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Abstract. A new algorithm for the generation of anisotropic, unstructured triangular meshes in two dimensions is
described. Inputs to the algorithm are the boundary geometry and a metric that specifies the desired element size and
shape as a function of position. The agorithm is an example of what we call pliant mesh generation. It first con-
structs the constrained Delaunay triangulation of the domain, then iteratively smooths, refines, and retriangulates. On
each iteration, anodeis selected at random, it is repositioned according to attraction/repulsion with its neighbors, the
neighborhood is retriangulated, and nodes are inserted or deleted as necessary. All operations are done relative to the
metric tensor. Thissimple method generates high quality meshes whose elements conform well to the requested shape
metric. The method appears particularly well suited to surface meshing and viscous flow simul ations, where stretched
triangles are desirable, and to time-dependent remeshing problems.
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1 Introduction

Our goal isthe development of a mesh generator that:

is application-independent and modular. The mesh generator should meet the needs of problemsin structural anal-
ysis, heat transfer, fluid flow, electromagnetics, computer graphics, and other applications. It should be flexible
enough to support these varied demands while remaining modular, with ageneral subroutineinterfacethat allows
it to be used inside an adaptive finite element solver or in other contexts.

allows complex geometry. The meshes produced should conform to complex boundary geometry.

gener ates anisotropic and graded meshes. It should be possible to generate meshes with elements whose size and
shapevary with position. For some applications, equilateral trianglesaredesired, whilefor others, such asviscous
flow simulations, extreme aspect ratios are wanted. The result should closely match the desired element sizes.

isautomatic and robust. The mesh generator should require no user interaction beyond specification of the geometry
and desired element size, and it should always produce a valid mesh.

In order to meet these goal's, we use the following approach.

To support complex boundary geometries without user interaction, unstructured triangular meshes are employed,
since structured meshes often require human intervention.

To accommodate the generation of anisotropic and graded meshes, the desired element size and shape are specified
by an element size function. For graded, isotropic meshes, this function gives edge length as a function of position,
while for anisotropic meshes, this function specifies edge length as a function of position and direction. Thisfunction
can be represented by a 2 x 2 metric tensor which defines a field of ellipses that can vary in size, eccentricity, and
orientation across the domain. This mechanism for controlling anisotropy and grading of the mesh can support both
explicit user control, implicit constraints from the boundary geometry, and adaptivity.

In order to generate aquality mesh that conformsto the constraints of the boundary and the element sizefunction, we
employ a combination of techniquesincluding smoothing, refinement and coarsening, local topological optimization,
and Delaunay triangulation.
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Figure 1: Collective triangulation. Figure 2: Incremental triangulation.

The remainder of the paper is organized as follows: After reviewing previous work, we give an overview of our
basic method for the generation of graded, isotropic meshes. Next we generalize the method to anisotropic mesh gen-
eration. Finally, we give results and draw some conclusions.

2 Previous Work

In this section we review common mesh generation techniques and those that are closest to our own approach. More
complete surveysare available [14, 19, 2].

2.1 Taxonomy

Although many hybrids exist, most mesh generation algorithms can be categorized into one of the following four
classes. Thefirst two are the most common.

e collectivetriangulation

e incremental triangulation

pliant mesh generation with post-triangulation
pliant mesh generation with retriangulation

Collectivetriangulation methods (Figure 1) choose theinitial node positions, triangulatethem asawhole, typically
using Delaunay triangulation[11, 9], and then optionally adjust node positions using L aplacian smoothing. The princi-
pal difficulty with the collective approach is that poor choice of initial node positions can constrain the mesh to a poor
topology.

Incremental triangulation methods (Figure 2) insert nodes one at atime, updating the triangulation during insertion
(e.0.[8, 18, 4]). The advancing front method [16, 12] is one such technique. On the boundary, it produceswell shaped
elements, but where fronts collide in the interior, the elements can be distorted. Post-process smoothing can alleviate
this problem.

