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sively onsider meshes made up of tetrahedral ells. Weuse mathematial terminology whenever reasonable andde�ne a tetrahedral mesh as a simpliial omplex in R3 .The fae-to-fae property of the mesh is impliit beausea simpliial omplex requires that any two simplies areeither disjoint or meet in a ommon triangle, edge, orvertex. We also require that every triangle, edge, andvertex in the mesh is fae of a tetrahedron in the mesh.A spatial domain is typially given in terms of itsboundary onstruted using a omputer-aided designsystem. The tetrahedral mesh generation problem as-sumes the boundary is pieewise linear and asks for theonstrution of a tetrahedral mesh that overs the spa-tial domain de�ned by that boundary. The size andshape of the triangles and tetrahedra are important be-ause it relates to the onvergene and stability of nu-merial methods suh as the �nite element analysis, seeStrang and Fix [20℄.Probably the most ommon tetrahedral meshes areDelaunay triangulations, whih are named after BorisDelaunay [7℄ and are also known as duals to Voronoidiagrams, whih are named after Georges Voronoi [22℄.They are supported by fast algorithms both for on-strution and for maintenane under loal hanges. Inthis paper we make essential use of a somewhat largerlass of tetrahedral meshes referred to as weighted De-launay triangulations. This lass has been studied ex-tensively in the geometry literature where its meshes areknown as regular triangulations [3℄ and also as oherenttriangulations [12℄. The fast algorithms for Delaunaytriangulations extend with minor modi�ation to thelarger lass of weighted Delaunay triangulations [9℄.Previous work. The generation of meshes with well-shaped triangles in R2 is reasonably well understood.Bern, Eppstein and Gilbert prove that quad-tree deom-positions an be used to generate meshes free of badlyshaped triangles that adapt to the loal density of in-put spei�ations [2℄. Ruppert proves the same for hisversion of the Delaunay re�nement method [18℄. Exper-imental studies suggest the latter method adapts better



to input spei�ations and outperforms the quad-treeapproah with smaller meshes and smoother variationof edge length.The generation of meshes of well-shaped tetrahedrain R3 seems onsiderably more diÆult. The extensionof the quad-tree and the Delaunay re�nement methodsto R3 both enounter signi�ant diÆulties. Mithelland Vavasis [16℄ use ot-trees to tetrahedrize a polyhe-dral volume without bad quality tetrahedra. Dey, Bajajand Sugihara [8℄ and Shewhuk [19℄ extend the Delau-nay re�nement algorithm to R3 but fail to address theproblem of slivers.The disturbing presene of slivers in 3-dimensionalDelaunay triangulations has been reognized at leastsine the experimental study of Cavendish, Field andFrey [4℄. Talmor [21℄ notes that even well-spaed ver-ties do not prevent slivers. Chew [5℄ skethes an al-gorithm that eliminates slivers by adding points in arandomized manner.Results. The main result of this paper is a methodthat eliminates slivers without adding any new pointand without moving any point of the given set. In-tuitively, the method applies physial pressure andsqueezes the Delaunay triangulation. Most slivers giveway to the pressure and disappear. The remaining sliv-ers migrate to the boundary where they an be peeledo�. Unfortunately, the boundary may hange as a resultof the treatment, and we have to resort to boundary en-forement heuristis desribed in the mesh generationliterature. We suppress the distration of boundary ef-fets by onsidering periodi point sets S 2 R3 . In otherwords, we hoose a �nite set S0 � [0; 1)3 and dupliateit within eah integer unit ube: S = S0+Z3, where Z3is the three-dimensional integer grid. The sliver elimina-tion method assumes the points are distributed so eahtetrahedron in the Delaunay triangulation has the ra-tio property introdued by Miller et al. [15℄: the radiusof the irumsphere is bounded from above by a on-stant times the length of the shortest edge. If neessarythe ratio property an be generated by adding points atirumenters of violating Delaunay tetrahedra.We show that under the assumption of the ratio prop-erty we an assign small real weights to the points so theweighted Delaunay triangulation ontains no sliver. Werefer to this result as the Sliver Theorem. Another wayto think of the result is that the ratio property for theDelaunay triangulation implies the existene of a sliver-free triangulation of the same set of points. Sine theratio property prevents all other types of undesirableelements, our result implies a triangulation free of anybadly shaped tetrahedron. This omplements a result ofTalmor [21℄ that a triangulation without badly shapedtetrahedron implies the ratio property for the Delaunaytriangulation of the same set of points. In other words,

for a periodi set S � R3 the ratio property for its De-launay triangulation is equivalent to the existene of atriangulation without any badly shaped tetrahedron.Sine the sliver-free triangulation is a weighted De-launay triangulation it an be obtained from the un-weighted Delaunay triangulation by a sequene of ips.The algorithm in this paper is thus similar to but alsodi�erent from Joe's heuristi, whih improves tetrahe-dral shape by ipping [13℄. Joe's heuristi is greedy andhalts the improvement of a vertex neighborhood at aloal optimum. The algorithm in this paper improvesa vertex neighborhood by following a more global opti-mization strategy.Outline. Setion 2 disusses the shape of trianglesand tetrahedra. Setion 3 introdues Delaunay trian-gulations for unweighted and for weighted points. Se-tions 4 and 5 prove geometri results needed in the proofof the Sliver Theorem, whih is presented in Setion 6.Setion 7 turns this theorem into a sliver removing al-gorithm. Setion 8 onludes the paper.2 Tetrahedral ShapeA triangle or tetrahedron is badly shaped if it has atleast one small angle. Some badly shaped tetrahedrahave badly shaped bounding triangles, but there arealso tetrahedra with small angles none of whose fourtriangles is badly shaped. This setion explains whatexatly we mean by good and bad shape and how wetalk about it.Shape measures. The mesh generation literature isrih in measures of simplex quality. A ommon termis the aspet ratio, whih is often but not always de-�ned as the radius of the smallest ontaining sphereover the radius of the largest ontained sphere. Re-lated is the measure of degeneray de�ned as the lengthof the longest edge over the radius of the largest on-tained sphere. The latter is motivated by the �nite el-ement onvergene analysis of Ciarlet [6℄. Liu and Joe[14℄ onsider several other measures for tetrahedra andstudy how they relate to eah other. In this paper weuse distane, radius, angle and volume to express thequality of triangles and tetrahedra.To simplify disussions we use fuzzy language for sizedesriptors. In eah ase we suppose the existene of asmall onstant, " > 0, whih an be used to make thestatement preise. For example, an angle ' is small if' < " and large if ' > ��". An aspet ratio is large if itexeeds 1=". We also use fuzzy desriptors in a relativesense. For example, the edge pq of a triangle pqr is shortif kp� qk < " � maxfkp� rk; kq � rkg. Similar relativeonventions are adopted for points that are lose to eahother or to a line or plane, et.2



