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Abstract. We propose a novel approach to fine-grained image classifi-
cation in which instances from different classes share common parts but
have wide variation in shape and appearance. We use dog breed identi-
fication as a test case to show that extracting corresponding parts im-
proves classification performance. This domain is especially challenging
since the appearance of corresponding parts can vary dramatically, e.g.,
the faces of bulldogs and beagles are very different. To find accurate cor-
respondences, we build exemplar-based geometric and appearance mod-
els of dog breeds and their face parts. Part correspondence allows us to
extract and compare descriptors in like image locations. Our approach
also features a hierarchy of parts (e.g., face and eyes) and breed-specific
part localization. We achieve 67% recognition rate on a large real-world
dataset including 133 dog breeds and 8,351 images, and experimental
results show that accurate part localization significantly increases clas-
sification performance compared to state-of-the-art approaches.

1 Introduction

Image classification methods follow a common pipeline in which a set of features
are extracted from an image and fed to a classifier. These features are often
extracted at generic locations or keypoints within the image, sampling both
object and background, with the hope that these locations will reveal something
about the class. However, for fine-grained classification, background regions may
contain more noise than useful contextual information about identity. Moreover,
while generic sampling may be useful in capturing larger scale information that
differentiates very different classes, it can miss the details that are needed to
distinguish between classes that are similar in appearance.

We argue and demonstrate in this paper that fine-grained classification can
be improved if the features used for classification are localized at object parts.
While such localization across wide categories of objects may not yet be possible,
we will show that within a particular category of objects — domestic dogs — such
localization is both possible and helpful in significantly improving the recognition
accuracy over state-of-the-art methods.

The domestic dog ( Canis lupus familiaris) displays “greater levels of morpho-
logical and behavioral diversity than have been recorded for any land mammal”
[1]. The dog’s diversity in its visual appearance would seem to present significant
challenges to part localization. However, we show that using appearance-based
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Fig. 1. (a) Given an image, our method automatically detects the dog’s face, (b) local-
izes eyes and nose of the face, (c) aligns the face and extracts greyscale SIFT features
(yvellow windows) and a color histogram (red window), (d) infers remaining part loca-
tions from exemplars (cyan dots) to extract additional SIFT features (magenta win-
dows), and (e) predicts the breed (green box) along with the next best guesses from
left to right. The numbers correspond to breed names listed in Table 1.

sliding window detectors and a probabilistic consensus of geometric models, we
can accurately detect dog faces and localize their face parts. In addition, many
subsets of dog breeds are quite similar in appearance (e.g., beagle and basset
hound) making identification very challenging. We also show that the use of im-
age descriptors aligned with common parts allows us to overcome this challenge
in real-world images.

Determination of dog breeds provides an excellent domain for fine grained
visual categorization experiments. After humans, dogs are possibly the most
photographed species. With the advent of image search engines, millions of dog
images can be easily obtained. These images are nearly infinite in their variety,
showing dogs of all shapes, sizes, and colors, under differing illumination, in
innumerable poses, and in just about any location. Success in this domain will
certainly lead to further success in the broader domain of automatic species
identification [2-5], contributing to the ever growing area of biodiversity studies.
In addition, there are some practical applications to the automatic processing of
dog images. Dog face detectors can be used for autofocus. For personal photos,
detection and identification of dog breeds can facilitate autotagging and image
search.

Dog breed identification is representative of a set of fine-grained classification
problems in which corresponding object parts exist across classes, but the geom-
etry and appearance of these parts vary significantly. To cope with this problem,
first we use a sliding window detector to locate dog faces. Then we accurately lo-
calize the eyes and nose by combining appearance-based detection with a large
exemplar-based set of geometric models, building on the consensus of models
approach of [6]. Using this small set of face parts (eyes and nose), we are able to
align an image with models for each dog breed, and hypothesize breed-specific
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locations of additional parts, such as ears, whose position and appearance vary
greatly between breeds. We then extract image features at these locations for
use in classification.

To train and evaluate this system, we have created a labeled dataset of 8,351
real-world images of 133 American Kennel Club (AKC) recognized dog breeds.
The images are downloaded from Google, Image-net and Flickr. In each image,
parts on the dog faces are localized using Amazon’s Mechanical Turk (MTurk).
These parts include both eyes, the nose, the tips of both ears, and three points
marking the top of the dog’s head between the ears. Due to different pose,
lighting, expression, and intra-breed variation in the dataset, instances from the
same breed can look quite different. Yet, in experiments with this dataset, we
show that we can automatically determine a dog breed with 67% accuracy on
the first guess — many of our errors are due to the close visual similarity of some
breeds. Overall, we find that we can place the correct breed among the top 10
guesses with more than 93% accuracy. We also show that by using descriptors
aligned to parts, we significantly outperform other state-of-the-art fine-grained
classification methods on this dataset.

