
Mesh GenerationMarshall Bern � Paul Plassmann y1 IntroductionA mesh is a discretization of a geometric domain into small simple shapes, such as trianglesor quadrilaterals in two dimensions and tetrahedra or hexahedra in three. Meshes �nd usein many application areas. In geography and cartography, meshes give compact representa-tions of terrain data. In computer graphics, most objects are ultimately reduced to meshesbefore rendering. Finally, meshes are almost essential in the numerical solution of partialdi�erential equations arising in physical simulation. In this chapter, we concentrate on al-gorithms for this last application, assuming an audience including both practitioners suchas engineers and theoreticians such as computational geometers and numerical analysts.1.1 Types of Geometric DomainsWe divide the possible inputs �rst according to dimension|two or three. We distinguishfour types of planar domains, as shown in Figure 1. For us, a simple polygon includes bothboundary and interior. A polygon with holes is a simple polygon minus the interiors of someother simple polygons; its boundary has more than one connected component. A multipledomain is more general still, allowing internal boundaries; in fact, such a domainmay be anyplanar straight-line graph in which the in�nite face is bounded by a simple cycle. Multipledomains model objects made from more than one material. Curved domains allow sidesthat are algebraic curves such as splines. As in the �rst three cases, collectively known aspolygonal domains , curved domains may or may not include holes and internal boundaries.Three-dimensional inputs have analogous types. A simple polyhedron is topologicallyequivalent to a ball. A general polyhedron may be multiply connected, meaning that itis topologically equivalent to a solid torus or some other higher genus solid; it may alsohave cavities, meaning that its boundary may have more than one connected component.We do assume, however, that at every point on the boundary of a general polyhedrona su�ciently small sphere encloses one connected piece of the polyhedron's interior andone connected piece of its exterior. Finally, there are multiple polyhedral domains|generalpolyhedra with internal boundaries|and three-dimensional curved domains , which typicallyhave boundaries de�ned by spline patches.Construction and modeling of domain geometry lie outside the scope of this chapter, sowe shall simply assume that domains are given in some sort of boundary representation,�Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304; bern@parc.xerox.comyDepartment of Computer Science and Engineering, The Pennsylvania State University, University Park,PA 16802; plassman@cse.psu.edu Supported by the Mathematical, Information, and ComputationalSciences Division subprogram of the O�ce of Computational and Technology Research, U.S. Department ofEnergy, under Contract W-31-109-Eng-38. 1



Figure 1. Types of two-dimensional inputs: (a) simple polygon, (b) polygon with holes, (c) multipledomain, and (d) curved domain.without specifying the exact form of this representation. Computational geometers typicallyassume exact, combinatorial data structures, such as linked lists for simple polygons andpolygons with holes, doubly connected edge lists [103] or quad-edge structures [63] for planarmultiple domains, and winged-edge structures [44, 62] for polyhedral domains.In practice, complicated domains are designed on computer aided design (CAD) systems.These systems use surface representations designed for visual rendering, and then translatethe �nal design to another format for input to the mesh generator. The StereolithographyTessellation Language (STL) �le format, originally developed for the rapid prototyping ofsolid models, speci�es the boundary as a list of surface polygons (usually triangles) and sur-face normals. The advantages of the STL input format are that a \watertight" model canbe ensured and model tolerance (deviation from the CAD model) can be speci�ed by theuser. The Initial Graphics Exchange Speci�cation (IGES) format enables a variety of sur-face representations, including higher-order representations such as B-splines and NURBs.Perhaps due to its greater complexity or to sloppy CAD systems or users, IGES �les oftencontain incorrect geometry (either gaps or extra material) at surface intersections.An alternative approach to format translation is to directly query the CAD system with,say, point-enclosure queries, and then construct a new representation based on the answersto those queries. This approach is most advantageous when the translation problem isdi�cult, as it may be in the case of implicit surfaces (level sets of complicated functions)or constructive solid geometry formulas.With either approach, translation or reconstruction by queries, the CAD model must betopologically correct and su�ciently accurate to enable meshing. We expect to see greaterintegration between solid modeling and meshing in the future.1.2 Types of MeshesA structured mesh is one in which all interior vertices are topologically alike. In graph-theoretic terms, a structured mesh is an induced subgraph of an in�nite periodic graphsuch as a grid. An unstructured mesh is one in which vertices may have arbitrarily varyinglocal neighborhoods. A block-structured or hybrid mesh is formed by a number of smallstructured meshes combined in an overall unstructured pattern.In general, structured meshes o�er simplicity and easy data access, while unstructuredmeshes o�er more convenient mesh adaptivity (re�nement/dere�nement based on an initialsolution) and a better �t to complicated domains. High-quality hybrid meshes enjoy theadvantages of both approaches, but hybrid meshing is not yet fully automatic. We shalldiscuss unstructured mesh generation at greater length than structured or hybrid mesh2



Figure 2. Types of meshes: (a) structured, (b) unstructured, and (c) block-structured.
Figure 3. (a) Triangulating quadrilaterals. (b) Subdividing triangles to form quadrilaterals.generation, both because the unstructured approach seems to be gaining ground and becauseit is more closely connected to computational geometry.The division between structured and unstructured meshes usually extends to the shapeof the elements: two-dimensional structured meshes typically use quadrilaterals, while un-structured meshes use triangles. In three dimensions the analogous element shapes arehexahedra, meaning topological cubes, and tetrahedra. There is, however, no essential rea-son for structured and unstructured meshes to use di�erent element shapes. In fact itis possible to subdivide elements in order to convert between triangles and quadrilaterals(Figure 3) and between tetrahedra and hexahedra.1.3 OrganizationSection 2 gives a brief survey of numerical methods and their implications for mesh genera-tion. Section 3 discusses the in
uence of element shape on accuracy and convergence time.Sections 4 and 5 cover structured and unstructured two-dimensional meshes. Section 6discusses three-dimensional hexahedral mesh generation, including structured, hybrid, andunstructured approaches. Finally, Section 7 describes three-dimensional unstructured tetra-hedral mesh generation.We shall explain the basic computational geometry results as they arise within a largercontext; however, Section 5 concludes with a separate theoretical discussion, because un-structured planar mesh generation is especially rich in interesting geometric questions.Throughout this article, we emphasize practical issues; an earlier survey by Bern and Epp-stein [24] emphasized theoretical results. Although there is inevitably some overlap betweenthese two surveys, we intend them to be complementary.3