Badly shaped triangles. A triangle with large as-pet ratio has at least one small angle and all threeverties lose to a line. There are two types: a daggerwith one short edge and a blade with no short edge, seeFigure 1.
bladedaggerFigure 1: The dagger has one short edge and at least onesmall angle. The blade has no short edge and thereforeone large and two small angles.Badly shaped tetrahedra. Among the tetrahedrawith large aspet ratio we distinguish the ones with atleast three badly shaped triangles from the others. Atetrahedron of the former type has four verties loseto a line. The points an be lose or far in the dire-tion along this line, and we distinguish the ases 3-1(spire), 1-2-1 (spear), 1-1-1-1 (spindle), 2-1-1 (spike),2-2 (splinter), see Figure 2. The spire has a yle of

splinterspire spindlespear spikeFigure 2: From left to right the number of daggers amongthe four triangles is at least three for the spire, two for thespear, zero for the spindle, two for the spike, and four forthe splinter.three short edges and therefore a yle of three daggersamong its four triangles. The splinter has two oppositeshort edges and therefore four daggers, two in eah di-retion. The spear and the spike both have one shortedge and therefore two daggers and two blades as trian-gles. The spindle has no short edge and therefore fourblades as triangles.A tetrahedron whose verties are not lose to a linehas a large aspet ratio if its verties are lose to a plane.We distinguish the ases where two points are lose toeah other (wedge), where three points are lose to a line(spade), where the orthogonal projetion to the planeis a triangle with a point inside (ap), and where theprojetion is a quadrilateral (sliver), see Figure 3.

wedge spade slivercapFigure 3: From left to right the number of long edgeswith small dihedral angle is one for the wedge, two for thespade, three for the ap, and four for the sliver.A similar but di�erent lassi�ation of badly shapedtetrahedra an be found in Bern et. al [1℄. Their lassi-�ation is based on dihedral angles while ours primarilyonsiders fae angles.Radius-edge ratio. Let pqrs be a tetrahedron, Xthe radius of its irumsphere, and L the length of itsshortest edge, see Figure 4. The tetrahedron pqrs hasRatio Property [%0℄ for a onstant %0 if X=L � %0. If atetrahedron has Ratio Property [%0℄ then so do all of itstriangles. A triangulation has Ratio Property [%0℄ if allits tetrahedra have it.
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Figure 4: The verties of the tetrahedron lie on the ir-umsphere with radius X . The length of the shortest edgeis L.The ratio attains its minimum for the regular tetra-hedron where X=L = p6=4 � 0:612. Spae annotbe tiled with opies of the regular tetrahedron aloneso triangulations require a larger value of %0. RatioProperty [%0℄ eliminates all badly shaped triangles andall badly shaped tetrahedra other than the slivers. If%0 < 1=p2 � 0:707 then all fae angles are aute sothat even slivers annot exist. However, the ratio prop-erty for suh a small onstant is hard to obtain and weneed a di�erent method to eliminate slivers.3 Delaunay TriangulationsThe proof of the Sliver Theorem uses weighted Delaunaytriangulations in an essential manner. This setion in-trodues Delaunay triangulations, weighted points, andweighted Delaunay triangulations.3



Delaunay triangulations. Let S be a disrete set ofpoints in R3 . We permit in�nite sets but they mustbe loally �nite. For simpliity assume that S is ingeneral position. In partiular, for every four points inS there is a sphere that passes through them and forany �ve points there is no suh sphere. A sphere isempty if it enloses no point of S, or equivalently, if allpoints lie either on or outside the sphere. The onvexhull of points p; q; r; s 2 S is a tetrahedron, denoted aspqrs, and a Delaunay tetrahedron if the irumsphereis empty. The Delaunay triangulation of S, denotedas DelS, is the 3-omplex onsisting of all Delaunaytetrahedra and their triangles, edges, and verties.Delaunay triangulations are popular meshes for sev-eral reasons. If S is in general position then DelS isunique and an be eÆiently onstruted [4, 9℄. Thehanges aused by deleting or inserting a point are typ-ially loal. DelS ontains all edges of a minimum span-ning tree, and for eah p 2 S it ontains the edge to thelosest point. Delaunay triangulations are optimal withrespet to smallest ontaining spheres of tetrahedra, see[17℄.Given a Delaunay triangulation we an generate a De-launay triangulation with Ratio Property [%0℄ by addingpoints at irumenters of violating tetrahedra, see e.g.[19℄. If %0 � 1 then the minimum distane between anew point and any of the old points is at least the mini-mum distane between any two of the old points. In theperiodi interpretation of R3 we have a �nite amountof volume, whih permits only �nitely many points ifthe interpoint distanes are bounded by a �xed posi-tive lower bound. The method an therefore not addin�nitely many points and halts after a �nite amount oftime.Weighted points and distane. A weighted point,p̂ = (p; P 2) 2 R3 � R, is interpreted as a sphere or ballwith enter p and radius P , see Figure 5. The weight ofp̂ is P 2 2 R, and if P 2 < 0 then the radius is imaginary.The weighted distane between p̂ and ẑ = (z; Z2) isde�ned askp̂� ẑk = qkp� zk2 � P 2 � Z2:The weighted points p̂ and ẑ are orthogonal if theweighted distane vanishes: p̂ ? ẑ if kp̂� ẑk = 0. Anyfour spheres in R3 have a ommon orthogonal sphere,alled the orthosphere. For example, if the four spheresare points then the orthosphere is the unique irum-sphere of the tetrahedron they de�ne. Unless the fourenters lie in a ommon plane, the orthosphere is uniqueand has �nite radius. The orresponding observationone dimension lower is that any three irles in R2 havea ommon orthogonal irle, alled the orthoirle, seeFigure 5. Unless the three enters are ollinear, the or-thoirle has �nite radius.
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Figure 5: The dotted irle is orthogonal to the three solidirles. Sine the radii of the solid irles are positive, theirenters all lie outside the dotted irle.Weighted Delaunay triangulations. A weightedgeneralization of Delaunay triangulations is obtained bysubstituting spheres for points and orthospheres for ir-umspheres. To be spei�, let w : S ! R be a weightassignment and onsider the de�ned set of spheres:Ŝ = f(p; P 2) j p 2 S; P 2 = w(p)g:Assume Ŝ is in general position, whih among otherthings implies that every four spheres have a ommonorthogonal sphere and no �ve spheres have one. Asphere ẑ is empty if kẑ � p̂k � 0 for every p̂ 2 Ŝ.The onvex hull of four sphere enters is a tetrahedronand a weighted Delaunay tetrahedron if the ommon or-thosphere is empty. The weighted Delaunay triangula-tion of Ŝ, denoted as Del Ŝ, is the 3-omplex onsist-ing of all weighted Delaunay tetrahedra and their trian-gles, edges, and verties. If all radii are zero then theweighted Delaunay triangulation of the spheres is thesame as the Delaunay triangulation of the enters.The enter p of a sphere p̂ 2 Ŝ may or may not belongto the weighted Delaunay triangulation. Spei�ally, pis a vertex in Del Ŝ i� there is a sphere not neessarilyin Ŝ that is orthogonal to p̂ and has positive weighteddistane to all other spheres in Ŝ. In this paper wehoose weights in a way that guarantees the existeneof suh spheres. It follows that the set of enters is alsothe set of verties.Cross-setions. Orthogonality is inherited fromspheres to irles if the sliing plane passes through atleast one of the two enters. This allows for the possi-bility that the plane misses the seond sphere and theintersetion is a irle with imaginary radius.Claim 1. If (p; P 2) ? (z; Z2) then any plane through pintersets the two spheres in two orthogonal irles.Proof. Let (u; U2) and (v; V 2) be the irles of inter-setion between the plane and the two spheres. We have4



