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Simplicial Complexes

Topics: simplices, simplicial complexes, abstract simplicial complexes, geometric realizations, nerves.

Simplices. Points, edges, triangles, and tetrahedra
are low-dimensional examples of simplices. We use com-
binations of points to define simplices in general dimen-
sions. Let S be a finite set in d-dimensional Fuclidean
space denoted as R?. An affine combination of the
points p; € S is a point = Y a;p; with > a; = 1.
The affine hull, aff S, is the set of all affine combina-
tions. Equivalently, it is the intersection of all hyper-
planes that contain S. The points in S are affinely
independent, of a. ., if none is the affine combination
of the other points in S. For example, the affine hull of
three a. 1. points is a plane, that of two a. 1. points is
a line, and the affine hull of a single point is the point
itself.

A convex combination 1s an affine combination with
non-negative coefficients: a; > 0 for all p; € S. The
convez hull conv S, is the set of all convex combina-
tions. Equivalently, it i1s the intersection of all half-
spaces that contain S. A simplez 1s the convex hull of
a set of a. i. points. If S C R? is a set of k + 1 a. i.
points then the dimension of the simplex ¢ = conv .S
is dimo = k and o is called a k-simplez. The largest
number of a. i. points in R? is d + 1, and we have sim-
plices of dimension —1 through d. Figure 1 shows the
five types of simplices in BR3. The points in any sub-
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Figure 1: The (—1)-simplex is the empty set, a 0-simplex
is a point or vertex, a l-simplex is an edge, a 2-simplex is
a triangle, and a 3-simplex is a tetrahderon.

set 17" C S are a. 1., so the convex hull of 7" is again a
simplex. Specifically, 7 = conv 7" is the subset of points
x € o with a; = 0 whenever p; € S is not in T. The
simplex 7 is a face of o, and we denote this relation by

18

7 < o. If dim7 = ¢ then 7 is called an #-face. 7 = 0
and 7 = o are improper faces and all others are proper
faces of ¢. The number of f-faces of ¢ i1s equal to the
number of ways we can choose £+ 1 from k + 1 points,

which 1s
k+1
{+1

The total number of faces is
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Simplicial complexes. A simplicial complez is a fi-
nite collection K of simplices such that

(i) 0 € K and 7 < ¢ implies 7 € K, and

(ii) o,v € K implies e Nwv < o, 0.

Note that 0 is a face of every simplex and thus belongs
to K by condition (i). Condition (ii) therefore allows
for the possibility that ¢ and v be disjoint. Figure 2
shows three sets of simplices that violate one of the
two conditions and therefore do not form complexes.
A subcomplex 1s a subset that 1s a simplicial complex

Figure 2: To the left we are missing an edge and two
vertices. In the middle the triangles meet along a segment
that is not an edge of either triangle. To the right the
edge crosses the triangle at an interior point.

itself. Observe that every subset of a simplicial complex
satisfies condition (ii). To enforce condition (i) we add



faces and simplices to the subset. Formally, the closure
of a subset I C K is the smallest subcomplex that
contains L:

ClL = {TE[(

r<oe€lL}.

A particular subcomplex is the i-skeleton that consists
of all simplices ¢ € K whose dimension is ¢ or less. The
verter set 1s

Vert K = {oc€ K |dime=0};

it 1s the same as the O-skeleton except it does not con-
tain the (—1)-simplex. The dimension of K is the
largest dimension of any simplex: dim K = max{dimo |
o€ K}. If k=dimK then K is a k-complez and it is
pure if every simplex is a face of a k-simplex. The un-
derlying space is the set of points covered by simplices:
|K|=UK =U,cx o A polyhedron is the underlying
space of a simplicial complex. Sometimes it is useful

Figure 3: Star and link of a vertex. To the left the solid
edges, and shaded triangles belong to the star of the solid
vertex. To the right the solid edges and vertices belong to
the link of the hollow vertex.

to consider substructures of a simplicial complex. The
star of a simplex 7 consists of all simplices that contain
7, and the link consists of all faces of simplices in the

star that do not intersect 7:
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see Figure 3 for examples. The star is generally not
closed, but the link is always a simplicial complex.

Abstract simplicial complex. If we replace each
simplex in a simplicial complex by the set of its ver-
tices, we get a system of subsets of the vertex set. In
doing so we throw away the geometry of the simplices,
which allows us to focus on the combinatorial struc-
ture. Formally, a finite system A of finite sets is an
abstract simplicial complex if « € A and § C « implies
3 € A. This requirement is similar to condition (i) for
geometric simplicial complexes. A set o € A is an (ab-
stract) simplex and its dimension is dima = card o — 1.

The vertex set of Ais Vert A = JA = UaeA «. The
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concepts of face, subcomplex, closure, star, link extend
straightforwardly from geometric to abstract simplicial
complexes.