Our paper makes the following novel contributions:

— We show how a probabilistic consensus of exemplars approach, which has
previously been applied only to part detection, can be extended to perform
object classification.

— We show how class-specific object parts can be inherited from the exemplars
and used to improve classification accuracy.

— We create a new and extensive 8,351 image dataset including not only class
labels for 133 dog breeds but also 66,808 part labels (Eight per image).

— We design a complete working vision system released as a free iPhone app.

2 Related Work

There has been a great deal of recent interest in methods for visual classification
[7-13]. Our work specifically addresses fine-grained categorization, in which dis-
crimination between a large number of similar classes is difficult. In addressing
this problem, [14] mines discriminative features with randomized sampling, and
[3] uses a multiple kernel framework to combine kernels in a way that is most
discriminative for each class. [2] also uses the framework as part of an interactive
system for bird species identification. [5] identifies plant species using images of
leaves, and along with [3], relies on segmentation to localize the object of interest
before extracting descriptors.

Especially relevant to our approach is [4], which uses the poselet framework
[15] to localize the head and body of birds, enabling part-based feature extrac-
tion. Our work is in some ways complementary to this, in that [4] focuses on
developing methods of using large, articulated parts while our approach finds
parts describable at point locations. We also make use of a hierarchical ap-
proach in which first the face, and then parts of the face are found, and make
use of class-specific part localization to look for parts such as the ears, which are
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extremely variable in position and appearance. One reason for this difference in
emphasis is that we have found that for species such as dogs, much of the infor-
mation about identity is contained in the appearance of the face. (While overall
size is also important, it is difficult to extract from unconstrained images.) Also
highly relevant is the contemporaneous work of [16], which determines the breed
of cats and dogs. They introduce a dataset containing 37 breeds (25 breeds of
dogs) and combine a deformable part model and texture-based representations
of fur to identify breed.

There is also a vast literature on face detection, though to our knowledge
this work has mostly focused on human faces. Haar and Haar-like wavelets have
been widely used in a cascaded Adaboost classifier [17]. As we will show, these
detectors are not as effective for dog faces, presumably due to their much greater
variation in geometry and appearance. We instead use a more powerful, sliding
window support vector machine (SVM) [6, 18]. [19] has also recently addressed
the problem of detection of cats and dogs. However, they focus on the head and
its relation to the full body, while we focus here on only the face, as slightly more
than half of dog images do not contain the full body. A good deal of work has
also addressed the localization of fiducial points and parts of human faces [20-22,
6]. [6] proposes to combine the output of local detectors with a non-parametric
set of models to localize an extensive list of face parts.

Once parts are localized, we build image descriptors using SIFT [23], cen-
tering descriptors at matching locations. Many methods have used bag-of-words
approaches with SIFT descriptors, in which localization is not important or at
least not the focus (e.g. [7]), while other approaches have related image descrip-
tors to capture spatially localized information that can then be grouped together
[18,9] to capture geometric relations.

Parts and attributes have been widely used in face recognition [24, 25]. These
methods also try to increase the discriminative ability of features by extracting
information at local regions. Fiducial points are directly used in some face recog-
nition work. [26] builds an automatic face recognition system where Gabor filters
are applied to extract descriptors around the detected fiducials. [27] studies the
strong correlation between eye localization error and the face recognition rate.

3 Dog Breed Dataset

We have created a dataset! of natural images of dogs, downloaded from sources
such a Flickr, Image-Net, and Google. The dataset contains 133 breeds of dogs
with 8,351 images. The images were not filtered, except to exclude images in
which the dog’s face did not have both eyes visible. Sample faces from all the
breeds are shown in Fig. 2 and the list of breed names is shown in Table 1. Not
only is there great variation across breeds — making detection a challenge, but
there is also great variation within breeds — making identification a challenge.
See the blowup of sample images of Breed 97: the Lakeland terrier. Note the
variations in color, ear position, fur length, pose, lighting and even expression.