Mesh generation has a huge literature and we cannot hope to cover all of it. There areexcellent references on numerical methods [34, 125], structured mesh generation [35, 61, 86,130, 131], and unstructured mesh generation [24, 60, 85, 86, 131]. There are also severalnice Web sites [99, 113, 117, 145] with up-to-date information on mesh generation.2 Numerical MethodsScienti�c computing seeks accurate discrete models for continuous physical phenomena.We can divide the process into three interdependent steps: problem formulation, meshgeneration, and equation solution. In this section, we discuss discretization and solutionmethods and their impact on mesh generation.2.1 Discrete FormulationThere are a number of approaches to the discrete approximation of partial di�erential equa-tions (PDEs) modeling a physical system. Here we brie
y review the standard discretizationmethods: �nite di�erence, �nite element, and �nite volume. Although these methods resultin linear systems of similar structure, the desired characteristics of meshes for these methodsdi�er.The �nite di�erence method [128] replaces a continuous di�erential operator with adi�erence approximation. Consider the partial di�erential equationLu = f (1)where L is some di�erential operator and u is a function of position and possibly also oftime. We seek an approximate solution of (1) on some geometric domain 
. A standard�nite di�erence approach replaces L with a discrete stencil . Writing uk = u(xk) for thevalue of u at mesh vertex position xk, the action of the stencil at xi can be approximatedby Lu(xi) � Xk2adj (xi)Aikuk ;where adj (xi) is the set of points adjacent to xi in the mesh and Aik is a set of weightsdepending only on L and the geometry of the mesh. The right-hand side of (1) can also bediscretized, yielding a system of linear equationsnXk=1Aikuk = fi (2)to be solved for the unknowns uk . Because the �nite di�erence stencil gives nonzero weightonly to neighboring vertices, this system will be quite sparse.It is convenient to use the same stencil throughout the mesh; this restriction simpli�esnot only the software but also the mathematics, because the convergence properties of aparticular stencil can be analyzed by Taylor series expansion. A �nite di�erence stencilgives a more accurate approximation of a continuous operator when the edges meeting atvertices are nearly orthogonal. For these reasons, the �nite di�erence method usually relieson structured meshes.The �nite element method [125] approximates the solution rather than the equation.The essential idea is to replace the continuous function u(x) with the �nite-dimensional4



approximation �u(x) = Pnk=1 ak�k(x), where the �k are basis functions with local support.These basis functions are typically low-order polynomials, so that the action of the dif-ferential operator, L�k , is easy to compute. Because the approximation �u(x) is de�nedeverywhere on the domain, an analysis of convergence can be made in a continuous norminstead of pointwise as in the �nite di�erence method.The �nite element method obtains a discrete approximation by demanding that thedi�erential equations be satis�ed for some set of test functions  i(x):Z
(L�u) i = Z
 �f i:An implementation of the �nite element method involves the computation of coe�cientsAik = Z
(L�k) i= Xe2Iik Ze(L�k) i ;where Iik denotes the set of elements for which both the basis function �k and the testfunction  i are nonzero. The unknowns ak can now be expressed in terms of the Aik's bya sparse linear system of equations, of the same overall form as (2).Finite-element methods are typically no more complicated on unstructured meshes thanon structured meshes. Furthermore, there is no real advantage to mesh edges meetingorthogonally. For these reasons, unstructured meshes �nd broad and increasing use in �niteelement methods.The �nite volume method is motivated by physical conservation laws. The in�nitesimalversion of a conservation law is of the formd�dt +r �� = 0 ;where � is the density and � is the 
ux of the conserved quantity. In order to maintain thesame physical conservation law on a discrete level, the �nite volume method de�nes controlvolumes , and requires that on each control volume 
vddt Z
v �+ Z@
v � � n = 0 ;where n is the normal to the surface of the volume. The �nite volume method models
uid dynamics problems especially well, because pressure and velocity can be representedat centers and vertices of volumes, respectively.Cell-centered control volumes are usually identical to mesh elements, while vertex-centered control volumes form a dual mesh with one volume for each vertex of the originalmesh. There are several ways to de�ne vertex-centered control volumes. Two regular gridsmay be overlaid, staggered by half an element, or in the case of unstructured meshes, theDelaunay triangulation may be used for the mesh, and its dual|the Vorono�� diagram|forthe control volumes. 5



2.2 Solution MethodsThe solution of the sparse linear system is usually the most computationally demanding ofthe three steps. Solution methods include direct factorization and preconditioned iterativemethods, methods which can vary dramatically in required storage and computational costfor di�erent problems. Moreover, the discrete formulation and mesh generation steps greatlyin
uence the e�cacy of a solution method. For example, if one chooses to use higher-orderbasis functions in the �nite element method, one can use a coarser mesh, and a smaller butdenser linear system.Direct factorization methods, such as sparse Cholesky or LU factorization, tend beslower but more robust than iterative methods. Luckily the extra computational cost canbe amortized when the factorization is reused to solve for more than one right-hand side.An important issue in direct methods is ordering the vertices to minimize the \�ll", thenumber of intermediate nonzeros. Nested dissection [72] uses graph separators to save anasymptotic factor of O(n3=d) in the �ll. Any planar graph admits separators of size O(n1=2);reasonable three-dimensional meshes admit separators of size O(n2=3) [89].Iterative methods [17] have proved e�ective in solving the linear systems arising inphysical modeling. Most large problems cannot be e�ectively solved without the use ofpreconditioning. A popular preconditioner involves an incomplete factorization. Ratherthan computing the exact factors for the matrixA = LU , approximate factors are computedsuch that A � ~L ~U and the preconditioned system~L�1A ~U�1( ~Uu) = ~L�1fis solved iteratively. Ideally, the incomplete factors should be easy to compute and requirea modest amount of storage, and the condition number of the preconditioned system shouldbe much better than the original system.Multigrid methods [140] can achieve the ultimate goal of iterative methods, convergencein O(1) iterations, for certain classes of problems. These methods use a sequence of meshes,graded from �ne to coarse. The iterative solution of the �ne linear system is acceleratedby solving the coarser systems. The cycle repeatedly projects the current residual from a�ner mesh onto the next coarser mesh and interpolates the solution from the coarser meshonto the �ner. One drawback of multigrid is that computing a sequence of meshes may bedi�cult for complicated geometries.Domain decomposition [122] represents something of a hybrid between iterative anddirect approaches. This approach divides the domain into possibly overlapping small do-mains; it typically solves subproblems on the small domains directly, but iterates to theglobal solution in which neighboring subproblem solutions agree. This approach enjoyssome of the superior convergence properties of multigrid methods, while imposing less of aburden on the mesh generator. In fact, the domain is often partitioned so that subproblemsadmit structured meshes.3 Element ShapeThe shapes of elements in a mesh have a pronounced e�ect on numerical methods. Forpurposes of discussion, let us de�ne the aspect ratio of an element to be the ratio of itsmaximum to its minimum width, where width refers to the distance between parallel sup-porting hyperplanes. There are many other roughly equivalent de�nitions of aspect ratio.6