u = p, U2 = P 2 and V 2 = Z2 � kz � vk2. Thenku� vk2 = ku� zk2 � kz � vk2= P 2 + Z2 � kz � vk2= U2 + V 2;whih shows that (u; U2) and (v; V 2) are orthogonal.Claim 1 an be extended to dimensions di�erent from3. Consider for example the two-dimensional ase. If(p; P 2) and (z; Z2) are two orthogonal irles then anyline passing through p intersets them in two orthogonalintervals. Given two intervals there is a unique thirdinterval orthogonal to both. It follows that all irlesthat are orthogonal to two irles (p; P 2) and (q;Q2)interset the edge from p to q in the same two points.4 Linear RelationsThis setion proves a number of relations between dis-tanes, weighted distanes, radii, and areas needed forthe proof of the Sliver Theorem in Setion 6. We beginby introduing notation that simpli�es omputationsand disussions.Relation. Two quantities X and Y are said to be lin-early related, denoted as X � Y , if there are onstants; C > 0 with  �X � Y � C �X . Note that � satis�esX � Y =) Y � X;(X � Y ) ^ (Y � Z) =) X � Z;but it is not an equivalene relation beause the on-stants deteriorate in the repeated appliation of theseond rule: if 0; C0 are the onstant for Y � Z then � 0; C � C0 are the onstants for X � Z. The rela-tion ombines well with arithmeti operations on posi-tive quantities:(X � Y ) ^ (U � V ) =) 8<: X + U � Y + V ;X � U � Y � V ;X=U � Y=V :If 00; C00 are the onstants for U � V then minf; 00g,maxfC;C00g are the onstants for the sums,  � 00; C �C00 for the produts, and =C00; C=00 for the ratios. Inthis paper we obtain new linear relations from onstantlength hains of old linear relations.Weight property. We suppose that the radii of thespheres are not large relative to the distanes betweentheir enters. To make this preise we say a pair ofspheres p̂ = (p; P 2), q̂ = (q;Q2) has Weight Property[!0℄ for a onstant !0 2 (0; 1=2) if 0 � P;Q � !0kp� qk.A set of spheres has Weight Property [!0℄ if every pair

has it. The upper bound on the radii implies the spheresare pairwise disjoint. It also implies that the weighteddistane between two spheres is not very di�erent fromthe Eulidean distane between the two enters:Claim 2. If a pair of spheres p̂; q̂ has Weight Property[!0℄ then kp� qk � kp̂� q̂k.Proof. We establish 2 � kp� qk � kp̂� q̂k � C2 �kp� qk for onstants 2 = p1� 2!02 and C2 = 1.By de�nition we have kp̂� q̂k2 = kp� qk2 � P 2 � Q2and P 2; Q2 � 0 implies kp̂� q̂k � kp� qk. We get thelower bound from P 2; Q2 � !02kp� qk2, whih impliesp1� 2!02 � kp� qk � kp̂� q̂k.Area and radius. Let pqr be a triangle and X theradius of its irumirle. X is no smaller than half thelength of the longest edge, and if pqr has Ratio Property[%0℄ then X is also not muh larger than that. Thisimplies that X2 is not muh di�erent from the area ofthe triangle, whih we denoted as jpqrj:Claim 3. If pqr has Ratio Property [%0℄ thenX2 � jpqrj.Proof. We establish 3 � X2 � jpqrj � C3 � X2 with3 = 1=4%03 and C3 = �. The upper bound is learbeause pqr is enlosed by the irumirle with radiusX . For the lower bound we express the area in terms ofedge lengths and radius,jpqrj = kp� qk � kq � rk � kr � pk4X :To verify this formula let  be the angle at q and observethat jpqrj = kp� qk � kq � rk � sin 2 . The angle at theirumenter is \pxr = 2 , and hene kr � pk = 2X �sin , whih implies the area formula. Eah of the threeedges has length at least X=%0 as implied by the RatioProperty [%0℄. Henejpqrj � X34%03 �X ;whih implies the laimed lower bound.Radius and radius. Ratio Property [%0℄ and WeightProperty [!0℄ together imply that for a triangle the radiiof the irumirle and the orthoirle are not very dif-ferent. Let p̂; q̂; r̂ be three spheres that de�ne an ortho-irle with radius Z and whose enters de�ne a irum-irle with radius X .Claim 4. If p̂; q̂; r̂ have Weight Property [!0℄ and pqrhas Ratio Property [%0℄ then X � Z.5