! The dataset is available at http://faceserv.cs.columbia.edu/DogData,/
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Fig. 2. Representative faces from all the breeds. The breeds are numbered according
to the alphabetical order of names.

Fig. 3. Sample dog images from our dataset, with parts labeled by MTurk workers.

Each of the images was submitted to MTurk to have the breed verified by
multiple workers. Afterward, each image was submitted again to MTurk to have
parts of the dog’s face labeled. Eight points were labeled in each image by three
separate workers. If there was gross disagreement amongst the workers in the
locations of these points, we resubmitted the image again for relabeling. The
points that were labeled were the eyes, the nose, the tips of both ears, the top of
the head, and the inner bases of the ears. In Fig. 3, we show the average location,
over three workers, for these eight points.

4 Dog Face Detection

We have created a dog face detector capable of detecting faces of all the dog
breeds in our dataset. Although we do not view our dog face detector as a
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T:Affenpinscher (80) 28:Bluctick coonhound (44) 55:Curly-coated retriever (63) 82:Havanese (76) 109:Norwegian elkhound (56)
2: Afghan hound (73) 29:Border collie (93) 56: shund (82) 83:Ibizan hound (58) 110:Norwegian lundehund (41)
3: Airedale terrier (65) 30:Border terrier (65) 57:Dalmatian (89) andic sheepdog (62) 111:Norwich terrier (55)
4:Akita (79) 31:Borzoi (70) 58:Dandie dinmont terrier (63) h red and white setter (46)|112:Nova scotia duck tolling retriever (67)
5:Alaskan malamute (96) 32:Boston terrier (81) 59:Doberman pinscher (59) h setter (66) 113:01d english sheepdog (49)
33:Bouvier des flandres (56) ogue de bordeaux (75) 87:Irish terrier (82) 4:0tterhound (44)

34:Boxer (80)
ican staffordshire terrier (82)|35:Boykin spaniel (66)

glish cocker spanicl (76) 88:Irish water spaniel (64) 115:Papillon (79)
ish setter (66) 89:Irish wolfhound (66) 116:Parson russell terrier (38)

9: ican water spaniel (42) 36:Briard (81) springer spaniel (66)  |90:Italian greyhound (73) 117:Pekingese (60)
10:Anatolian shepherd dog (62)  |37:Brittany (62) sh toy spanicl (49) 91:Japanese chin (71) 118:Pembroke welsh corgi (66)
11:Australian cattle dog (83) 38:Brussels griffon (71) ntlebucher mountain dog (53) [92:Keeshond (55) 119:Petit basset griffon vendeen (39)
12:Australian shepherd (83) 39:Bull terrier (87) eld spaniel (41) 93:Kerry blue terrier (44) 120:Pharaoh hound (49)
3:Australian terrier (58) 40:Bulldog (66) nnish spitz (42) 94:Komondor (55) 121:Plott (35)

enji (86) 41:Bullmastiff (86) 68:Flat-coated retriever (79) 95:Kuvasz (61) 122:Pointer (40)

set hound (92) 42:Cairn terrier (79) 69:French bulldog (64) 96:Labrador retriever (54) 123:Pomeranian (55)

gle (74) 43:Canaan dog (62) 70:German pinscher (59) 97:Lakeland terrier (62) 124:Poodle (62)

rded collie (77) 4
uceron (63)
19:Bedlington terrier (60)

rs0 (80) 71:German shepherd dog (78) 98:Leonberger (57) 125:Portuguese water dog (42)
igan welsh corgi (66) 72:German shorthaired pointer (60)[99:Lhasa apso (53) 126:Saint bernard (37)
lier king charles spaniel (84 erman wirehaired pointer (52) [100:Lowchen (42) 127:Silky terrier (51)

20:Belgian malinois (78) 4 apeake bay retriever (67) ant schnauzer (51) 101:Maltese (60) 128:Smooth fox terrier (38)
21:Belgian sheepdog (80) 48:Chihuahua (68) 75:Glen of imaal terrier (55) 102:Manchester terrier (36) an mastiff (60)
22:Belgian tervuren (59) 49:Chinese crested (63) 76:Golden retriever (80) 103:Mastiff (72) springer spaniel (55)
23:Bernese mountain dog (81) 50:Chinese shar-pei (62) 77:Gordon setter (54) 104:Miniature schnauzer (53) haired pointing griffon (37)
24:Bichon frise (77) 51:Chow chow (78) 7s: dane (50) 105:Neapolitan mastiff (39) 32:Xoloitzcuintli (33)

pyrenees (74) 106:Newfoundland (62) 133:Yorkshire terrier (38)