An emerging approach iswhat we call pliant mesh generation, which we define to be methodsin which smoothing,
insertion, and deletion take place in aloop. Triangulation can be donein this pliant loop as well, or it can be done as
a post-process. Pliant methods are often physically-based, in that they simulate physical behaviors such as attraction
and repulsion, but they need not bet. Inserting and deleting nodesin thisloop gives pliant methods population control,
which allows them to make rapid changes to the topology when the local density of nodes and elementsistoo low or
too high. Pliant methods tend to produce more uniform distributions of points than L aplacian smoothing.

One type of pliant mesh generation uses post-triangulation (Figure 3). Shimada and Gossard developed an algo-
rithm that chooses initial node | ocations, smooths using attraction/repulsion forces between nearby nodes while occa
sionally inserting or deleting nodes, and finally performs Delaunay triangulation [20, 19]. In related work, Witkin and
Heckbert used repelling particles to sample and polygonize curved surfaces[25].

Another form of pliant mesh generation uses retriangulation (Figure 4). Welch used a combination of Laplacian
smoothing and surface Delaunay triangulation to maintain a quality mesh on a dynamic surface [24]. The method of
Fortin et al. isalso pliant [7].

11t is debatable whether a pliant method using Laplacian smoothing is “physically-based”, for example.
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Figure 3: Pliant mesh generation with post- Figure 4: Pliant mesh generation with retriangu-
triangulation. lation.

2.2 Smoothing

The most popular repositioning technique, Laplacian smoothing, iteratively rel ocates each node to the centroid of its
neighbors[6]. Thismethod improveselement shapein most cases, but on some concave domains, nodesare pulled out-
sidetheboundary. A moresophisticated variant is Laplace-Delaunay smoothing[6, 12], which performsboth Delaunay
edge swaps [11] and Laplacian smoothing in aloop, adjusting the topology and geometry of a mesh simultaneoudly.
We do not regard L aplace-Delaunay smoothing by itself as a pliant method because it does not insert or delete nodes.

2.3 Graded and Anisotropic Meshes

In many cases, it is desirable to create graded meshes, where node spacing is a function of position, or anisotropic
meshes, where node spacing is a function of position and direction. The desired size and shape of elements is
application-dependent [21, 14]. For finite element approximation of many elliptic partial differential equations, equi-
lateral triangles are ideal, but to simulate anisotropic diffusion or viscous fluid flow, elongated elements with extreme
aspect ratio are often desirable. In structural simulations, smaller elements are needed in regions of stress concentra-
tion, while larger elements suffice in other regions. In the boundary layer around an aircraft wing, or along the shock
frontsin supersonic flight, aspect ratios as high as several thousand are sometimes desirable.

Research in approximation theory has studied the effect of triangle size and shape on approximation error. One
can ask: what triangulation with a given number of triangles minimizes the error of piecewise linear approximation
to a known, smooth function? The answer is that as the number of triangles goes to infinity, the optimal triangles
orientation is given by the eigenvectors of the Hessian of the function at each point, and their sizein each direction is
given by the reciprocal square root of the absolute value of the corresponding eigenvalue [5, 21]. Thus, large angles
can be optimal for minimizing approximation error [17].

Viscous flow simulations demanding extreme aspect ratios have traditionally been done using structured meshes
exclusively, or with acombination of structured meshes along boundariesand unstructured meshesin the remainder of
the domain. These approaches are difficult to automate for complex geometries, so researchers have sought to extend
existing unstructured mesh generatorsto create highly anisotropic meshes.