Proof. We establish 4 � X � Z � C4 � X with4 = p1� 4!02 and C4 = 1 + 2%0!02. The minimumweighted distane of the irumenter, x, from the threeweighted points is a lower bound for the radius of theorthoirle. To bound that minimum note that 2X is anupper bound on the length of eah edge and !02(2X)2is an upper bound on the weight of eah point:Z2 � minfkx� p̂k2; kx� q̂k2; kx� r̂k2g� X2 � 4!02X2:To obtain an upper bound onsider the perpendiu-lar bisetors k and ` of edges pq and qr, whih inter-set at x, see Figure 6. Let k̂ be the line of points
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lFigure 6: To avoid a tiny parallelogram we draw the stripswider and the irle around q larger than allowed by WeightProperty [!0℄.with equal weighted distane from p̂ and q̂, and let ^̀be the same line for q̂ and r̂. The width of the stripbetween k and k̂ is a maximum only if the weightsof p̂ and q̂ are as di�erent as possible, for exampleP 2 = 0 and Q2 = !02kp� qk2. In this ase the widthis W = !02kp� qk=2 � !02X . The same upper boundholds for the width of the strip between ` and ^̀. Theenters x of the irumirle and z of the orthoirle arediagonally opposite verties of the parallelogram formedby k; k̂; `; ^̀, see Figure 6. Let the angle at x inside theparallelogram be 2'. The edge xz uts this angle intotwo and we assume that the angle between xz and k in-side the parallelogram is � � '. The distane betweenthe two enters is thereforekx� zk = Wsin � � !02 �Xsin' :By Ratio Property [%0℄, we have kp� qk; kq � rk �X=%0. Hene X � sin' � X=2%0 and therefore sin' �1=2%0. The radius of the orthoirle is bounded fromabove by the radius of the irumirle plus the distanebetween the enters:Z � X + kx� zk � X + 2%0!02 �X;whih is the upper bound laimed at the beginning ofthe proof.

Fortunately, Claim 4 does not extend to tetrahedrawhere it fails for slivers with four almost oirular ver-ties.Parametrizing slivers. Let pqrs be a tetrahedron,V the volume, and L the length of the shortest edge.We de�ne � = �(pqrs) = V=L3 and use it as a measureof quality. Assuming Ratio Property [%0℄ we all pqrsa sliver if � is less than some threshold �0 > 0 to bespei�ed later. It is useful to relate this measure with adistane-radius ratio. Let D be the Eulidean distaneof point p from the plane passing through qrs and let Ybe the radius of the irumirle of qrs, see Figure 7.
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YFigure 7: D=Y an be de�ned for eah ordering of thefour verties, but all four ratios are linearly related to �.Claim 5. If a tetrahedron pqrs has Ratio Property [%0℄then D=Y � �.Proof. We establish 5 �D=Y � � � C5 �D=Y for 5 =3=24 and C5 = C3%03=3. The triangle qrs has RatioProperty [%0℄, so Y � L with onstants  = 1=%0 andC = 2. By Claim 3 we have Y 2 � jqrsj with onstants3; C3. The volume of the tetrahedron is jqrsj � D=3.Therefore DY = Y 2 �DY 3 � jqrsj �D3 � L3 = �:Following the rules for ombining linear relations we getonstants 5 = 3=3C3 and C5 = C3=33.5 Length and Degree BoundsThis setion realls a result of Talmor [21℄ whih isthen used to extend results of Miller et al. [15℄ fromunweighted to weighted Delaunay triangulations.Weighted ratio property. Let S be a periodi setof points in R3 . In other words, S = S0 + Z3 whereS0 � [0; 1)3 is �nite and Z3 is the three-dimensionalinteger grid. For a point x 2 R3 letN(x) be the distaneto the seond losest point in S. If x 2 S then x itselfis losest and N(x) is the distane to the losest pointin S � fxg. The following result is Theorem 3.6.2 inTalmor's thesis [21℄:6



Claim 6. Assume DelS has Ratio Property [%0℄. Thenthere is a onstant T depending only on %0 suhthat N(z) � T � N(x) for every empty sphere(z; Z2) that passes through x.We extrated T = 64 � %02M from Talmor's thesis,where M = maxf2%0= sin � ; 4%02g,  = 2=(1� os �4 ),� = (arsin 12%0 )=2. We use Claim 6 to derive a propertyfor weighted Delaunay triangulations reminisent of theratio property for Delaunay triangulations. A periodisphere set is de�ned by a weight assignment w : S0 ! R.As usual ẑ = (z; Z2) denotes the orthosphere and L thelength of the shortest edge of a tetrahedron.Claim 7. Assume DelS has Ratio Property [%0℄ andŜ has Weight Property [!0℄. Then there exists aonstant %1 depending only on %0 and !0 suh thatZ=L � %1 for every tetrahedron in Del Ŝ.Proof. We establish the bound for the onstant %1 =(1 + !0)T . Let ẑ and L be orthosphere and shortestedge length for a tetrahedron pqrs 2 Del Ŝ. Assume L =kp� qk, whih implies N(p) � L. Beause all points ofS lie on or outside ẑ we haveN(z) � Z. Let x be a pointon the intersetion of the two orthogonal spheres p̂ andẑ. By Weight Property [!0℄ we have kx� pk � !0 �N(p) � !0 � L. Therefore N(x) � kx� qk � kx� pk+kp� qk � (1 + !0) � L. Claim 6 impliesZ � N(z) � N(x) � T � (1 + !0)T � L;as stated.Edge-length variation. For a graph G with vertiesand straight edges in R3 we are interested in omparingthe length of edges. Spei�ally, we de�ne the lengthvariation at a vertex p 2 G as�(p;G) = maxfkp� qk=kp� ukg;where the maximum is taken over all edges pq; pu inG. Our �rst result shows that triangles in the weightedDelaunay triangulation inherit a onstant upper boundon the variation of their edge lengths from the Delaunaytriangulation.Claim 8. If Ŝ has Weight Property [!0℄, DelS hasRatio Property [%0℄, and pqr 2 Del Ŝ thenkp� qk � kp� rk.Proof. We establish 8 � kp� qk � kp� rk � C8 �kp� qk for 8 = p1� 4!02=2%1 and C8 = 1=8. Thelength of an edge is at most twie the radius of the ir-umirle, X , and by Claim 4 that radius is linearlyrelated to the radius of the orthoirle:kp� qk � 2X � 2Zp1� 4!02 :