In general, elements of large aspect ratio are bad. Large aspect ratios lead to poorlyconditioned matrices, worsening the speed and accuracy of the linear solver. Speed degradesbefore accuracy; a triangular mesh with a rather mild sharpest angle (say 10�) can benoticeably slower than a triangular mesh with a minimum angle of 45�.Moreover, even assuming that the solver gives an exact answer, large aspect ratios maygive unacceptable interpolation error. Here it is useful to distinguish between two di�erenttypes of poor aspect ratio. Early results [39] showed convergence as triangular elementsshrink, assuming that all angles are bounded away from 0�. Later analysis [6], however,showed convergence assuming only that angles are bounded away from 180�, a weakercondition. The generalization of this result to three dimensions assumes dihedrals boundedaway from 0�. Bank and Smith [13] recently proposed a triangle quality measure based onan analysis of interpolation error: the area of a triangle divided by the sum of squared edgelengths. This measure slightly favors sharp triangles over 
at triangles.Sometimes, however, elements of large aspect ratio are good! If the solution to thedi�erential equation is anisotropic, meaning that its second derivative varies greatly withdirection, then properly aligned high-aspect-ratio elements give a very e�cient mesh. Theideal aspect ratio of a triangle is the square root of the ratio of the largest to smallesteigenvalues of the Hessian [106]. For triangular meshes, it does not make much di�erencewhether long skinny elements have large angles as well as small angles, but if the aspectratio exceeds the ideal then large angles are worse than small [106].Fluid 
ow problems, especially full Navier-Stokes simulation (that is, viscosity included),are strongly anisotropic. For example, in aerodynamic simulations ideal aspect ratios mayreach 10,000 along the surface of the aircraft. Quadrilateral and hexahedral meshes havean advantage in accuracy over triangular and tetrahedral meshes for control-volume formu-lations of these problems, as they allow faces of elements in the boundary layer to be eitheralmost parallel or almost orthogonal to the surface.Simulations with shock fronts|for example, supersonic air 
ow over a wing|are alsostrongly anisotropic. In this case, however, the locations and directions for high-aspect-ratioelements cannot be predicted in advance. The need for adaptivity (remeshing based on aninitial solution) now tilts the balance in favor of triangles and tetrahedra [36]. Simpson [121]discusses and surveys the literature on anisotropy.Element shape a�ects another property of the linear system besides condition number.A triangular mesh with well-shaped elements gives a symmetricM-matrix|positive de�nitewith negative o�-diagonal entries|for a �nite element formulation of an equation with aLaplacian operator. M-matrices are exactly those matrices that satisfy a discrete maximumprinciple; this desirable property rules out oscillation of the numerical method. In this case,\well-shaped" has a precise meaning: the two angles opposite each interior edge of the meshshould sum to at most 180� [18, 40]. This requirement implies that no quadrilaterals are\reversed" (Section 5.1), so the triangulationmust be the Delaunay or constrained Delaunaytriangulation. Depending on the boundary conditions associated with the di�erential equa-tion, an M-matrix may also require that the single angle opposite a boundary edge shouldmeasure at most 90�. This requirement goes beyond Delaunay, but it is not hard to sat-isfy this requirement for domains without internal boundaries: simply split outwards-facingobtuse angles by dropping perpendiculars to the boundary, 
ip back to a new Delaunaytriangulation, and repeat until there are no reversed quadrilaterals and no outwards-facingobtuse angles. 7