25:Black and tan coonhound (46)  [52:Clumber spaniel (61)
26:Black russian terrier (51) 53:Cocker spaniel (59) : er swiss mountain dog (57)|107:Norfolk terrier (58)
27:Bloodhound (80) 54:Collie (71) 81:Greyhound (70) 108:Norwegian buhund (33)

Table 1. List of breed names. Each breed name is numbered, with the number of
images shown to the right.

technical contribution of this paper, it is a necessary component of our complete
vision system and is described briefly here.

The detector is a SVM regressor with greyscale SIFT [23] descriptors as fea-
tures. Eight SIFT descriptors are extracted at fixed positions relative to the
center point. The positions and scales are chosen to roughly align with the ge-
ometry of a dog’s face (eyes and nose). Once extracted, these descriptors are
then concatenated into a single 1024-dimensional feature vector for our SVM
regressor. We use 4,700 positive examples for training.

For each negative training sample, we randomly rescale the image and ran-
domly choose a location that is at least the inter-ocular distance away from the
above described center point on the dog’s face. We then extract the same eight
SIFT descriptors at this non-face location. As negative examples are plentiful,
we use 13,000 negative examples. With both positive and negative samples in
hand, we train our SVM regressor using an RBF kernel.

As the SVM regressor is trained at a fixed rotation and scale, at detection
time we must search not only over location, but also over rotation and scale. We
threshold and merge the repeated detections with non-maximum suppression for
each rotation separately, and choose the detection window with the highest score
if multiple windows collide at a certain location.

4.1 Dog Face Detection: Experiments

Following [17], we also implemented a cascaded AdaBoost detector with Haar-
like features to compare with our SVM-based detector. While this detector has
seen much success in detecting human faces, it is sometimes plagued by un-
wanted false positives. Perhaps due to the extreme variability in geometry and
appearance of dog faces, this weakness in the cascaded Adaboost detectors is
exacerbated in the dog face domain. Even training on considerably more data
and using 20 cascades, we could not create a detector with a desirable ratio of
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Fig. 4. The ROC and Precision/Recall (PR) curves for dog face detection.

true positives to false positives. We compare the performance of our detector
with an Adaboost detector on 3,500 held out images in Figure 4.

5 Localization of Face Parts

To localize parts of the dog face, we build on the consensus of models approach of
[6]. The method accurately localizes the eyes and nose; we handle more challeng-
ing dog parts during the breed identification process (Section 6). We combine
low-level detectors with labeled images that model part locations. We first train
a sliding window SVM detector for each dog part. If we let I denote a query
image, let p’ denote the locations of the parts in the image, and let C' denote
the detector responses for the parts in I, then our goal is to compute

p! = argmax P(p’|C). (1)
pI
In [6], probable locations for these parts are dictated by exemplars that have
been manually labeled. These exemplars help create conditional independence
between different parts. Let pj be the locations of the parts in the k" exemplar
image, Eq. 1 is then rewritten as

m n
p’ = arg max Z/ H P(Apfi)t)P(p(i)I\C(i))dt. (2)
P! =1 JteT iy

Here the summation is over all m exemplars, i.e., in our case over all labeled
examples of parts of dogs’ faces. The integral is over similarity transformations ¢
of the exemplars. p,(f)t denotes the part i’s location in the k** model, transformed
by t, and Apl(j’)t denotes the difference in location of the part 4 in the query image
from that of the transformed exemplar. This amounts to introducing a generative
model of part locations in which a randomly chosen example is transformed and
placed in the image with noise added. After assuming independence of parts in
the deviation from the model, we then marginalize the model out.

This optimization is then solved by a RANSAC-like procedure, in which a
large number of exemplars are randomly selected and fit to the modes of the
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Fig. 5. An example of part detection. Left: (a) Original image overlaid with heat maps
from part detectors. Red is used for the left eye, green for the right eye, and yellow for
the nose; better scores are shown as brighter. (b) Detected parts using the maximum
value of the detection scores. (c) Detected parts using the method described in this
paper. Right: Mean localization error divided by the inter-ocular distance.

detector output. For each hypothesis in which a model is transformed into the
image, the model part locations are combined with the detector output; the
best fitting matches then pool information, creating a consensus about the part
locations. We form the consensus for part ¢ as

p =argmax Y P(ap{))P(p!|C) (3)
PO L em

where Apg)t is modeled as a Gaussian distribution, and we sum over the best
fits M between the exemplars and detectors that are produced by RANSAC.