By Claim 7 the length of pq is kp� qk � Z=%1. Thesame bounds hold for kp� rk whih implies the laimedlinear relation.Edges forming small angles. If two edges pq andpu share a ommon endpoint we denote the angle atthat endpoint as \qpu. All angles between edges aremeasured between 0 and �. We show that a small an-gle implies about equal length, and this is even true ifthe two edges arise in two di�erent weighted Delaunaytriangulations:Claim 9. Assume DelS has Ratio Property [%0℄, Ŝ1and Ŝ2 have Weight Property [!0℄, and pq 2 Del Ŝ1,pu 2 Del Ŝ2. Then there is a onstant �0 > 0 suhthat \qpu < �0 implies kp� qk � kp� uk.Proof. We establish the impliation for the onstant�0 = 12 � artan %12 �p%12 + !02 � 1=4p!02 + 1=4and 9 � kp� qk � kp� uk � C9 � kp� qk for 9 =(1 � !0)=2 and C9 = 1=9. Let ẑ = (z; Z2) be theorthosphere of a tetrahedron that ontains pq as one ofits edges. We ut ẑ with the plane that passes throughp; q; u and let ŷ = (y; Y 2) be the irles of intersetion,see Figure 8. Let k be the line passing through p and
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0Figure 8: The dotted irle is orthogonal to the two solidones. Edges with small angle � annot be short.tangent to ŷ. By Claim 1, ŷ is orthogonal to the irlesat whih the plane intersets p̂ and q̂. All irles orthog-onal to p̂ and to q̂ meet pq in the same two points, seethe omment after Claim 1. The distane between thesetwo points is twie the radius of the smallest orthoirle.By Weight Property [!0℄ that radius isV � r14 � !02 � kp� qk:Let a be the point on the irle ŷ so that ya intersetspq in a right angle, see Figure 8. The intersetion point7



is the enter v of the smallest irle orthogonal to p̂and q̂. By Claim 7 we have Y � %1 � kp� qk. Thenormal distane of a from pq is A = Y � pY 2 � V 2whih assumes its minimum when Y is as large and Vis as small as possible. ThereforeA � %1kp� qk �r%12kp� qk2 � 1� 4!024 kp� qk2= (%1 �p%12 + !02 � 1=4) � kp� qk:The angle at p between pq and line k is at least the anglebetween pq and pa, whih is\qpa = artan ApP 2 + V 2� artan %1 �p%12 + !02 � 1=4p!02 + 1=4beause P 2 � !02 � kp� qk2 and V 2 � kp� qk2=4. Notethat the latter expression is twie the onstant �0.For eah angle 0 � � � 2�0, let k(�) be the linepassing through p that forms an angle � with pq, seeFigure 8. The line k(�) intersets ŷ in two points and welet u(�) be the point further from p. Finally, we de�nef(�) = kp� u(�)k. We have f(0) � (1 � !0) � kp� qkand f(2�0) � 0. Sine f is a onave funtion it followsthat f(�) is at least (1 � !0)=2 times the length of pqfor all � � �0. By assumption there is an angle � � �0so u(�) lies on the edge from p to u. The lower boundof the linear relation follows:kp� uk � f(�) � 1� !02 � kp� qk:The upper bound follows by a symmetri argument thatexhanges q and u.Weighted Delaunay edges. Miller et al. prove thatif DelS has Ratio Property [%0℄ then there is a onstantupper bound on the length variation at every vertex [15℄.We use Claim 7 to prove the same is true for the graphof all possible weighted Delaunay edges. Let K = K(S)be the union of all weighted Delaunay triangulations de-�ned by weight assignments w : S ! R whose spheresets have Weight Property [!0℄. Sine K ontains alledges of the unweighted Delaunay triangulation it on-nets every point p to the losest point q 2 S and toothers. Let G be the graph of all edges in K.Claim 10. If DelS has Ratio Property [%0℄ then thereis a onstant �0 > 0 suh that �(p;G) � �0 forevery vertex p 2 S.Proof. We establish the upper bound on length varia-tion for the onstant�0 = � 21� !0�m � � 2%1p1� 4!02�m�1 ;

where m = 2=(1 � os �04 ). The argument is based onthe two elementary geometry fats provided by Claims8 and 9. Let � be the sphere of diretions entered at p.We form a maximal paking of irular aps eah withangle �0=4. This means that if a is the enter and b is apoint on the boundary of a ap then \apb = �0=4. Theset of aps with the same enters and with radii �0=2overs �. Sine the area of eah ap in the �rst set is(1� os �04 )=2 times the area of the sphere, the numberof aps is at most some onstant m = 2=(1 � os �04 ).The remainder of this proof uses the larger aps, whihover �.For eah edge pq 2 K let the point q0 2 � be the radialprojetion of q. Similarly, for eah triangle pqr 2 Konsider the ar on � that is the radial projetion of qr.The points and ars form a graph. Let pq be the longestand pu the shortest edge with endpoint p. We walk inthe graph from q0 to u0. This path leads from ap toap and we just reord the sequene of aps visited. Ifthe path leaves a ap and returns to it later we ignorethe detour and reord the ap only one. In the end wehave a sequene of at most m aps.When we walk from point to point we trak the lengthof the orresponding edges. As long as we stay withina single ap the length dereases at most by a fatorof (1 � !0)=2, see Claim 9. If we step from one apto the next the length dereases by at most a fatorof p1� 4!02=2%1, see Claim 8. The number of aps isat most m so kp� uk � kp� qk=�0. The laim followsbeause �(p;G) = kp� qk=kp� uk � �0.All Del Ŝ with Weight Property [!0℄ are subomplexesof K. Claim 10 thus implies that for all suh weightedDelaunay triangulations the length variation at everyvertex is bounded from above by the onstant �0.Constant degree. The bound on the length variationin Claim 10 implies that eah vertex belongs to at mosta onstant number of edges in K. A straightforwardvolume argument suÆes to establish this fat.Claim 11. If DelS has Ratio Property [%0℄ then thereis a onstant Æ0 suh that every vertex p 2 S be-longs to at most Æ0 edges in K.Proof. We prove the laim for the onstant Æ0 =(2�02+1)3, where �0 is the onstant in Claim 10. Let pqbe the longest and pu the shortest edge with endpointp. Assume without loss of generality that kp� uk = 1.Let r be a neighbor of p and s a neighbor of r. Wehave kp� rk � 1 by assumption and kr � sk � 1=�0 byClaim 10. For eah neighbor r of p let �r be the openball with enter r and radius 1=2�0. The balls are pair-wise disjoint and �t inside the ball � with enter p and8



