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Spaces and Manifolds

Topics: topological spaces, homeomorphisms, triangulations, manifolds, manifolds with boundary, orientability.

Topological spaces. The treatment of topological
ideas in these notes is mostly combinatorial in nature.
To understand the connection to continuous phenom-
ena we need some basic concepts from point set topol-
ogy. The most fundamental of these is the notion of a
topological space, which 1s a point set X together with
a system X of subsets A C X that satisfy

i) 0,XeX,
(i1) Z C X implies |JZ € X, and
(iii) finite Z C X implies [ Z € X.

The system X is the topology of X and its sets are the
open sets of X. This definition is exceedingly general
and therefore non-intuitive, but with time we will get
a better feeling for what a topological space really is.
The most important example for us is the d-dimensional
Euclidean space, denoted as RY. We use the Euclidean
distance function to define an open ball as the set of
all points closer than some given distance from a given
point. The topology of R? is the system of open sets,
where each open set is a union of open balls.

All other topological spaces in these notes are subsets
of R%. A topological subspace of the pair X, X is a subset
Y C X together with the subspace topology consisting
of all intersections between Y and open sets of X: ¥ =
{YNA| A€ X}. An example of a topological subspace
of R? is the d-ball whose points are at most unit distance
from the origin,

BY = {oeR'| |l < 1),

Its open sets are the intersections of B with open sets in
R?. Note that an open set of the d-ball is not necessarily
an open set of the Euclidean space.

Homeomorphisms. Topological spaces are consid-
ered the same or of the same type if they are connected
the same way. What it means to be connected the same
way still needs to be defined, and there are several pos-
sibilities. We use a function from one topological space
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to another. This function is continuous if the preimage
of every open set 1s open, and if it is continuous it is
referred to as a map. A homeomorphism 1s a function

FiX—Y

that is bijective, continuous, and has a continuous in-
verse. If a homeomorphism exists then X and Y are
homeomorphic, and this is denoted as X ~ Y. If we
want to stress that & is an equivalence relation we say
that X and Y are topologically equivalent or that they
have the same topological type. Figure 7 shows five ex-
amples of 1-dimensional spaces with pairwise different
topological types. For another example consider the
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Figure 7: From left to right: the open interval, the closed
interval, the half-open interval, the circle, and a bifurca-
tion.

open unit disk, which is the set of points in R? at dis-
tance less than one from the origin. This disk can be
stretched over the entire plane. Define f(z) = m,
which maps z to the point on the same radiating half-
line at distance m from the origin. Function f is
bijective, continuous, and its inverse is continuous. It
follows that the open disk is homeomorphic to R%. More
generally, every open k-dimensional ball is homeomor-
phic to R*.

Triangulations. Unfortunately, the term ‘triangula-
tion’ means something different in topology than in ge-
ometry. The topological notion of a triangulation is
similar to the idea of a mesh in the sense that it imposes
a combinatorial structure on a continuous domain.

Let K be a simplicial complex in R?. Its underlying
space is a topological subspace of R?. K is a triangula-



tion of a topological space X if its underlying space is
homeomorphic to the space: | K|~ X. X is triangula-
ble if it has a triangulation. According to the definition,
only closed spaces have triangulations. An example is
the triangulation of the closed disk B? with nine trian-
gles, see Figure 8.

Figure 8: Triangulation of the closed disk. The homeo-
morphism maps each vertex, edge, triangle to a homeo-
morphic subset of the disk.

Manifolds. Manifolds are particularly simple topo-
logical spaces. They are defined locally. A neighbor-
hood of a point # € X is an open set that contains x.
There are many neighborhoods and usually it suffices to
take one that is sufficiently small. A topological space
X is a k-manifold if every # € X has a neighborhood
homeomorphic to R®. It is probably more intuitive to
mentally substitute a small open k-ball for R*, but this
makes no difference because the two are homeomorphic.

A simple example of a k-manifold is the k-sphere,
which is the set of points at unit distance from the origin
in the (k 4+ 1)-dimensional Euclidean space:

§' = {eeR"™ ||« =1},
see Figure 9. The smallest triangulation of S* is the
boundary complex of a (k+ 1)-simplex . To construct
a homeomorphism we place ¢ so it contains the origin
in 1ts interior, and we centrally project every point of
o’s boundary to the sphere.

Figure 9: The O-sphere is a pair of points, the 1-sphere is
a circle, and the 2-sphere is what we usually call a sphere.

Manifolds with boundary. All points of a manifold
have the same neighborhood. We get a more general
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class of spaces if we allow two types of neighborhoods.
The second type of neighborhood is half an open ball.
Again we can stretch the open half-ball, this time over
half the Euclidean space of the same dimension. For-
mally, the k-dimensional half-space 1s
HY = {e= (x1,29,...,2) €ERF | 2 > 0}.

A space X is a k-manifold with boundary if every point
x € X has a neighborhood homeomorphic to R* or to
H*. The boundary is the set of points with neighbor-
hood homeomorphic to H*, and it is denoted as bd X.
The boundary is always either empty or a (k — 1)-
manifold (without boundary). Why is that true? Note
the slight awkwardness of language: a manifold with
boundary is in general not a manifold, but a mani-
fold 1s always a manifold with boundary, namely with
empty boundary. An example of a k-manifold with
(non-empty) boundary is the k-ball, see Figure 10. Tts
boundary is the (k — 1)-sphere, bd B* = §*~1.

Figure 10: The 0-ball is a point, the 1-ball is a closed
interval, and the 2-ball is a closed disk.

Orientability. Manifolds with or without boundary
can be either orientable or non-orientable. The distinc-
tion is a global property that cannot be observed lo-
cally. Intuitively, we can imagine a (k 4+ 1)-dimensional
ant walking on the k-manifold. At any moment the ant
is on one side of the local neighborhood with which it is
in contact. The manifold is non-orientable if there is a
walk that brings the ant back to the same neighborhood
but now on the other side, and 1t is orientable if no such
path exists. Examples of non-orientable manifolds, one
with and one without boundary, are the Mobius strip
and the Klein bottle illustrated in Figure 11.

Imagine the boundary of a solid shape in our everyday
three-dimensional space. This boundary is a 2-manifold
and it bounds the interior of the shape on one side and
the exterior on the other. The 2-manifold must there-
fore be orientable. At it turns out, every 2-manifold
embedded in R?® separates inside from outside and is
therefore orientable. The Klein bottle is non-orientably
and cannot be embedded in R3. Any attempt to embed
it produces self-intersections, such as the handle that
passes through the side of the mug in Figure 11. On
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Figure 11: The Mobius strip to the left is bounded by
a single circle. The Klein mug to the right is drawn with
cut-away view to show a piece of the handle after it passes
through the surface of the mug.

the other hand, there are obviously 2-manifolds with
boundary that can be embedded in R3, and the Mdbius
strip is one example.

Bibliographic notes. Point set topology or general
topology is an old and well-established branch of Math-
ematics. A good introductory text is the book by
James Munkres. Manifolds are studied primarily in the
context of differential structures. The topological as-
pects of such structures are emphasized in the text by
Guillemin and Pollack [1]. The difference between ori-
entable and non-orientable manifolds is discussed in a

delightful book by Jeffrey Weeks [3].
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