xi), pθ2(xi)} =

max
{
∂+G

θ1
i (0), ∂+G

θ2
i (0)

}
.
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Take θ1 = φi(z) and θ2 = φi(z
′). Let θ0 be such that Gθ0i (κtd/2) ≥

max
{
Gθ1i (κtd/2), Gθ2i (κtd/2)

}
∀t ≥ 0 and ∂+G

θ0
i (0) = max

{
∂+G

θ1
i (0), ∂+G

θ2
i (0)

}
. By

definition of φi(·), ∂+G
θ1
i (0) = z and ∂+G

θ2
i (0) = z′. So, ∂+G

θ0
i (0) = max {z, z′} = z′.

Since Gθ0i (κtd/2) ≥ Gθ2i (κtd/2) ∀t ≥ 0, 1 − Gθ0i
(
κtd/2

)
≤ 1 − Gθ2i

(
κtd/2

)
∀t ≥ 0

and so
∫∞

0

(
1−Gθ0i

(
κtd/2

))m
dt ≤

∫∞
0

(
1−Gθ2i

(
κtd/2

))m
dt. On the other hand, because

θ2 = φi(z
′) minimizes

∫∞
0

(
1−Gθi

(
κtd/2

))m
dt among all θ’s such that ∂+G

θ
i (0) = z′ and

∂+G
θ0
i (0) = z′,

∫∞
0

(
1−Gθ2i

(
κtd/2

))m
dt ≤

∫∞
0

(
1−Gθ0i

(
κtd/2

))m
dt. We can therefore con-

clude that
∫∞

0

(
1−Gθ0i

(
κtd/2

))m
dt =

∫∞
0

(
1−Gθ2i

(
κtd/2

))m
dt. Since 1 − Gθ0i

(
κtd/2

)
≤

1 − Gθ2i
(
κtd/2

)
∀t ≥ 0, the only situation where this can happen is when Gθ0i

(
κtd/2

)
=

Gθ2i
(
κtd/2

)
∀t ≥ 0.

By definition of G∗i , G∗i
(
κtd/2, z

)
= G

φi(z)
i (κtd/2) = Gθ1i (κtd/2) and G∗i

(
κtd/2, z′

)
=

G
φi(z

′)
i (κtd/2) = Gθ2i (κtd/2) = Gθ0i

(
κtd/2

)
. By definition of θ0, Gθ0i

(
κtd/2

)
≥ Gθ1i (κtd/2) ∀t ≥

0. So, G∗i
(
κtd/2, z′

)
= Gθ2i (κtd/2) ≥ Gθ1i (κtd/2) = G∗i

(
κtd/2, z

)
∀t ≥ 0. Hence,∫∞

α

(
1−G∗i

(
κtd/2, z′

))m
dt ≤

∫∞
α

(
1−G∗i

(
κtd/2, z

))m
dt.

Combining with the previous result that
∫ α

0

(
1−G∗i

(
κtd/2, z′

))m
dt <∫ α

0

(
1−G∗i

(
κtd/2, z

))m
dt, it follows that:∫ ∞

0

(
1−G∗i

(
κtd/2, z′

))m
dt

=

∫ α

0

(
1−G∗i

(
κtd/2, z′

))m
dt+

∫ ∞
α

(
1−G∗i

(
κtd/2, z′

))m
dt

<

∫ α

0

(
1−G∗i

(
κtd/2, z

))m
dt+

∫ ∞
α

(
1−G∗i

(
κtd/2, z′

))m
dt

≤
∫ α

0

(
1−G∗i

(
κtd/2, z

))m
dt+

∫ ∞
α

(
1−G∗i

(
κtd/2, z

))m
dt

=

∫ ∞
0

(
1−G∗i

(
κtd/2, z

))m
dt

By definition, ∫ ∞
0

(
1−G∗i

(
κtd/2, z

))m
dt

=

∫ ∞
0

(
1−Gφi(z)i (κtd/2)

)m
dt

= min
θ

{∫ ∞
0

(
1−Gθi

(
κtd/2

))m
dt
∣∣∂+G

θ
i (0) = z

}
= min

θ

{
E
[
Rθi
]
|pθ(xi) = z

}
= Ψi(z)

Similarly,
∫∞

0

(
1−G∗i

(
κtd/2, z′

))m
dt = Ψi(z

′). We can therefore conclude that Ψi(z
′) < Ψi(z)

whenever z′ > z.