5.1 Localization of Face Parts: Experiments

We have evaluated the accuracy of part detection on our dataset. We compare
our full model to a simpler system that locates a part at the mode of the SVM-
based sliding window detector for each part. We also compare our results to the
agreement of human labelers by determining the distance between the location
indicated by one human labeler and the average of the other two. We show
qualitative results and make a quantitative comparison in Fig. 5. Note that our
complete model improves over the results of just using a low-level detector, and
that our localization error is better than the agreement among human labelers.

6 Breed Identification

Our classification algorithm focuses entirely on the face of the dog. This is partly
because the face is largely a rigid object, simplifying the problem of comparing
images of different dogs. However, we are also guided by the intuition that dog
breeds are largely identifiable from their face. A dog’s body shape is not only dif-
ficult to identify and often not present in images, but also offers little additional
information except in a more extreme cases (e.g., dachshunds).
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If we denote the breed of a dog by B, our goal is to compute

B = argmax P(B|I). (4)
B

Let the part locations in the query image I be given by p’. Then

B= argmax/P(B|I, p))P(p|I)dp’. (5)
B

Here we integrate over all possible locations of the parts p’ in the image I.
If these locations can be accurately localized, then P(p’|I) is approximately
a delta function about the true locations of the parts. Then if we write

p' = arg max P(p'|I), (6)
pI
we have X
B = argmax P(B|I,p’)P(p"|I). (7)
B

Note that P(p|I) is independent of B, so that
B = argmax P(B|I,p!). (8)
B
This means that we can break our problem into two parts. First, we must com-

pute arg max,: P(p!|I) as explained in the previous section. Next we must com-
pute arg maxy P(B|I,p!). Note that

P(I|B.B!) P(Bp)
P([p) )

P(B|L,p') =

where the denominator P(I|p’) is a constant that does not affect which breed
will maximize the probability. So

B = argmax P(I| B, p!)P(B|p’). (10)
B

However, our knowledge of what constitutes a breed is completely given by
our set of labeled exemplar images. We divide the information in these images
into two parts. First, we let p? denote the known locations of the parts of all
exemplars for breed B. Then we let DP denote descriptors characterizing the
appearance of the exemplars for breed B. These descriptors are extracted at
corresponding part locations given by pZ. So we can rewrite Eq. 10 as

B = argmax P(I|D®,p® p’)P(D® p”|p) (11)
B
In approximating this, we assume that the breed appearance descriptors D? are

independent of their positions, and we have a uniform distribution over breeds.
This allows us to rewrite Eq. 11 as

B = argmax P(I|D”,p”, p") P(p”|p") (12)
B
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(a) (b) () (d)

Fig. 6. (a) The cluster centers used to create the color histogram. (b) The window used
to extract the color histogram based on detected locations of the eyes and nose (white
dots). (c) The SIFT descriptor windows (yellow) dictated by the eyes and nose. (d)
Four different sets of inferred locations (cyan dots) and the SIFT descriptor windows
(magenta) dictated by these.

This suggests that we compute P(I|DB,p? p’) by measuring how well the
appearance of the query image at and around the part locations given by p’

agrees with the appearance of our exemplars in their corresponding locations

p”.

To do this, we train one vs. all SVMs for each breed B, and we use two
types of features: greyscale SIFT descriptors and a color histogram. We want to
center the collection of SIFT features at places dictated by the part locations.
However, at this point we are only able to locate the eyes and nose with high
accuracy. Since the other parts are more breed-specific, we infer the locations of
the remaining parts from exemplars of breed B when generating the negative
training samples. During testing, for each breed we choose r exemplars whose
eyes and nose locations are closest to the query’s after alignment with a similarity
transform. These exemplars are the ones that are most likely in the same pose as
the query image. Consequently, when we use these similarity transformations to
infer the location of additional face parts, these are likely to align with those of
the query image of the same breed. For example, Fig. 6 (d) shows the detected
locations (white dots) for the eyes and nose, and four different sets of inferred
locations for the remaining parts (cyan dots).