radius kp� qk+ 1=2�0. The volume of � isj�j = 4�3 (kp� qk+ 12�0 )3� 4�3 �2�02 + 12�0 �3= (2�02 + 1)3 � j�rj:In words, at most Æ0 = (2�02 + 1)3 neighbor balls �tinto �. This implies that Æ0 is an upper bound on thenumber of neighbors of p.6 Sliver TheoremSetions 4 and 5 provide the tehnial prerequisites forthe proof of the main result of this paper, whih is pre-sented in this setion.Weight pumping idea. The main idea in the proofof the Sliver Theorem is to assign a weight P 2 to eahpoint p 2 S so the weighted Delaunay triangulation isfree of slivers. To get Weight Property [!0℄ we hoosethe weight of p in the interval W (p) = [0; !02N2(p)℄.Given a sliver pqrs we use the pigeonhole priniple toshow there is a weight P 2 in W (p) so pqrs does notbelong to the weighted Delaunay triangulation. Whileonsidering the tetrahedra around p we keep the weightsof q; r; s unhanged and exlude the sliver pqrs from thetriangulation merely by manipulating the weight of p.To be spei� onsider the weight interval W (p) andfor eah sliver pqrsmark the subintervalWqrs of weightsP 2 2 W (p) for whih pqrs belongs to the weighted De-launay triangulation obtained by hanging the weight ofp to P 2, see Figure 9. We prove shortly that the length
)W( pFigure 9: The subintervals over all weights of p for whihthe weighted Delaunay triangulation ontains a sliver.of the subintervals goes to zero as we lower the thresholdfor slivers. We also prove that there is only a onstantnumber of subintervals to be onsidered. Hene we anhoose a positive onstant threshold small enough soW (p) is not overed by the subintervals. Any weightP 2 2 W (p) outside all subintervals will do.Existene interval. For a tetrahedron pqrs onsiderthe orthoenter, z, as a funtion of the weight P 2 ofp. We de�ne H(P ) as the signed distane of z fromthe plane passing through qrs, see Figure 10. H(P ) is

H

r s

q

z

YFigure 10: If the weights of q; r; s are �xed and the weightof p varies then the orthoenter of the tetrahedron moveson the normal line passing through the orthoenter of qrs.positive if z and p lie on the same side and it is negativeif they lie on di�erent sides of the plane. As usual, L isthe length of the shortest edge of pqrs.Claim 12. If p̂; q̂; r̂; ŝ have Weight Property [!0℄ andpqrs has Ratio Property [%0℄ then there is a on-stant 12 suh that [�12L; 12L℄ ontains all valuesof H(P ) for whih the orthosphere of pqrs is empty.Proof. We establish 12 = p%12 + !02 � 1=4. Thesquare radius of the orthosphere is Z2 = H(P )2 + Y 2,whih by Claim 7 is bounded from above by %12L2. Theradius of the irumirle of qrs is X � L=2, and byClaim 4 the radius of the orthoirle is Y � p1� 4!02 �X . Putting everything together we getH(P )2 � %12L2 � (1� 4!02) �X2� (%12 � 1� 4!024 ) � L2as laimed.Pumping motion. The bound on H(P )2 is trans-lated into a bound on the weight of p. For this purposewe look at the motion of the orthoenter. Spei�ally,we relate P 2 to the displaement of z along the line ofits motion, whih we denote as `. As in Figure 7 the dis-tane of p from the plane passing through qrs is denotedas D.Claim 13. H(P ) = H(0)� P 22D .Proof. Let E be the distane of p from `. ThenZ2 + P 2 = (H(P ) � D)2 + E2, see Figure 11. Thesquare radius of the orthosphere is Z2 = H(P )2 + Y 2and therefore H(P )2 = (H(P ) �D)2 + E2 � P 2 � Y 2.After aneling H(P )2 we haveH(P ) = D2 +E2 � Y 22D � P 22D:The �rst term on the right side is H(0) and the seondis the displaement of z if we hange the weight of pfrom 0 to P 2.9
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DFigure 11: The orthoenter z moves down as the irlearound p grows.Subinterval length. The goal is to show that thesubintervals of W (p) an be made as small as neessary.Reall the notation related to the parametrization ofslivers introdued in Setion 4.Claim 14. The length of the subinterval de�ned bypqrs is jWqrsj �  � �Y 2.Proof. The onstant is  = 812=5. By Claim 12the tetrahedron pqrs belongs to the weighted Delaunaytriangulation only if �12L � H(P ) � 12L. UsingClaim 13 we get an interval for the weight of p:2D � (�12L+H(0)) � P 2 � 2D � (12L+H(0)):This interval ontainsWqrs. To bound its length we useL � 2Y and D=Y � �=5 from Claim 5. ThenjWqrsj � 412 �DL � 8125 � �Y 2;as laimed.Finale. We have now all piees together to state andprove the main result of this paper, namely that thereare weight assignments whose weighted Delaunay trian-gulations are free of slivers.Sliver Theorem. Assume DelS has Ratio Property[%0℄. Then there is a onstant �0 > 0 and a weightassignment de�ning a set of spheres Ŝ with WeightProperty [!0℄ suh that � > �0 for all tetrahedrapqrs 2 Del Ŝ.Proof. We establish the result for the onstant�0 = 5 � (1� 4!02) � !02812 � %12�02 � (2�02 + 1)9 :Let p 2 S and assume without loss of generality that thedistane to its losest neighbor in K is 1. The lengthof its weight interval is therefore jW (p)j = !02. Letpqrs 2 K be a sliver, that is, a tetrahedron with � < �0.