We now prove the main result.
Theorem 1. Consider a set of observations x1, . . . ,xn, a parameterized family of distributions
Pθ with probability density function (PDF) pθ(·) and a unique maximum likelihood solution θ∗.
For any m ≥ 1, let x̃θ1, . . . , x̃

θ
m ∼ Pθ be i.i.d. random variables and define r̃θ :=

∥∥x̃θ1∥∥2

2
, Rθ :=

minj∈[m]

∥∥x̃θj∥∥2

2
and Rθi := minj∈[m]

∥∥x̃θj − xi
∥∥2

2
. Let F θ(·) be the cumulative distribution function

(CDF) of r̃θ and Ψ(z) := minθ
{
E
[
Rθ
]
|pθ(0) = z

}
.

If Pθ satisfies the following:
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• pθ(x) is differentiable w.r.t. θ and continuous w.r.t. x everywhere.

• ∀θ,v, there exists θ′ such that pθ(x) = pθ′(x + v) ∀x.

• For any θ1, θ2, there exists θ0 such that F θ0(t) ≥ max
{
F θ1(t), F θ2(t)

}
∀t ≥ 0 and

pθ0(0) = max {pθ1(0), pθ2(0)}.

• ∃τ > 0 such that ∀i ∈ [n] ∀θ /∈ Bθ∗(τ), pθ(xi) < pθ∗(xi), where Bθ∗(τ) denotes the ball
centred at θ∗ of radius τ .

• Ψ(z) is differentiable everywhere.

• For all θ, if θ 6= θ∗, there exists j ∈ [d] such that〈
Ψ′(pθ(x1))pθ(x1)

Ψ′(pθ∗ (x1))pθ∗ (x1)

...
Ψ′(pθ(xn))pθ(xn)

Ψ′(pθ∗ (xn))pθ∗ (xn)

 ,

 ∇θ (log pθ(x1))j
...

∇θ (log pθ(xn))j

〉 6= 0.

Then,

arg min
θ

n∑
i=1

E
[
Rθi
]

Ψ′(pθ∗(xi))pθ∗(xi)
= arg max

θ

n∑
i=1

log pθ(xi)

Furthermore, if pθ∗(x1) = · · · = pθ∗(xn), then,

arg min
θ

n∑
i=1

E
[
Rθi
]

= arg max
θ

n∑
i=1

log pθ(xi)

Proof. Pick an arbitrary i ∈ [n]. We first prove a few basic facts.

By the second property of Pθ, ∀θ ∃θ′ such that pθ(u) = pθ′(u − xi) ∀u. In particular, pθ(xi) =
pθ′(xi − xi) = pθ′(0). Let F θi be as defined in Lemma 3.

F θi (t) = Pr
(
r̃θi ≤ t

)
= Pr

(∥∥x̃θ1 − xi
∥∥

2
≤
√
t
)

=

∫
Bxi

(
√
t)

pθ(u)du =

∫
Bxi

(
√
t)

pθ′(u− xi)du

=

∫
B0(
√
t)

pθ′(u)du = Pr
(
r̃θ
′
≤ t
)

= F θ
′
(t)

Similarly, ∀θ′ ∃θ such that pθ′(u) = pθ(u + xi) ∀u. In particular, pθ′(0) = pθ(0 + xi) = pθ(xi).