To extract features, we center 3 SIFT descriptors at the eyes and nose. We
center another 3 descriptors at the 3 midpoints along the lines connecting the
eyes and nose. The windows for the 6 SIFT descriptors are shown in yellow in
Fig. 6 (c). We place an additional 5 descriptors at the bases of the ears and
the midpoints of the lines connecting the eyes with the other inferred parts.
The windows for the additional 5 SIFT descriptors are shown in magenta in
Fig. 6 (d). The color histogram is computed over a rectangular region centered
on the dog’s face, shown in red in Fig. 6 (b). The histogram is created using
32 color centers computed from a k-means clustering across all exemplar images
of all dogs, shown in Fig. 6 (a). The 32 color features along with the 11 SIFT
features are concatenated to produce a 1440-dimensional feature vector.
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Fig. 7. Classification examples. Testing samples are in the first column, the closest 10
breeds based on our method are shown to the right.

Given a query image, the selected exemplars produces r feature vectors for
each breed. We evaluate each of these using our one vs. all SVM and allow the
best scoring feature vector to represent the breed. In practice, we choose r = 10.

The second probability in Eq. 12 can be computed directly from the distri-
bution of part locations in our exemplars. Since we are aligning the eyes with a
similarity transform, only the relative location of the nose could carry informa-
tion about the breed. But we have not found it helpful to include this.

Finally, we also use our part detection to assist in improving face detection.
We consider the five face windows that the detector scores highest. In each of
these windows, we compute the part locations. Then, we multiply the face detec-
tor score by the geometric mean of the detection scores for the parts, selecting
the window with the highest score.

6.1 Breed Identification: Experimental Results

There are 133 breeds in our dataset of 8,351 images. We randomly split the
images of each breed in a fixed ratio to get 4,776 training images and 3,575 test
images. We double the size of the training data by reflection.

Fig. 7 gives qualitative results for some query images. For each query in the
first column, we overlay the image with the detected part locations for the eyes
and nose. To better show the performance, we rank the breeds based on their
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Fig. 8. Performance curves for breed identification, showing how often the correct breed
appears among the top 1-10 guesses. On the left we show our method compared with
three other methods. On the right we show three variations of our method. The first
uses our feature set sampled on a grid within our detected face window. The second
uses part localization, but applied to only the highest scoring window from the face
detector. The third — and best — uses both the part scores and face detection scores to
select the best face window.

probability score. Our system works with high accuracy, failing mostly when the
face detection fails (these failures are excluded in these examples) or when the
parts detection fails on samples in which fur completely occludes the eyes.

We compare with three other methods: a Bag of Words (BoW) model with
spatial tiling [28], a multiple kernel learning (MKL) approach [29] used in bird
recognition [2], and locally constrained linear coding (LLC) [30] also applied to
a bird dataset [14]. We apply each of these methods inside a cropped window
found by selecting the location and size from the highest face detector score
within the image; if we use the uncropped images, the performance of all methods
is poor — below 20% on the first guess. This gives each method the benefit of
face detection and allows us to evaluate the additional gain produced by our
system using part detection. In Fig. 8-left we show performance curves for all
methods. Our method significantly outperforms existing approaches getting the
breed identification corrrect 67% of the time on the first guess vs. 54% for MKL,
49% for LLC, and 36% for BoW. In Fig. 8right we show three variants of our
approach. As a baseline, we use our feature set, extracted on a grid, rather
than at part locations. We can see that the use of parts results in a substantial
improvement in performance. We can also see that the use of parts to improve
face detection itself results in a further improvement in performance, eliminating
approximately 20% of the errors for the top ten guess.

To facilitate experimentation by ourselves and others with this algorithm,
we have created and released a free iPhone app for dog breed identification (see
Fig. 9). The app allows a user to photograph a dog and upload its picture to a
server for face detection, part detection, and breed identification.
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Results

Fig. 9. Screenshots of our iPhone app. (a) Home screen. (b) Browse screen with the
dog breeds. (c¢) Dog camera. (e) Detected dog face and parts, with results.

7 Conclusion

One might expect that fine-grained classification problems would be extremely
difficult, that telling a beagle from a basset hound would be much harder than
telling a car from a computer mouse. Our main contribution is to show that
much of this difficulty can be mitigated by the fact that it is possible to estab-
lish accurate correspondences between instances from a large family of related
classes. We combine features that can be effectively located using generic feature
models with breed specific models of part locations. An additional contribution
is the creation of a large, publicly available dataset for dog breed identification,
coupled with a practical system that achieves high accuracy in real-world images.
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