In three dimensions, an unstructured tetrahedral mesh gives an M-matrix if and only if,for each edge e0 in the mesh, the sumPe jej cot�e is nonnegative, where the sum is over alledges e that are opposite to e0 in tetrahedra of the mesh, and where jej denotes the lengthof e and �e the dihedral angle at e [141]. All such sums will be nonnegative if all dihedralsin the mesh are nonobtuse, but this condition is more restrictive than necessary.Finally, in a �nite volume formulation of Poisson's equation, a Delaunay mesh withVorono�� control volumes gives an M-matrix even in three dimensions [88]. The �nite volumeformulation|but not the �nite element formulation|can tolerate Delaunay tetrahedra oflarge aspect ratio, so long as all control volumes have good aspect ratios [88]. The disparitybetween the two formulations is surprising, because they give the very same matrix in twodimensions.4 Structured Two-Dimensional MeshesStructured meshes o�er simplicity and e�ciency. A structured mesh requires signi�cantlyless memory|say a factor of three less|than an unstructured mesh with the same numberof elements, because array storage can de�ne neighbor connectivity implicitly. A structuredmesh can also save time: to access neighboring cells when computing a �nite di�erencestencil, software simply increments or decrements array indices. Compilers produce quitee�cient code for these operations; in particular, they can optimize the code for vectormachines.On the other hand, it can be di�cult or impossible to compute a structured mesh fora complicated geometric domain. Furthermore, a structured mesh may require many moreelements than an unstructured mesh for the same problem, because elements in a structuredmesh cannot grade in size as rapidly. These two di�culties can be solved by the hybridstructured/unstructured approach, which decomposes a complicated domain into blockssupporting structured grids. Hybrid approaches, however, are not yet fully automatic,requiring user guidance in the decomposition step. A complicated three-dimensional hybridmesh (see Section 6.1) can take weeks or even months of work; hence hybrid approaches aretypically used only late in the design cycle.Structured mesh generation can be roughly classi�ed into hand-generated and otherelementary approaches, algebraic or interpolation methods, and PDE or variational meth-ods [129]. The PDE approach [35, 73] solves partial di�erential equations in order to mapthe domain 
 onto another domain with a convenient coordinate system. In this section, wediscuss an elliptic PDE approach [82] with a connection to the classical topic of conformalmapping.A mapping of a region 
 of the complex plane is conformal if it preserves angles; inother words, the angle between any two curves intersecting at a point z 2 
 is preserved bythe mapping. The Riemann mapping theorem states that for any topological disk 
, thereexists a conformal mapping f that takes the interior of 
 one-to-one onto the interior of anyother topological disk (such as the unit disk or square). There is an obvious connection tomesh generation: a conformal mapping of 
 onto a square grid induces a structured meshon 
 with the property that element angles tend towards 90� in the limit of an increasingly�ne discretization.Unfortunately, the Riemann mapping theorem only proves the existence of a conformalmapping; it does not give an algorithm. Let us write z = x+iy and consider the the complex8
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.
Figure 5. The grid on left was obtained by solving (3) with unit aspect ratio, resulting in a folded-overmesh. On the right, a more appropriate aspect ratio has been chosen.function f(z) = �(x; y) + i�(x; y). If f is analytic|as a conformal f will be, assumingf 0(z) 6= 0|then it satis�es the Cauchy-Riemann equations: �x = �y and �y = ��x. Thusthe functions � and � must each be harmonic and satisfy Laplace's equation, so thatr2� = 0and r2� = 0. If f is conformal, its inverse is as well; therefore, x and y as functions of �and � are also harmonic and satisfy r2x = 0 and r2y = 0.Consider the regions 
 and R in Figure 4, and assume we already have a discretizationof the boundary of 
. (Finding a suitable boundary discretization may itself be a nontrivialtask.) The obvious algorithm is to solve r2x = 0 and r2y = 0, assuming x and y aregiven on the boundary of R. However, this approach may not work. One may obtainpoorly shaped or even inverted elements as shown in Figure 5(a). The problem is that thesolutions x and y may be harmonic, but not harmonic conjugate (i.e., satisfy the Cauchy-Riemann equations).The algorithm can be partially mended [35] by obtaining a better estimate for M , therectangle height implied by the discretization of the boundary of 
. If we scale the originalcoordinates of the rectangle (�; �) onto a square with coordinates (�; �) with the mapping� = � and � = �=M we obtain the systemM2x�� + x�� = 0 M2y�� + y�� = 0: (3)From the �rst-order Cauchy-Riemann equations we haveM2 = (x2� + y2�)=(x2� + y2�):Bar�eld [16] obtained reasonable nonoverlapping meshes by estimating the average value ofthe right hand side of the above equation and using this value for M . One can think of M9



as an average aspect ratio for the original domain; if ideal aspect ratio varies signi�cantlyover the domain one can also make this number a function of position. This approachcan be successful for many physical problems, and can be improved signi�cantly if thegenerated grid is smoothed as a postprocessing step. This approach can also be extendedto three dimensions, where the Riemann mapping theorem no longer holds, by the additionof another \average aspect ratio" term.Although the approach just sketched works quite well for some domains, it does notguarantee the generation of a valid mesh. It is interesting that the inverse problem, solvingthe harmonic equations �xx + �yy = 0 (4)�xx + �yy = 0does guarantee a solution with no inverted elements and a nonvanishing Jacobian [49, 123].Solving the problem in this form is more di�cult, because it requires a discretization of thedomain for which we want to �nd a grid. However, the system can be inverted to form thenonlinear elliptic system [35] �x�� � 2�x�� + 
x�� = 0�y�� � 2�y�� + 
y�� = 0 ;where � = x2� + y2�� = x�x� + y�y�
 = x2� + y2� :Software designed to solve these systems often includes an additional source term on theright-hand sides of the harmonic systems in (4) to control the local point spacing in thedomain [129].The elliptic method just discussed, though motivated by conformal mapping, does notcompute true conformal mappings. A true conformal mapping induces a structured meshwith certain advantages; for example, the Laplacian is the limit of the second-order di�er-ence on such a grid. True conformal mapping, however, does not seem to be widely usedin mesh generation, perhaps because algorithms to compute such mappings are relativelyslow, or because they do not allow local control of point spacing.In the case that 
 is a simple polygon, the Schwarz-Christo�el formula o�ers an explicitform for the conformal mappings from the unit disk D to 
. Such a mapping can inturn be used to �nd conformal mappings from 
 to a square or rectangle. Let the pointsin the complex plane de�ning the polygon (in counterclockwise order) be z1; : : : ; zn, theinterior angles at these points be �1; : : : ; �n, and de�ne the normalized angles as �k =�k=� � 1. Using !1; : : : ; !n as the preimages of z1; : : : ; zn on the edge of the disk, theSchwarz-Christo�el formula gives the form of the conformal mapping asf(!) = A+ B Z !0 nYk=1 (1� �=!k)�k d�: (5)There are several programs available to solve for the unknown !k values: SCPACK byTrefethen [133], the SC Toolbox by Driscoll [47], and CRDT by Driscoll and Vavasis [48].10