The set system together with the inclusion relation
forms a partially ordered set, or poset, denoted as
(A,C). Posets are commonly drawn using Hasse di-
agrams where sets are nodes, smaller sets are below
larger sets, and inclusions are edges, see Figure 4. In-
clusions implied by others are usually not drawn. To
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Figure 4: From left to right the poset of the empty set, a
vertex, an edge, a triangle, a tetrahedron.

draw the Hasse diagram of a k-simplex a we draw the
Hasse diagrams for two (k — 1)-simplices. One is the
diagram of a (k — 1)-face 5 of o and the other is the
diagram for the star of the vertex v € a — 3. Finally,
we connect every simplex v in the star of u with the
simplex v — {u} in the closure of 3. An abstract sim-
plicial complex A is a subsystem of the power set of
Vert A. We can therefore think of it as a subcomplex of
an n-simplex, where n 4+ 1 = card Vert A. This view is
expressed in the picture of an abstract simplicial com-
plex shown as Figure 5.
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Figure 5: The onion is the power set of Vert A. The area
below the waterline is an abstract simplicial complex.

We can think of an abstract
simplicial complex as an abstract version of a geometric
simplicial complex. To formalize this idea we define a
geometric realization of an abstract simplicial complex
A as a simplicial complex K together with a bijection
¢ : Vert A — Vert K such that o € A iff conv p(ar) € K.
Conversely, A 1s called an abstraction of K.

Geometric realization.

Given A, we can ask for the lowest dimension that



allows a geometric realization. For example, graphs are
1-dimensional abstract simplicial complexes and can al-
ways be realized in R3. Two dimensions are sometimes
but not always sufficient. This result generalized to
k-dimensional abstract simplicial complexes: they can
always be realized in R?**! and sometimes R?* does not
suffice. To prove the sufficiency of the claim we show
that the k-skeleton of every n-simplex can be realized in
R?%+1 Map the n + 1 vertices to points in general po-
sition in R?*+1. Specifically, we require that any 2k + 2
of the points are a. i. Two simplices ¢ and v of the k-
skeleton have a total of at most 2(k + 1) vertices, which
are therefore a. 1. In other words, ¢ and v are faces of a
common simplex of dimension at most 2k + 1. It follows
that ¢ Nv is a common face of both.

THEOREM 1. Every k-dimensional abstract simplicial
complex has a geometric realization in R**+1,

Nerves. A convenient way to construct abstract sim-
plicial complexes uses arbitrary finite sets. The nerve
of such a set C'is the system of subsets with non-empty
intersection:

NivC = {XCCO|[)X#0}.

If Y C X then WX C (Y. Hence X € NrvC im-
plies ¥ € Nrv (', which shows that the nerve is an
abstract simplicial complex. Consider for example the
case where ('is a covering of some geometric space, such
as in Figure 6. Every set in the covering corresponds

Figure 6: A covering with eight sets to the left and its
nerve to the right. The sets meet in triplets but not in
quadruplets, which implies that the nerve is 2-dimensional.

to a vertex, and k + 1 sets with non-empty intersection
define a k-simplex.

We have seen an example of such a construction ear-
lier. The Voronoi regions of a finite set .S C R? define
a covering C' = {V, | a € S} of the plane. Assuming
general position the Voronoi regions meet in pairs and
in triplets, but not in quadruplets. The nerve therefore
consists only of abstract vertices, edges, and triangles.
Consider the function ¢ : C'— R? that maps a Voronoi

20

region to its generator: (V) = a. This function de-
fines a geometric realization of Nrv C"
D = {conve(a)|a e Nrv(C}.

This is the Delaunay triangulation of S. What hap-
pens if the points in S are not in general position? If
k 4+ 1 > 4 Voronoi regions have a non-empty common
intersection then Nrv C' contains the corresponding ab-
stract k-simplex. So instead of making a choice among
the possible triangulations of the (k4 1)-gon, the nerve
takes all possible triangulations together and interprets
them as subcomplexes of a k-simplex. The disadvan-
tage of this method is of course the fact that Nrv C' can
no longer be realized in R?.

Bibliographic notes. During the first half of the
twentieth century, combinatorial topology was a flour-
ishing field of Mathematics. We refer to Paul Alexan-
drov [1] as a comprehensive text originally published as
a series of three books. This text roughly coincides with
a fundamental reorganization of the field triggered by a
variety of technical results in topology. One of the suc-
cessors of combinatorial topology is modern algebraic
topology where the emphasis shifts from combinatorial
to algebraic structures. We refer to James Munkres [5]
for an introductory text in that area.

We proved that every k-complex can be geometri-
cally realized in R***!. Examples of k-complexes that
require 2k + 1 dimensions are provided by Flores [2] and
independently by van Kampen [3]. One such example
is the k-skeleton of the (2k + 2)-simplex. For k& = 1
this is the complete graph of five vertices, which is one
of the two obstructions of graph planarity identified by
Kuratowski [4].
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