By Claim 14, it de�nes a subinterval of length jWqrsj �(812=5) � �Y 2. By Claim 10, the edges pq, pr, ps havelength at most �0 eah. By Claim 7, the radius of theorthosphere of pqrs is Z � %1 � �0. The radius of theorthoirle of qrs is at most Z, and by Claim 4, theradius of the irumirle isY � Zp1� 4!02 � %1 � �0p1� 4!02 :The number of subintervals is at most the number oftetrahedra in K that share p. By Claim 11 there areat most Æ0 edges sharing p, so there are fewer than Æ03suh tetrahedra. Let I(p) be the part of W (p) overedby subintervals de�ned by slivers. The total overedlength isjI(p)j < 8125 � �0Y 2 � Æ03� 812 � %12�02 � (2�02 + 1)95 � (1� 4!02) � �0� jW (p)j:We an therefore �nd a weight P 2 2W (p)�I(p). Everytetrahedron pqrs 2 K ompatible with the weight P 2 ofp has � � �0. We repeat the argument for every pointp 2 S and obtain a weight assignment that satis�es thelaim.We remark that the above proof is not irular al-though at �rst sight it may appear that weight assign-ments for di�erent points an interat in ompliatedways. The next setion disusses this issue in some de-tail.7 AlgorithmThis setion develops two versions of an algorithm thateliminates slivers by weight assignment. The algorithmassumes the points are distributed so the Delaunay tri-angulation has Ratio Property [%0℄. The �rst version issequential, the seond is parallel, and they both run inasymptotially optimal time.General strategy. The main step of the algorithmassigns a real weight P 2 to every point p in the given setS. This is done by proessing the points in an arbitrarysequene. When proessing point p 2 S we omputesubintervals of W (p) and we hoose P 2 2 W (p) outsideall subintervals. The Sliver Theorem guarantees thatfor a properly hosen onstant �0 suh a weight exists.After proessing all points the weighted Delaunay tri-angulation ontains no tetrahedron with value of � lessthan �0.A ritial issue is the apparent irularity of the algo-rithm: the hange of the weight of q may alter some of10



the subintervals for p if pq is an edge in K. If p preedesq in the proessing order then q may readmit tetrahedraaround p that have been eliminated earlier by hoie ofP 2. There are two ruial observations that break theirularity. The �rst is that the quality measure forslivers is symmetri: �(pqrs) = �(qprs). The seond isthat we only inrease the weight of q so eah newly ad-mitted tetrahedron has q as a vertex. For its own sake,q hooses its weight to avoid all tetrahedra with � < �0.As a onsequene, any tetrahedron readmitted aroundp has value of � at least �0.The key step is the onstrution of subintervals ofW (p). Reall that eah subinterval orresponds to atetrahedron pqrs with measure � < �0. The Sliver The-orem suggests we use the onstant �0 for whih it provesthe subintervals do not overW (p). In view of the mis-erably pessimisti estimate of �0 we follow a di�erentstrategy. Consider all tetrahedra with vertex p, and foreah pqrs onsider the unbounded retangleRqrs = Wqrs � [�(pqrs);+1)in the P 2 � � plane. The boundary of the union ofretangles forms the skyline over W (p), see Figure 12.The best hoie for P 2 is the weight oordinate of ahighest point on the skyline.
)W( pFigure 12: Eah retangle over W (p) overs the values ofthe minimum � around p that annot be ahieved if theweight is hosen in the P 2-interval of the retangle.Searhing the skyline. The skyline is onstrutedby onsidering all tetrahedra in weighted Delaunay tri-angulations generated by varying the weight of p andkeeping all other weights �xed. At the time the algo-rithm works on p 2 S it has already proessed some ofthe points. Let w : S ! R be the urrent weight as-signment, and for every P 2 2 W (p) let wP : S ! R bede�ned bywP (u) = � w(u) if u 2 S � fpg;P 2 if u = p:Note that w0 = w. Let ŜP orrespond to wP . Forevery ŜP we are only interested in the set TP � Del ŜPof tetrahedra that have p as a vertex. The skyline isde�ned by the union of all TP for P 2 2 W (p). This

union is omputed by ontinuously inreasing P 2 from 0to its maximum, whih is !02N2(p). The set TP hangesonly at disrete moments:0 = P 20 < P 21 < : : : < P 2k�1 < P 2k = !02N2(p):De�ne Ti = TP for P 2 between P 2i�1 and P 2i . In thenon-degenerate ase the step from Ti�1 to Ti onsists ofa single ip operation [9, 17℄. The sequene of ips is de-termined using a priority queue storing Ti. Eah tetra-hedron arries the time or weight when it is destroyedby the weight inrease, and P 2i is the earliest suh timeof any tetrahedron in the priority queue. That tetrahe-dron is removed from the priority queue and from theweighted Delaunay triangulation, and new tetrahedraare inserted. By Claim 11 the union of all sets TP hasonly onstant ardinality so that proessing the hang-ing set osts only onstant time in total. At any momentP 2 the minimum � value of any tetrahedron in TP is theheight of the skyline above P 2 2 W (p).To summarize, we now have a sequential algorithmthat takes time O(n logn), where n is the number ofpoints in S0. Reall that S = S0+Z3 is periodi and sois the Delaunay triangulation. Any one of a number ofpublished algorithms an be adapted to periodi sets ina way so it touhes only points in S0. The adaptationof the algorithm in [9℄ or in [11℄ takes time O(n logn)beause the size of DelS in a period is O(n) by Claim11. After onstruting DelS we assign weights in timeO(n) as explained above. The onstrution of the or-responding weighted Delaunay triangulation is a sidee�et of the weight assignment step.Parallel algorithm. A parallel version of the algo-rithm an be obtained by taking advantage of Claim11, whih asserts that verties in K have onstantsize neighborhoods. Reall that K is the union of allweighted Delaunay triangulations, where the union istaken over all weight assignments w : S0 ! R whosesphere sets have Weight Property [!0℄. The degree of avertex p 2 K, denoted as Æ(p), is the number of edgeswith endpoint p. By Claim 11, Æ(p) is bounded fromabove by the onstant Æ0. Hene K has a vertex olor-ing with Æ0 + 1 olors. Two verties of the same olorshare no tetrahedra in any of the weighted Delaunaytriangulations so the weight assignment algorithm anbe applied simultaneously. In other words, k proessorsan assign weights to the points of one olor lass inparallel and ahieve optimal speed-up.To summarize we now have a parallel algorithm thattakes time O(n logn=k) for k = O(n) proessors. The�rst step onstruts the graph of all edges in K usingthe randomized algorithm of Frieze, Miller and Teng[11℄. As in the sequential ase this algorithm needs tobe adapted to periodi point sets, whih is not diÆult.The graph is then olored with a onstant number of11



