
Meeting 6 February 4, 1999Simplicial ComplexesTopics: simplices, simplicial complexes, abstract simplicial complexes, geometric realizations, nerves.Simplices. Points, edges, triangles, and tetrahedraare low-dimensional examples of simplices. We use com-binations of points to de�ne simplices in general dimen-sions. Let S be a �nite set in d-dimensional Euclideanspace denoted as Rd. An a�ne combination of thepoints pi 2 S is a point x = P�ipi with P�i = 1.The a�ne hull, a� S, is the set of all a�ne combina-tions. Equivalently, it is the intersection of all hyper-planes that contain S. The points in S are a�nelyindependent, of a. i., if none is the a�ne combinationof the other points in S. For example, the a�ne hull ofthree a. i. points is a plane, that of two a. i. points isa line, and the a�ne hull of a single point is the pointitself.A convex combination is an a�ne combination withnon-negative coe�cients: �i � 0 for all pi 2 S. Theconvex hull, convS, is the set of all convex combina-tions. Equivalently, it is the intersection of all half-spaces that contain S. A simplex is the convex hull ofa set of a. i. points. If S � Rd is a set of k + 1 a. i.points then the dimension of the simplex � = conv Sis dim� = k and � is called a k-simplex. The largestnumber of a. i. points in Rd is d+ 1, and we have sim-plices of dimension �1 through d. Figure 1 shows the�ve types of simplices in R3. The points in any sub-
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21Figure 1: The (�1)-simplex is the empty set, a 0-simplexis a point or vertex, a 1-simplex is an edge, a 2-simplex isa triangle, and a 3-simplex is a tetrahderon.set T � S are a. i., so the convex hull of T is again asimplex. Speci�cally, � = conv T is the subset of pointsx 2 � with �i = 0 whenever pi 2 S is not in T . Thesimplex � is a face of �, and we denote this relation by

� � �. If dim� = ` then � is called an `-face. � = ;and � = � are improper faces and all others are properfaces of �. The number of `-faces of � is equal to thenumber of ways we can choose `+ 1 from k + 1 points,which is �k + 1`+ 1� = (k + 1)!(` + 1)!(k � `)! :The total number of faces iskX`=�1�k + 1` + 1� = 2k+1:Simplicial complexes. A simplicial complex is a �-nite collection K of simplices such that(i) � 2 K and � � � implies � 2 K, and(ii) �; � 2 K implies � \ � � �; �.Note that ; is a face of every simplex and thus belongsto K by condition (i). Condition (ii) therefore allowsfor the possibility that � and � be disjoint. Figure 2shows three sets of simplices that violate one of thetwo conditions and therefore do not form complexes.A subcomplex is a subset that is a simplicial complexFigure 2: To the left we are missing an edge and twovertices. In the middle the triangles meet along a segmentthat is not an edge of either triangle. To the right theedge crosses the triangle at an interior point.itself. Observe that every subset of a simplicial complexsatis�es condition (ii). To enforce condition (i) we add18



faces and simplices to the subset. Formally, the closureof a subset L � K is the smallest subcomplex thatcontains L: ClL = f� 2 K j � � � 2 Lg:A particular subcomplex is the i-skeleton that consistsof all simplices � 2 K whose dimension is i or less. Thevertex set isVertK = f� 2 K j dim� = 0g;it is the same as the 0-skeleton except it does not con-tain the (�1)-simplex. The dimension of K is thelargest dimension of any simplex: dimK = maxfdim� j� 2 Kg. If k = dimK then K is a k-complex and it ispure if every simplex is a face of a k-simplex. The un-derlying space is the set of points covered by simplices:jjK jj = SK = S�2K �. A polyhedron is the underlyingspace of a simplicial complex. Sometimes it is usefulFigure 3: Star and link of a vertex. To the left the solidedges, and shaded triangles belong to the star of the solidvertex. To the right the solid edges and vertices belong tothe link of the hollow vertex.to consider substructures of a simplicial complex. Thestar of a simplex � consists of all simplices that contain� , and the link consists of all faces of simplices in thestar that do not intersect � :St � = f� 2 K j � � �g;Lk � = f� 2 Cl St � j � \ � = ;g;see Figure 3 for examples. The star is generally notclosed, but the link is always a simplicial complex.Abstract simplicial complex. If we replace eachsimplex in a simplicial complex by the set of its ver-tices, we get a system of subsets of the vertex set. Indoing so we throw away the geometry of the simplices,which allows us to focus on the combinatorial struc-ture. Formally, a �nite system A of �nite sets is anabstract simplicial complex if � 2 A and � � � implies� 2 A. This requirement is similar to condition (i) forgeometric simplicial complexes. A set � 2 A is an (ab-stract) simplex and its dimension is dim� = card��1.The vertex set of A is VertA = SA = S�2A �. The