Element size can be controlled by an element size function [8]. For graded, isotropic meshesin 2-D, element size
isascalar function of position, r (x), wherex = (X1, X2). Ruppert defines an element size function in terms of distance
to boundary features[18]. More explicit schemes often employ a background mesh [8, 16], which can be given by the
user or can be the mesh from the previousiteration in an adaptive solver. The background mesh specifies the element
Size at each vertex, and sizes are then interpolated over its elements. For anisotropic mesh generation, the element size
functionisgeneralizedto describe shapeaswell assize, witha2 x 2matrix M (x). Indifferential geometry, thisiscalled
a Riemannian metric tensor [22]. The element size function can be visualized as afield of ellipses whose mgjor radius,
minor radius, and angle are functions of position (see Figure 10b). The metricisisotropiciff M has equal eigenvalues,
inwhich casethe ellipsesare circles. Inthe context of adaptivefinite element methods, the metric tensor can be derived
from the Hessian of a previous solution [16, 26].

For anisotropic mesh generation, distances are often defined using a local metric tensor. The advancing front
method can remesh a domain anisotropically by positioning new nodes according to the metric [16]. Alternatively,
Castro-Diaz et al. refine and coarsen the mesh by splitting and collapsing edgesthat are too long or too short according



to the metric, swapping edges to maintain a quality triangulation [4]. Mavriplis places nodes using a structured mesh
[13] or an advancing front [14], and then applies Delaunay triangulation in a stretched space. When smoothing is used
on anisotropic meshes, it, too, should conform to the metric tensor [10]. Vallet et al. use a combination of insertion,
deletion, retriangul ation, and anisotropic smoothing [23, 7].

Anisotropic meshes can also be generated without reference to metrics or stretched space. Marcum generates
meshes that are semi-structured and anisotropic near boundaries, but unstructured and isotropic in the interior [12].

In spite of the progress described above, problemsremain. Most existing unstructured ani sotropic mesh generators
are unable to generate meshes with extreme aspect ratios. Aspect ratios larger than about 10 or 20 are problematic
for most 3-D advancing front methods [15]. Marcum’s algorithm can generate highly stretched elements, but it does
not support general anisotropy, and it occasionally generates diver tetrahedra[12]. Much work remains to be doneto
generate unstructured meshes automatically for problemsinvolving complex geometry and extreme aspect ratios.

3 BasicMethod

The new method we propose for mesh generation is a pliant method with retriangulation (Figure 4). We maintain a
triangulation during the pliant iterations as an efficiency measure. This allows us to find neighboring nodes quickly,
without the spatial data structures required by some other algorithms.

Theinputs to the mesh generator are a polygona boundary and an element size function. First, a constrained De-
launay triangulation of the domain is built. Then, at each step through the pliant loop, a node is picked at random

and relocated. The mesh isretriangulated, and if necessary anodeis inserted or deleted. This processisillustrated in
Figure 5. Note that each iteration is very fast.
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A more precise description of the algorithm is given below:

create initial constrained Delaunay triangulation
until all nodesinactive
randomly pick an active node i
reposition nodei according to positions of neighbors
retriangulate to satisfy Delaunay criterion
if extent of nodei istoo low, deleteit and retriangul ate
else
find extents of adjacent edges
if largest edge extent istoo high, split edge and retriangul ate
update active/inactive flags of nodei and its neighbors

The next paragraphs describe in more detail each component of the mesh generation algorithm.

3.1 Smoothing

For graded, isotropic mesh generation, we define the distance d(x, y) between two pointsx andy as

Ix=31 @

dix,y) =
where || - || is the Euclidean norm operator, and r the desired edge length, which could vary as a function of position.
Theterms*“distance” and “normalized length” will mean distance defined thisway. Our goal isto create mesheswith
normalized edge length of 1.

Given a definition of normalized distance, general smoothing can be expressed in terms of a first order? motion
equation:

pi=pi+ai Y f(dpi.p)) uj @)
jendi

where p; isthe position of nodei, u; isthe unit vector (p;—p;)/d(pi, pj), A i isaneighborhoodof i, f isasmoothing
function, and «; is a constant.

The most common smoothing method is Laplacian smoothing [6], in which each nodeis moved to the centroid of
its neighbors. Laplacian smoothing isthus defined by A(; = { | j sharesan edgewith i}, oj=1/|A(;|, and f(d)=—d.