olors. The �nal two steps are the same as for the se-quential algorithm exept that the oloring is used toparallelize both the onstrution of the initial Delaunaytriangulation and the weight assignment.8 DisussionThis paper shows that if the Delaunay triangulation ofa periodi point set in R3 has Ratio Property [%0℄ thenslivers an be removed by assigning small real weights tothe points. In other words, Ratio Property [%0℄ impliesthe existene of a weighted Delaunay triangulation with-out any badly shaped tetrahedron. This omplementsthe impliation in the other diretion proved by Tal-mor [21℄ and thus establishes the equivalene of RatioProperty [%0℄ and the existene of triangulations with-out badly shaped tetrahedra.Experiments. The tehnial statement of our resultinvolves a positive onstant �0 that tells slivers fromother tetrahedra. For pratial purposes a large �0 isdesirable. The estimate for �0 provided by the SliverTheorem is miserably tiny, and it will be important toimplement the algorithm and ollet empirial estimatesfrom omputational experiments. The primary goal isto gain insight into how big a onstant �0 we an expetin pratial ases and how �0 depends on %0 and on !0.The sequential algorithm uses an ordering of the ver-ties and it would be interesting to know whether someorderings perform better than others. The worst-�rstordering suggests itself, but it is not lear that it yieldshigher values of �0 than a random ordering.Boundary e�ets. Until now we avoided any men-tion of boundary e�ets. Appliations usually triangu-late bounded and non-onvex domains 
 � R3 given interms of their boundary represented by a 2-dimensionalomplex B. If we hoose a �nite set S � 
 we anonstrut DelS and remove simplies outside 
. Thisworks �ne as long as DelS onforms to B, by whih wemean that DelS ontains a 2-dimensional subomplexthat subdivides B. However, �nding a set S so its De-launay triangulation onforms to a given 2-dimensionalomplex is a diÆult problem in general. Edelsbrunnerand Tan [10℄ desribe a polynomial solution to the 2-dimensional version of the problem, but at this timethere is no suh solution available in R3 . Heurististrategies that add points on B dense enough to foreboundary onformity seem to work in pratie and aredesribed in the applied literature. The algorithm de-sribed in Setion 7 works �ne even for triangulationsof non-onvex domains, and it an remove slivers insideand outside 
. Oasionally, the hange of a weightwill hallenge the onformity of the weighted Delaunaytriangulation, and additional points will have to plaed

to reinfore the boundary. It would be interesting toformulate onditions on the boundary triangulation un-der whih the algorithm is guaranteed not to a�et theboundary.AknowledgementsThe authors thank Je� Erikson for suggesting some ofthe names in our ategorization of undesirable tetrahe-dra and Dafna Talmor for helpful disussions, in par-tiular on the material overed in Setion 5. They alsothank the referees for their onstrutive ritiism.Referenes[1℄ M. Bern, L. P. Chew, D. Eppstein and J. Rup-pert. Dihedral bounds for mesh generation in highdimensions. In \Pro. 6th Ann. ACM-SIAM Sympos.Disrete Algorithms 1995", 189{196.[2℄ M. Bern, D. Eppstein and J. Gilbert. Provablygood mesh generation. J. Comput. Syst. Si. 48 (1994),384{409.[3℄ L. J. Billera, P. Filliman and B. Sturmfels. Con-strution and omplexity of seondary polytopes. Adv.Math. 83 (1990), 155{179.[4℄ J. C. Cavendish, D. A. Field and W. H. Frey. Anapproah to automati three-dimensional �nite elementmesh generation. Internat. J. Numer. Methods Engrg.21 (1985), 329{347.[5℄ L. P. Chew. Guaranteed-quality Delaunay meshing in3D. Short paper in \Pro. 13th Ann. Sympos. Comput.Geom., 1997", 391{393.[6℄ P. G. Ciarlet. The Finite Element Method for ElliptiProblems. North-Holland, 1978.[7℄ B. Delaunay. Sur la sph�ere vide. Izv. Akad. NaukSSSR, Otdelenie Matematiheskii i EstestvennykaNauk 7 (1934), 793{800.[8℄ T. K. Dey, C. Bajaj and K. Sugihara. On good tri-angulations in three dimensions. Internat. J. Comput.Geom. Appl. 2 (1992), 75{95.[9℄ H. Edelsbrunner and N. R. Shah. Inrementaltopologial ipping works for regular triangulations. Al-gorithmia 15 (1996), 223{241.[10℄ H. Edelsbrunner and T. S. Tan. An upper boundfor onforming Delaunay triangulations. Disrete Com-put. Geom. 10 (1993), 197{213.[11℄ A. M. Frieze, G. L. Miller and S.-H. Teng. Sep-arator based divide and onquer in omputational ge-ometry. In \Pro. 5th ACM Sympos. Parallel Algor.Arh., 1992", 420{430.12



[12℄ I. M. Gelfand, M. M. Kapranov and A. V. Zele-vinsky. Disriminants, Resultants and Multidimen-sional Determinants. Birkh�auser, Boston, 1994.[13℄ B. Joe. Delaunay versus min-max solid angle triangu-lations for three-dimensional mesh generation. Inter-nat. J. Numer. Methods Engrg. 31 (1991), 987{997.[14℄ A. Liu and B. Joe. Relationship between tetrahedronshape measures. BIT 34 (1994), 268{287.[15℄ G. L. Miller, D. Talmor, S.-H. Teng and N.Walkington. A Delaunay based numerial method forthree dimensions: generation, formulation and parti-tion. In \Pro. 27th Ann. ACM Sympos. Theory Com-put. 1995", 683{692.[16℄ S. A. Mithell and S. A. Vavasis. Quality mesh gen-eration in three dimensions. In \Pro. 8th Ann. Sym-pos. Comput. Geom., 1992", 212{221.[17℄ V. T. Rajan.Optimality of the Delaunay triangulationin Rd . Disrete Comput. Geom. 12 (1994), 189{202.[18℄ J. Ruppert. A Delaunay re�nement algorithm forquality 2-dimensional mesh generation. J. Algorithms18 (1995), 548{585.[19℄ J. Shewhuk. Tetrahedral mesh generation by Delau-nay re�nement. In \Pro. 14th Ann. Sympos. Comput.Geom. 1998", 86{95.[20℄ G. Strang and G. J. Fix. An Analysis of the FiniteElement Method. Prentie Hall, Englewood Cli�s, NewJersey, 1973.[21℄ D. Talmor. Well-spaed points for numerial meth-ods. Report CMU-CS-97-164, Dept. Comput. Si.,Carnegie-Mellon Univ., Pittsburgh, Penn., 1997.[22℄ G. Voronoi. Nouvelles appliations des param�etresontinus �a la th�eorie des formes quadratiques. J. ReineAngew. Math. 133 (1907), 97{178, and 134 (1908),198{287.

13