concepts of face, subcomplex, closure, star, link extendstraightforwardly from geometric to abstract simplicialcomplexes.The set system together with the inclusion relationforms a partially ordered set, or poset, denoted as(A;�). Posets are commonly drawn using Hasse di-agrams where sets are nodes, smaller sets are belowlarger sets, and inclusions are edges, see Figure 4. In-clusions implied by others are usually not drawn. ToFigure 4: From left to right the poset of the empty set, avertex, an edge, a triangle, a tetrahedron.draw the Hasse diagram of a k-simplex � we draw theHasse diagrams for two (k � 1)-simplices. One is thediagram of a (k � 1)-face � of � and the other is thediagram for the star of the vertex u 2 � � �. Finally,we connect every simplex 
 in the star of u with thesimplex 
 � fug in the closure of �. An abstract sim-plicial complex A is a subsystem of the power set ofVertA. We can therefore think of it as a subcomplex ofan n-simplex, where n + 1 = cardVertA. This view isexpressed in the picture of an abstract simplicial com-plex shown as Figure 5.
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AFigure 5: The onion is the power set of VertA. The areabelow the waterline is an abstract simplicial complex.Geometric realization. We can think of an abstractsimplicial complex as an abstract version of a geometricsimplicial complex. To formalize this idea we de�ne ageometric realization of an abstract simplicial complexA as a simplicial complex K together with a bijection' : VertA! VertK such that � 2 A i� conv'(�) 2 K.Conversely, A is called an abstraction of K.Given A, we can ask for the lowest dimension that19



allows a geometric realization. For example, graphs are1-dimensional abstract simplicial complexes and can al-ways be realized in R3. Two dimensions are sometimesbut not always su�cient. This result generalized tok-dimensional abstract simplicial complexes: they canalways be realized in R2k+1 and sometimes R2k does notsu�ce. To prove the su�ciency of the claim we showthat the k-skeleton of every n-simplex can be realized inR2k+1. Map the n+ 1 vertices to points in general po-sition in R2k+1. Speci�cally, we require that any 2k+ 2of the points are a. i. Two simplices � and � of the k-skeleton have a total of at most 2(k+1) vertices, whichare therefore a. i. In other words, � and � are faces of acommon simplex of dimension at most 2k+1. It followsthat � \ � is a common face of both.Theorem 1. Every k-dimensional abstract simplicialcomplex has a geometric realization in R2k+1.Nerves. A convenient way to construct abstract sim-plicial complexes uses arbitrary �nite sets. The nerveof such a set C is the system of subsets with non-emptyintersection:NrvC = fX � C j\X 6= ;g:If Y � X then TX � TY . Hence X 2 NrvC im-plies Y 2 NrvC, which shows that the nerve is anabstract simplicial complex. Consider for example thecase where C is a covering of some geometric space, suchas in Figure 6. Every set in the covering correspondsFigure 6: A covering with eight sets to the left and itsnerve to the right. The sets meet in triplets but not inquadruplets, which implies that the nerve is 2-dimensional.to a vertex, and k+ 1 sets with non-empty intersectionde�ne a k-simplex.We have seen an example of such a construction ear-lier. The Voronoi regions of a �nite set S � R2 de�nea covering C = fVa j a 2 Sg of the plane. Assuminggeneral position the Voronoi regions meet in pairs andin triplets, but not in quadruplets. The nerve thereforeconsists only of abstract vertices, edges, and triangles.Consider the function ' : C ! R2 that maps a Voronoi

region to its generator: '(Va) = a. This function de-�nes a geometric realization of NrvC:D = fconv'(�) j � 2 NrvCg:This is the Delaunay triangulation of S. What hap-pens if the points in S are not in general position? Ifk + 1 � 4 Voronoi regions have a non-empty commonintersection then NrvC contains the corresponding ab-stract k-simplex. So instead of making a choice amongthe possible triangulations of the (k+1)-gon, the nervetakes all possible triangulations together and interpretsthem as subcomplexes of a k-simplex. The disadvan-tage of this method is of course the fact that NrvC canno longer be realized in R2.Bibliographic notes. During the �rst half of thetwentieth century, combinatorial topology was a 
our-ishing �eld of Mathematics. We refer to Paul Alexan-drov [1] as a comprehensive text originally published asa series of three books. This text roughly coincides witha fundamental reorganization of the �eld triggered by avariety of technical results in topology. One of the suc-cessors of combinatorial topology is modern algebraictopology where the emphasis shifts from combinatorialto algebraic structures. We refer to James Munkres [5]for an introductory text in that area.We proved that every k-complex can be geometri-cally realized in R2k+1. Examples of k-complexes thatrequire 2k+1 dimensions are provided by Flores [2] andindependently by van Kampen [3]. One such exampleis the k-skeleton of the (2k + 2)-simplex. For k = 1this is the complete graph of �ve vertices, which is oneof the two obstructions of graph planarity identi�ed byKuratowski [4].[1] P. S. Alexandrov. Combinatorial Topology. Dover,New York 1956.[2] A. Flores. �Uber n-dimensionale Komplexe die inR2n+1 selbstverschlungen sind. Ergeb. Math. Koll. 6(1933/34), 4-7.[3] E. R. van Kampen.Komplexe in euklidischen R�aumen.Abh. Math. Sem. Univ. Hamburg 9 (1933), 72{78.[4] K. Kuratowski. Sur le probl�eme des courbes en topolo-gie. Fund. Math. 15 (1930), 271{283.[5] J. R. Munkres. Elements of Algebraic Topology. Addi-son-Wesley, Redwood City, California, 1984.
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