One di�culty in the numerical solution is \crowding", enormous variation in spacing be-tween the !k points. CRDT, the latest and apparently best Schwarz-Christo�el algorithm,overcomes this di�culty by repeatedly remapping so that crowding does not occur near thepoints being evaluated.5 Unstructured Two-Dimensional MeshesWe have already mentioned the advantages of unstructured meshes: 
exibility in �ttingcomplicated domains, rapid grading from small to large elements, and relatively easy re-�nement and dere�nement.Unlike structured mesh generation, unstructured mesh generation has been part of main-stream computational geometry for some years, and there is a large literature on the sub-ject. We consider three principled approaches to unstructured mesh generation in somedetail; these approaches use Delaunay triangulation, constrained Delaunay triangulation,and quadtrees. Then we discuss mesh re�nement and improvement. In the �nal section, wedescribe some geometric problems abstracted from unstructured mesh generation.5.1 Delaunay TriangulationOur �rst approach to unstructured mesh generation partitions the task into two phases:placement of mesh vertices, followed by triangulation. (Added points are called Steinerpoints to distinguish them from the domain's original vertices.) If the placement phase issmart enough, the triangulation phase can be especially simple, considering only the inputvertices and Steiner points and ignoring the input edges.The placement phase typically places vertices along the domain boundary before addingthem to the interior. The boundary should be lined with enough Steiner points that theDelaunay triangulation of all vertices will conform to the domain. This requirement inspiresa crisp geometric problem, called conforming Delaunay triangulation: given a polygonaldomain 
, add Steiner points so that each edge of 
 is a union of edges in the Delaunaytriangulation. An algorithm due to Saalfeld [112] lines the edges of 
 with a large numberof Steiner points, uniformly spaced except near the endpoints. A more e�cient solution [96]covers the edges of 
 by disks that do not overlap other edges. Edelsbrunner and Tan [52]gave the best theoretical result, an algorithm that uses O(n3) Steiner points for an n-vertexmultiple domain. They also gave an 
(n2) lower bound example.There are several approaches to placing interior Steiner points. One approach [84]combines the vertices from a number of structured meshes. A second approach [10, 95] addsSteiner points in successive layers, working in from the domain boundary as in advancingfront mesh generation (Section 7.2). Figure 6 shows an example. A third approach [88, 137]chooses interior points at random according to some distribution, which may be interpolatedfrom a coarse quadtree or \background" triangulation. An independent random sample islikely to produce some badly shaped triangles [26], so the generator should oversampleand then �lter out points too close to previously chosen points [88]. Finally, there aredeterministic methods that achieve essentially the same e�ect as random sampling with�ltering; these methods [29, 120] de�ne birth and death rules that depend upon the densityof neighboring points.All of these methods can give anisotropy. The �rst and second approaches, structuredsubmeshes and advancing front, o�er local control of element shapes and orientations. These11



Figure 6. Delaunay triangulation of points placed by an advancing front. (T. Barth)
eFigure 7. (a) Delaunay triangulation. (b) A reversed quadrilateral.approaches may space points improperly where structured meshes or advancing fronts col-lide, but this 
aw can usually be corrected by �ltering points and later smoothing the mesh.The third and fourth approaches trade direct control over element shapes for ease of �ttingcomplicated geometries. Nevertheless, one can achieve anisotropy with these approaches bycomputing the Delaunay triangulation within a stretched space [29, 36, 43]. For example,Bossen [29] uses a \background" triangulation to de�ne local a�ne transformations; Delau-nay 
ips (described below) are then made with respect to transformed circles. StretchedDelaunay triangulations have many more large angles than ordinary Delaunay triangula-tions, but this should not pose a problem unless the stretching exceeds the desired amount(Section 3).The triangulation phase uses the well-known Delaunay triangulation. The Delaunaytriangulation of a point set S = fs1; s2; : : : ; sng is de�ned by the empty circle condition: atriangle sisjsk appears in the Delaunay triangulation DT(S) if and only if its circumcircleencloses no other points of S. See Figure 7(a). There is an exception for points in specialposition: if an empty circle passes through four or more points of S, we may triangulatethese points|complete the triangulation|arbitrarily. So de�ned, DT (S) is a triangulationof the convex hull of S. For our purposes, however, we can discard all triangles that falloutside the original domain 
.There are a number of practical Delaunay triangulation algorithms [56]. We describeonly one, called the edge 
ipping algorithm, because it is most relevant to our subsequentdiscussion. Its worst-case running time of O(n2) is suboptimal, but it performs quite wellin practice. The edge 
ipping algorithm starts from any triangulation of S and then locallyoptimizes each edge. Let e be an internal (non-convex-hull) edge and Qe be the triangulatedquadrilateral formed by the triangles sharing e. QuadrilateralQe is reversed if the two angles12
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ipping: a triangulation in which no quadrilateral is reversedmust be a completion of the Delaunay triangulation.5.2 Constrained Delaunay triangulationThere is another way, besides conforming Delaunay triangulation, to extend Delaunay tri-angulation to polygonal domains. The constrained Delaunay triangulation of a (possiblymultiple) domain 
 does not use Steiner points, but instead rede�nes Delaunay triangula-tion in order to force the edges of 
 into the triangulation.A point p is visible to a point q in 
 if the open line segment pq lies within 
 and doesnot intersect any edges or vertices of 
. The constrained Delaunay triangulation CDT (
)contains each triangle not cut by an edge of 
, that has an an empty circumcircle, whereempty now means that the circle does not contain any vertices of 
 visible to points insidethe triangle. The visibility requirement means that external proximities, where 
 wrapsaround to nearly touch itself, have no e�ect. Figure 9 provides an example; here vertex vis not visible to any point in the interior of triangle abc.The edge 
ipping algorithm can be generalized to compute the constrained Delaunaytriangulation, only this time we do not allow edges of 
 onto the queue. Obtaining aninitial triangulation is somewhat more di�cult for polygonal domains than for point sets.The textbook by Preparata and Shamos [103] describes an O(n logn)-time algorithm for13
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Figure 9. The constrained Delaunay triangulation of a polygon with holes.
Figure 10. A mesh computed by Ruppert's algorithm. (J. Ruppert)computing an initial triangulation. This algorithm �rst adds edges to 
 to subdivide it intoeasy-to-triangulate \monotone" faces.Ruppert [111], building on work of Chew [38], gave a mesh-generation algorithm basedon constrained Delaunay triangulation. (Subsequently, Mitchell [90] sharpened Ruppert'sanalysis, and Shewchuk [117, 118] further re�ned the algorithm and made an implemen-tation available on the Web.) Ruppert's algorithm computes the constrained Delaunaytriangulation at the outset and then adds Steiner points to improve the mesh, thus unitingthe two phases of the approach described in the last section. In choosing this approach, theuser gives up some control over point placement, but obtains a more e�cient mesh withfewer and \rounder" triangles.The �rst step of Ruppert's mesh generator cuts o� all vertices of the domain 
 at whichthe interior angle measures less than 45�. The cutting line at such a vertex v should notintroduce a new small feature to 
; it is best to cut o� an isosceles triangle whose base isabout halfway from v to its closest visible neighbor. If v has degree greater than two, asmight be the case in a multiple domain, then the bases of the isosceles triangles around vshould match up so that no isosceles triangle receives a Steiner point on one of its legs.Next the algorithm computes the constrained Delaunay triangulation of the modi�eddomain. The algorithm then goes through the loop given below. The last line of the14