The Lennard—Jonespotential from chemistry describes attraction/repulsion behavior [1]. Its smoothing functionis
f(d)=d1¥—d~7. For mesh generation purposes, this model suffers from numerical instabilities, since f (0*) — oo,
so several variants have been proposed [19, 3].

1

1 1 1
0
0 0 0
0 1 2 0 1 2 0 1 2 0 1 2
a) Laplacian b) Lennard-Jones ¢) Shimada d) Ours

Figure 6: Several smoothing functions f (d)

After testing several alternatives, we have chosen f (d) = (1—d*) - exp(—d*), picturedin Figure 6d. We havefound
that smoothing functions with such attraction/repulsion behavior yield better results[3]. If two nodes are too close to
each other (d < 1), they repel, and if too distant (d > 1), they attract. Thisisdifferent from Laplacian smoothing where
nodes always attract each other, regardless of distance. Our neighborhood #( ; is also defined as the set of nodeswhich
share an edge with i, and «; isset to 0.2.

2Second order is also possible [3, 19] but is not considered here.



The new position for the vertex is only accepted if it does not violate the triangulation. If the line segment between
p;i and p; does not cross any edges, then the move is accepted. If it crosses an edge, then if the first edge crossed isa
boundary edge, the node is positioned on that edge, otherwise the node is not moved.
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Figure 7: Smoothing techniques applied to the mesh at left

Figure 7 shows the effect of Laplacian smoothing, Laplace-Delaunay smoothing [6] versus the new method. Our
smoothing technique generates regular meshes with some voids unless node insertion is used, so we have found that
the two should be used together.

3.2 Nodelnsertion and Deletion

When themeshislocally too sparse, anodeisinserted, and when it istoo dense, anode is deleted. We quantify sparse-
ness using extent, which has the units of normalized area. Normalized areais simply area divided by r2. The extent
of anode on the boundary is defined to be 0.5 times the squared sum of the normalized lengths of the two boundary
edges adjacent to it, and the extent of an internal nodeis 2.3/./n(n—2) times the sum of the normalized areas of the n
triangles that are adjacent to it. The extent of a boundary edge is defined to be 0.5 times the square of its normalized
length, and the extent of an internal edge is 0.8 times the sum of the normalized areas of the two triangles adjacent to
it.

Leti bethenode pickedinthemainloop. If theextent of nodei isbelow 1, thenit isdeleted, and the meshislocally
retriangulated according to the Delaunay criterion. If nodei is not deleted, the extent of each edge adjacent to nodei
iscomputed. If the largest of these extentsis greater than 1 then the corresponding edgeis split at its midpoint and the
mesh is retriangulated. Boundary nodes present in the input are never repositioned or del eted.

Retriangulation after insertion is done using incremental Delaunay triangulation [11, 9]. In our context, point lo-
cation is unnecessary because we know the edge being split. After deletion, we construct an initial triangulation of the
resulting ssimple polygon and apply edge swapping to the edges internal to the polygon [3].

3.3 Node Tagging and Conver gence

This combination of smoothing, retriangulation, and insertion/deletion tends to drive all the edges to a normalized
length of 1. To monitor convergence, nodes are marked as active or inactive. Initialy all nodesare active. Only active
nodes can be picked for smoothing. After anodeis relaxed it is kept active or not according to its speed ||p; — pil].
If its speed is above a threshold, it is kept active and its neighbors are marked active, but if below the threshold, the
node is marked inactive. When a node is inserted or deleted, its neighbors become active. The algorithm stops when
no more nodes are active.

So far, we have described an algorithm that produces high quality graded, isotropic meshes.

4 Anisotropy

In this section, we generalize the method to create anisotropic meshes. A 2 x 2 symmetric, positive definite tensor
M (x) is used to quantify the desired element size as a function of position. For a graded, isotropic mesh with element
sizer(x), M would be adiagonal matrix with my; =mpy =1/r?(x).