F θ
′
(t) = Pr

(
r̃θ
′
≤ t
)

=

∫
B0(
√
t)

pθ′(u)du

=

∫
B0(
√
t)

pθ(u + xi)du =

∫
Bxi

(
√
t)

pθ(u)du

=Pr
(∥∥x̃θ1 − xi

∥∥
2
≤
√
t
)

= Pr
(
r̃θi ≤ t

)
= F θi (t)

Let θ1, θ2 be arbitrary. The facts above imply that there exist θ′1 and θ′2 such that F θ1i (t) = F θ
′
1(t),

F θ2i (t) = F θ
′
2(t), pθ1(xi) = pθ′1(0) and pθ2(xi) = pθ′2(0).

By the third property of Pθ, let θ′0 be such that F θ
′
0(t) ≥ max

{
F θ
′
1(t), F θ

′
2(t)
}
∀t ≥ 0 and

pθ′0(0) = max
{
pθ′1(0), pθ′2(0)

}
. By the facts above, it follows that there exists θ0 such that

F θ
′
0(t) = F θ0i (t) and pθ′0(0) = pθ0(xi).

So, we can conclude that for any θ1, θ2, there exists θ0 such that F θ0i (t) ≥
max

{
F θ1i (t), F θ2i (t)

}
∀t ≥ 0 and pθ0(xi) = max {pθ1(xi), pθ2(xi)}.

By Lemma 3, Ψi(z) = minθ
{
E
[
Rθi
]
|pθ(xi) = z

}
is strictly decreasing.

16



Consider any θ. By the facts above, there exists θ′ such that pθ(xi) = pθ′(0) and F θi (t) = F θ
′
(t) ∀t.

Therefore,

E
[
Rθi
]

=

∫ ∞
0

Pr
(
Rθi > t

)
dt

=

∫ ∞
0

(
Pr
(∥∥x̃θ1 − xi

∥∥2

2
> t
))m

dt

=

∫ ∞
0

(
1− F θi (t)

)m
dt

=

∫ ∞
0

(
1− F θ

′
(t)
)m

dt

=

∫ ∞
0

Pr
(
Rθ
′
> t
)
dt

=E
[
Rθ
′
]

So, ∀z

Ψi(z) = min
θ

{
E
[
Rθi
]
|pθ(xi) = z

}
= min

θ′

{
E
[
Rθ
′
]
|pθ′(0) = z

}
=Ψ(z)

Because Ψi(·) is strictly decreasing, Ψ(·) is also strictly decreasing.

We would like to apply Lemma 1, with fi(θ) = − log pθ(xi) ∀i ∈ [n] and Φ(y) = Ψ(exp(−y)).
By the first property of Pθ, pθ(·) is differentiable w.r.t. θ and so fi(θ) is differentiable for all i. By
the fifth property of Pθ, Ψ(·) is differentiable and so Φ(·) is differentiable. Since y 7→ exp(−y) is
strictly decreasing and Ψ(·) is strictly decreasing, Φ(·) is strictly increasing. Since there is a unique
maximum likelihood solution θ∗, minθ

∑n
i=1 fi(θ) = maxθ

∑n
i=1 log pθ(xi) exists and has a unique

minimizer. By the fourth property of Pθ, the first condition of Lemma 1 is satisfied. By the sixth
property of Pθ, the second condition of Lemma 1 is satisfied. Since all conditions are satisfied, we
apply Lemma 1 and conclude that

min
θ

n∑
i=1

wiΦ(fi(θ)) = min
θ

n∑
i=1

wiΨ(pθ(xi))

= min
θ

n∑
i=1

wiΨi(pθ(xi))

= min
θ

n∑
i=1

E
[
Rθi
]

Ψ′(pθ∗(xi))pθ∗(xi)

exists and has a unique minimizer. Furthermore,

arg min
θ

n∑
i=1

E
[
Rθi
]

Ψ′(pθ∗(xi))pθ∗(xi)
= arg min

θ

n∑
i=1

− log pθ(xi)

= arg max
θ

n∑
i=1

log pθ(xi)

If pθ(x1) = · · · pθ(xn), then w1 = · · · = wn, and so arg minθ
∑n
i=1 wiE

[
Rθi
]

=

arg minθ
∑n
i=1 E

[
Rθi
]

= arg maxθ
∑n
i=1 log pθ(xi).
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