loop repairs a constrained Delaunay triangulation after the addition of a new Steiner pointc. To accomplish this step, there is no need to recompute the entire triangulation. Theremoved old triangles are exactly those with circumcircles containing c, which can be foundby searching outwards from the triangle that contains c, and the new triangles that replacethe removed triangles must all be incident to the new vertex c.while there exists a triangle t with an angle smaller than 20� dolet c be the center of t's circumcircleif c lies within the diameter semicircle of a boundary edge e thenadd the midpoint m of eelse add c endifrecompute the constrained Delaunay triangulationendwhileThe loop is guaranteed to halt with all angles larger than 20�. At this point, the cut-o� isosceles triangles are returned to the domain, and the mesh is complete. Ruppert'salgorithm comes with a strong theoretical guarantee: all new angles, that is, angles notpresent in the input, are greater than 20�, and the total number of triangles in the meshis at most a constant times the minimum number of triangles in any such no-small-anglemesh. To prove this e�ciency result, Ruppert shows that each triangle in the �nal meshis within a constant factor of the local feature size at its vertices. The local feature size atpoint p 2 
 is de�ned to be the radius of the smallest circle centered at p that touches twononadjacent edges of the boundary; this is a spacing function intrinsic to the domain.5.3 QuadtreesA quadtree mesh generator [8, 25, 143] starts by enclosing the entire domain 
 inside anaxis-aligned square. It splits this root square into four congruent squares, and continuessplitting squares recursively until each minimal|or leaf|square intersects 
 in a simpleway. Further splits may be dictated by a user-de�ned spacing function or balance condition.Quadtree squares are then warped and cut to conform to the boundary. A �nal triangulationstep gives an unstructured triangular mesh.We now describe a particular quadtree mesh generator due to Bern, Eppstein, andGilbert [25]. As �rst presented, the algorithm assumes that 
 is a polygon with holes;however, the algorithm can be extended to multiple and even to curved domains. In fact,the quadtree approach handles curved domains more gracefully than the Delaunay andconstrained Delaunay approaches, because the splitting phase can automatically adapt tothe curvature of enclosed boundary pieces.The algorithm of Bern et al. splits squares until each leaf square contains at most oneconnected component of 
's boundary, with at most one vertex. Mitchell and Vavasis [91]improved the splitting phase by \cloning" squares that intersect 
 in more than one con-nected component, so that each copy contains only a single connected component of 
. Thealgorithm then splits squares near vertices of 
 two more times, so that each vertex lieswithin a bu�er zone of equal size squares.Next the mesh generator imposes a balance condition: no square should be adjacent toone less than one-half its size. This causes more splits to propagate across the quadtree,increasing the total number of leaf squares by a constant factor (at most 8). Squares are15



Figure 11. A mesh computed by a quadtree-based algorithm. (S. Mitchell)then warped to conform to the domain 
. Various warping rules work; we give just onepossibility. In the following pseudocode, jbj denotes the side length of square b.for each vertex v of 
 dolet y be the closest quadtree vertex to vmove y to vendforfor each leaf square b still crossed by an edge e domove the vertices of b that are closer than jbj=4 to e to their closest points on eendfordiscard faces of the warped quadtree that lie outside 
Finally, the cells of the warped quadtree are triangulated so that all angles are boundedaway from 0�. Figure 11 gives a mesh computed by a variant of the quadtree algorithm. This�gure shows that cloning ensures appropriate element sizes around holes and \almost holes".Notice that a quadtree-based mesh exhibits preferred directions|horizontal and vertical. Ifthis artifact poses a problem, mesh improvement steps can be used to redistribute elementorientations. The quadtree algorithm enjoys the same e�ciency guarantee as Ruppert'salgorithm. In fact, the quadtree algorithm was the �rst to be analyzed in this way [25].5.4 Mesh Re�nement and Dere�nementAdaptive mesh re�nement places more grid points in areas where the PDE solution erroris large. Local error estimates based on an initial solution are known as a posteriori errorestimates [7] and can be used to determine which elements should be re�ned. For ellipticproblems these estimators asymptotically bound the true error and can be computed locallyusing only the information on an element [138].One approach to mesh re�nement [71] iteratively inserts extra vertices into the triangu-lation, typically at edge bisectors or triangle circumcenters as in Section 5.2. New verticesalong the boundaries of curved domains should be computed using the curved boundary16



Figure 12. A triangle divided by (a) bisection, and (b) regular re�nement.rather than the current straight edge, thereby giving a truer approximation of the domain asthe mesh re�nes [36]. Iterative vertex insertion may be viewed as a mesh improvement step(Section 5.5), and indeed several generators [29, 119, 139] have combined insertion/deletion,
ipping, and smoothing into a single loop.Iterative vertex insertion gives a �ner mesh, but not a nesting or edge conforming , re-�nement of the original mesh, meaning a mesh that includes the boundaries of the originaltriangles. Nesting re�nements simplify the interpolation step in the multigrid method (Sec-tion 2.2). To compute such a re�nement, we turn to another approach. This approach splitstriangles in need of re�nement, by adding the midpoints of sides. The pseudocode belowgives the overall approach.k = 0solve the di�erential equation on the initial mesh T0estimate the error on each trianglewhile the maximum error on a triangle is larger than the given tolerance dobased on error estimates, mark a set of triangles Sk to re�ne? divide the triangles in Sk, along with adjacent invalid triangles to get Tk+1solve the di�erential equation on Tk+1estimate the error on each trianglek = k + 1endwhileThere are a number of popular alternatives for step ?, in which the current mesh Tk isadaptively re�ned. In regular re�nement [11, 12], the midpoints of the sides of a markedtriangle are connected, as in Figure 12(b), to form four similar triangles. Unmarked trianglesthat received two or three midpoints are split in the same way. Unmarked triangles thatreceived only one midpoint are bisected by connecting the midpoint to the opposite vertexas in Figure 12(a). Before the next iteration of ?, bisected triangles are glued back togetherand then marked for re�nement; this precaution guarantees that each triangle in Tk+1 willeither be similar to a triangle in T0 or be the bisection of a triangle similar to a trianglein T0. Thus, regular re�nement|regardless of the number of times through the re�nementloop|produces a mesh with minimum angle at least half the minimum angle in T0. Hencethe angles in Tk+1 are bounded away from 0 and �.Rivara [107, 108, 109] proposed several alternatives for step ? based on triangle bisec-tion. One method re�nes each marked triangle by cutting from the opposite vertex to themidpoint of the longest edge. Neighboring triangles are now invalid , meaning that oneside contains an extra vertex; these triangles are then bisected in the same way. Bisections17