3These constants are derived in [3].
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Figure 8: Ellipse

The specification of anisotropy requiresthree parameters: amajor radiusr, minor radiusr,, and angle (Figure8),
defining the desired edge length as a function of orientation and position. The corresponding tensor is:

cos —snd) (1/r2 0 cos® siné
M=RAR"=| , _ (©)
sng  cost 0 1/r5 —sing coso

Inversely, given ametric tensor, its elgenval ues and eigenvectors define the inverse squares of the major and minor
radii and the directions of the axes, respectively.
Using thistensor, the distance between two points x and y is computed as

dix,y) = \/(X_y)TMavg(X_Y) (4)

where M qvg= (M xX)+M (y)) /2. Thisis equivalent to measuring distance in a normalized space where the ellipseis
mapped to a unit circle using the rotation and scaling transformation AY?RT. A more rigorous definition of distance
would require integration [22, p. 30]; by assuming the metric to be locally constant, we achieve the less expensive
formulaabove[4, 3]. In amesh conforming to this metric, the neighbors of nodei lie close to the elipse d(p;, y) =1.
They lie exactly onthe élipseif the metric islocally constant.

The normalized area of atriangle defined by three points x, y, and z is computed as

1
AX.Y,2) = 5/ detlMag) (y=X) x (z=X) (5)
where M ag= (M X)+M(y)+M (z)) /3, and u x v isthe 2-D cross product with scalar value u; v, — Upv;.

w w
Swap

— &

Figure 9: Edge swapping

4.1 Modified Delaunay Criterion

We modify the Delaunay criterion to take anisotropy into account. Let xyz and zwx be two adjacent triangles (Figure
9). Delaunay retriangul ation swaps edges to maximize the minimum angle. Equivalently, if /zyx + /xwz > 180° then
swap edge xz for edge yw [2]. For anisotropic Delaunay triangulation, we measure angles in the normalized space
defined by the metric. The generalized rule isto swap edge xz for yw if

[(Z—y) x (X=y)] X=W)Mag(z—W) + (Z-Y) Mag(x—y) [(x—w) x (z—w)] < O (6)



Thistest isequivaent to performing thewell known circumcircletest in the normalized space, but requiresfewer arith-
metic operations [3]. When inserting, M ag = (M W)+MX)+My)+M (z))/4, where w, X, y, and z are the four
vertices of the quadrilateral being checked, and when deleting node i, M a,g=M (p;) for &l swap tests.

When the metric tensor is constant, the edge swapping process finds a global optimum [11]. When it is not con-
stant, there is potential for infinite looping if the metric is evaluated at several points, because these metrics could be
inconsistent. We avoid this possibility simply by using the same tensor for all of the swap tests following a deletion.

a) Mesh, 430 nodes b) Ellipse around each node
Figure 10: Anisotropic approximation of a Gaussian

Figure 10ashowsan anistropic mesh for approximating the Gaussian e /2, |twasconstructed us ng ametrictensor
equal to the Hessian of the Gaussian, with eigenvalues replaced by their absolute values. In Figure 10b, the ellipses
d(pj, y)=1/2around each nodei aredrawn, as avisualization of the element size function. Notethanin regionswhere
the metric tensor is changing rapidly, ellipses may overlap.

5 Reaults

The algorithm described has been implemented in C++. Given a2-dimensional domain bounded by line segments, and
afunction specifying the desired element size, our program generates an unstructured triangular mesh. In this section,
we present some resullts.

Figure 11 depicts the result when the element size function specifies small elements near the diagonal. The angle
and normalized edge length histograms show that a majority of elements are close to optimality (i.e. 60 degree angles
and unit normalized length).