Figure 13. The bisection algorithm given in the pseudocode splits invalid children of re�ned trianglesto their subdivision points, rather than to their longest edgescontinue until there are no remaining invalid triangles. Re�nement can propagate quitefar from marked triangles; however, propagation cannot fall into an in�nite loop, becausealong a propagation path each bisected edge is longer than its predecessor. This approach,like the previous one, produces only a �nite number of di�erent triangle shapes|similarityclasses|and the minimum angle is again at least half the smallest angle in T0. Quite oftenlongest-edge re�nement actually improves angles.A second Rivara re�nement method is given in the pseudocode below and illustratedin Figure 13. This method does not always bisect the longest edge, so bisections tendto propagate less, yet the method retains the same �nal angle bound as the �rst Rivaramethod.i = 0Qi = Sk f Q denotes \marked" triangles to be re�ned gRi = ; f R denotes children of re�ned triangles gwhile (Qi [Ri) 6= ; dobisect each triangle in Qi across its longest edgebisect each triangle in Ri across its subdivided edgeadd all invalid children of Qi triangles to Ri+1add all other invalid triangles to Qi+1i = i+ 1endwhileWe now discuss the reverse process: coarsening or dere�nement of a mesh. This processhelps reduce the total number of elements when tracking solutions to time-varying di�er-ential equations. Coarsening can also be used to turn a single highly re�ned mesh into asequence of meshes for use in the multigrid method [98].Figure 14 shows a sequence of meshes computed by a coarsening algorithm due toOllivier-Gooch. The algorithm marks a set of vertices to delete from the �ne mesh, elim-inates all marked vertices, and then retriangulates the mesh. The resulting mesh is nodeconforming , meaning that every vertex of the coarse mesh appears in the �ne mesh, butnot edge conforming. One di�culty is that the shapes of the triangles degrade as the meshis coarsened, due to increasing disparity between the interior and boundary point densi-ties. Meshes produced by re�nement methods are typically easier to coarsen than are lesshierarchical meshes such as Delaunay triangulations. Teng, Talmor, and Miller [87] have re-cently devised an algorithm using Delaunay triangulations of well-spaced point sets, whichproduces a sequence of bounded-aspect-ratio, node-conforming meshes of approximatelyminimum depth. 18



Figure 14. A sequence of meshes used by the multigrid method for solving the linear systems arisingin modeling air
ow over an airfoil. (C. Ollivier-Gooch)5.5 Mesh ImprovementThe most common mesh improvement techniques are 
ipping and smoothing. These tech-niques have proved to be very powerful in two dimensions, and together they can transformvery poor meshes into very good ones, so long as the mesh starts with enough vertices.Flipping exchanges the diagonals of a triangulated quadrilateral as in the edge 
ippingalgorithm for computing Delaunay triangulation (Section 5.1), only the criterion for makingthe exchange need not be the Delaunay empty circle test. Flipping can be used to regularizevertex degrees, minimize the maximum angle, or improve almost any other quality measureof triangles. For quality measures optimized by the Delaunay triangulation (Section 5.6.1),
ipping computes a true global optimum, but for other criteria it computes only a localoptimum.Mesh smoothing adjusts the locations of mesh vertices in order to improve elementshapes and overall mesh quality [2, 3, 33, 55, 100]. In mesh smoothing, the topology of themesh remains invariant, thus preserving important features such as the nonzero pattern ofthe linear system.Laplacian smoothing [55, 77] is the most commonly used smoothing technique. Thismethod sweeps over the entire mesh several times, repeatedly moving each adjustable vertexto the arithmetic average of the vertices adjacent to it. Variations weight each adjacentvertex by the total area of the elements around it, or use the centroid of the incidentelements rather than the centroid of the neighboring vertices [139]. Laplacian smoothingis computationally inexpensive and fairly e�ective, but it does not guarantee improvementin element quality. In fact, Laplacian smoothing can even invert an element, unless thealgorithm performs an explicit check before moving a vertex.Another class of smoothing algorithms uses optimization techniques to determine newvertex locations. Both global and local optimization-based smoothing o�er guaranteedmesh improvement and validity. Global techniques simultaneously adjust all unconstrainedvertices; such an approach involves an optimization problem as large as the number ofunconstrained vertices, and consequently, is computationally very expensive [33, 100]. Localtechniques adjust vertices one by one|or an independent set of vertices in parallel [58]|resulting in a cost more comparable to Laplacian smoothing. Many quality measures,including maximumangle and area divided by sum of squared edge lengths, can be optimizedby techniques related to linear programming [2].Figure 15 shows the results of a local optimization-based smoothing algorithmdeveloped19