A more complex mesh representing an idealized hyperbolic shock front is shown in figures 13 and 14. The aspect
ratio of the triangles grows towards the center of the mesh, where it reaches 100:1. The histograms demonstrate that
the normalized angles[22, eq. (8.19)] are close to 60 degrees and the elements are close to the desired size. Figure 14
shows that even in the region of maximum aspect ratio, the mesh is very regular and the elements are well shaped.

Figure 12 shows the time cost as a function of the number of nodes for the mesh of Figure 10, running on an SGI
Indigo2 with 250 MHz MIPS R4400 processor. From empirical tests, the behavior is approximately linear. Although
convergenceis not guaranteed, it is achieved in the vast majority of cases. Problematic cases are generated by incon-
sistencies between the desired edge size and the geometry (small featuresin the geometry and large desired edge size),
and abrupt changes in the metric. In these situations, our assumption that the metric is locally constant breaks down.
Further study of the conditions on validity of element size functionsis needed.

Figure 15 illustrates a more complex domain created from outline fonts. The element size function, chosen for
illustration purposes, controls grading according to distance from input boundary nodes, and anisotropy according to
distance from a curve.
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Figure 11: Isotropic mesh, 925 nodes
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Figure 12: Computation time to generate meshes

6 Conclusions

We have presented a new method for two dimensional, unstructured triangular mesh generation that is capabl e of pro-
ducing quality meshes on complex domains. Depending on the application, meshes that are uniform or graded, and
isotropic or anisotropic can be generated. The pliant approach, in which nodes are smoothed, inserted, and deleted in
aloop, givesthe algorithm the flexibility to fit an appropriate number of elementsin each region of the domain, result-
ing inwell shaped elements. In contrast to hybrid structured/unstructured mesh generation techniques, our method can
generate complex meshes with specified element shape using a single, simple algorithm.

Theinputsto the agorithm are general enough to permit application-independent modul arization of the mesh gen-
erator. The desired edge length is specified through an element size function that is provided as part of theinput. This
element size function can come from the boundary geometry, from an adaptive FEM solver, or from the user. It can
change over time.

The method appears particularly well suited for several applications. In viscous flow simulations, the anisotropic
capabilities of the algorithm are very useful. For adaptive FEM simulations, the flexible refinement and coarsening
provided by the algorithm can obviate remeshing. These properties make the method well suited to shape optimization
and large deformation simulations as well.
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Figure 13: Idealized shock front, 8712 nodes
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Figure 15: Anisotropic mesh for a complex domain, 5523 nodes

Although we have not done side-by-side empirical tests, we make some preliminary comparisons with previous
mesh generators. Relative to the methods of Shimada-Gossard and Ruppert [20, 18], our method is more general by
virtue of supporting anisotropy, and it appears to be faster than the former. Compared to advancing front methods:
our algorithm may be better able to generate highly stretched meshes than the method of Peraire and Peiro [16], it is
simpler than the anisotropic techniques of Mavriplis[14], and it is simpler than, and it supports more general element
size functionsthan, Marcum’salgorithm[12]. Our techniqueis probably most similar to those of Castro-Diaz et al. [4]
and Vallet et al. [23, 7]. A subjective visual comparison suggests that our meshes are more “attractive” than all of the
unstructured methods cited with the exception of Shimada and Gossard's, with which it is on par. (But this does not
imply that our meshes are better numerically, of course.) On the negative side, our algorithmis currently limited to 2-D
triangles, and it is currently slower than some previous methods (e.g. [18, 12]).

There are several areasfor futurework. The algorithm could probably be sped up. For example, when lower mesh
quality is acceptable, the algorithm could do less smoothing. We would like to find a provably convergent variant
of the algorithm, possibly using modified rules for smoothing, insertion, and deletion. The method should be tested
empirically with an FEM solver and itsresults compared to other mesh generators. Thetechnique appearsto generalize
naturally to surfaces and volumesin three dimensions, and we suspect that it will generate high quality meshes there,
aswell, even though tetrahedrization is topologically much more complex than triangulation.

We plan to release source code for our algorithm on the Web at some future date.
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