Figure 15. (a) A mesh resulting from bisection re�nement without smoothing. (b) The same meshafter local optimization-based smoothing.by Freitag et al. [58]. The algorithm was applied to a mesh generated adaptively during the�nite element solution of the linear elasticity equations on a two-dimensional rectangulardomain with a hole. The mesh on the left was generated using the bisection algorithm forre�nement; the edges from the coarse mesh are still evident after many levels of re�nement.The mesh on the right was generated by a similar algorithm, only with vertex locationsoptimized after each re�nement step. Overall, the global minimum angle has improvedfrom 11:3� to 21:7� and the average minimum element angle from 35:7� to 41:1�.5.6 Theoretical QuestionsWe have mentioned some theoretical results|conforming Delaunay triangulation, no-small-angle triangulation|in context. In this section, we describe some other theoretical workrelated to mesh generation.5.6.1 Optimal TriangulationComputational geometers have studied a number of problems of the following form: givena planar point set or polygonal domain, �nd a best triangulation, where \best" is judgedaccording to some speci�c quality measure such as maximum angle, minimum angle, max-imum edge length, or total edge length. If the input is a simple polygon, most optimaltriangulation problems are solvable by dynamic programming in time O(n3), but if theinput is a point set, polygon with holes, or multiple domain, these problems become muchharder.The Delaunay triangulation|constrained Delaunay triangulation in the case of polygo-nal domains|optimizes any quality measure that is improved by 
ipping a reversed quadri-lateral; this statement follows from the theorem that a triangulation without reversedquadrilaterals must be Delaunay. Thus Delaunay triangulation maximizes the minimumangle, along with optimizing a number of more esoteric quality measures, such as maximumcircumcircle radius, maximum enclosing circle radius, and \roughness" of a piecewise-linearinterpolating surface [105]. 20
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cFigure 16. Edge insertion retriangulates holes by removing su�ciently good ears. Dotted linesindicate the old triangulation.As mentioned in Section 5.5, edge 
ipping can also be used as a general optimizationheuristic. For example, edge 
ipping works reasonably well for minimizing the maximumangle [53], but it does not in general �nd a global optimum. A more powerful local im-provement method called edge insertion [23, 53] exactly solves the minmax angle problem,as well as several other minmax optimization problems.Edge insertion starts from an arbitrary triangulation and repeatedly inserts candidateedges. If minimizing the maximum angle is the goal, the candidate edge e subdivides themaximum angle; in general the candidate edge is always incident to a \worst vertex" ofa worst triangle. The algorithm then removes the edges that are crossed by e, formingtwo polygonal holes alongside e. Holes are retriangulated by repeatedly removing ears(triangles with two sides on the boundary, as shown in Figure 16) with maximum anglesmaller than the old worst angle 6 cab. If retriangulation runs to completion, then the overalltriangulation improves and edge bc is eliminated as a future candidate. If retriangulationgets stuck, then the overall triangulation is returned to its state before the insertion of e,and e is eliminated as a future candidate. Each candidate insertion takes time O(n), givinga total running time of O(n3).compute an initial triangulation with all �n2� edge slots unmarkedwhile 9 an unmarked edge e cutting the worst vertex a of worst triangle abc doadd e and remove all edges crossed by etry to retriangulate by removing ears better than abcif retriangulation succeeds then mark bcelse mark e and undo e's insertion endifendwhileEdge insertion can compute the minmax \eccentricity" triangulation or the minmaxslope interpolating surface [23] in time O(n3). By inserting candidate edges in a certainorder and saving old partial triangulations, the running time can be improved to O(n2 logn)for minmax angle [53] and maxmin triangle height.We close with some results for two other optimization criteria: maximum edge lengthand total length. Edelsbrunner and Tan [51] showed that a triangulation of a point setthat minimizes the maximum edge length must contain the edges of a minimum spanningtree. The tree divides the input into simple polygons, which can be �lled in by dynamic21



programming, giving an O(n3)-time algorithm (improvable to O(n2)). Whether a trian-gulation minimizing total edge length|\minimum weight triangulation"|can be solved inpolynomial time is still open. The most promising approach [46] incrementally computes aset of edges that must appear in the triangulation. If the required edges form a connectedspanning graph, then the triangulation can be completed with dynamic programming as inthe minmax problem.5.6.2 Steiner TriangulationThe optimal triangulation problems just discussed have limited applicability to mesh gen-eration, since they address only triangulation and not Steiner point placement. Becauseexact Steiner triangulation problems appear to be intractable, typical theoretical results onSteiner triangulation prove either an approximation bound such as the guarantees providedby the mesh generators in Sections 5.2 and 5.3, or an order of complexity bound such asEdelsbrunner and Tan's O(n3) algorithm for conforming Delaunay triangulation.The mesh generators in Sections 5.2 and 5.3 give constant-factor approximation algo-rithms for what we may call the no-small-angle problem: triangulate a domain 
 using aminimum number of triangles, such that all new angles are bounded away from 0�. Theprovable constants tend to quite large|in the hundreds|although the actual performanceseems to be much better. The number of triangles in a no-small-angle triangulation dependson the geometry of the domain, not just on the number of vertices n; an upper bound isgiven by the sum of the aspect ratios of triangles in the constrained Delaunay triangulation.We can also consider the no-large-angle problem: triangulate 
 using a minimum num-ber of triangles, such that all new angles are bounded away from 180�. The strictest boundon large angles that does not imply a bound on small angles is nonobtuse triangulation:triangulate a domain 
 such that the maximum angle measures at most 90�. Moreover,a nonobtuse mesh has some desirable numerical and geometric properties [9, 135]. Bern,Mitchell, and Ruppert [27] developed a circle-based algorithm for nonobtuse triangulationof polygons with holes; this algorithm gives a triangulation with O(n) triangles, regard-less of the domain geometry. Figure 17 shows the steps of this algorithm: the domain ispacked with nonoverlapping disks until each uncovered region has either 3 or 4 sides; radiito tangencies are added in order to split the domain into small polygons; and �nally smallpolygons are triangulated with right triangles, without adding any new subdivision points.It is currently unknown whether multiple domains admit polynomial-size nonobtusetriangulations. Mitchell [93], however, gave an algorithm for triangulating multiple domainsusing O(n2 logn) triangles with maximum angle 157:5�. Tan [126] improved the maximumangle bound to 132� and the complexity to the optimal O(n2).6 Hexahedral MeshesMesh generation in three dimensions is not as well developed as in two, for a numberof reasons: lack of standard data representations for three-dimensional domains, greatersoftware complexity, and|most relevant to this article|some theoretical di�culties.This section and the next one survey approaches to three-dimensional mesh generation.We have divided this material according to element shape, hexahedral or tetrahedral. Thisclassi�cation is not completely strict, as many hexahedral mesh generators use triangularprisms and tetrahedra in a pinch. Careful implementations of numerical methods can handle22



Figure 17. Steps in circle-based nonobtuse triangulation.
Figure 18. A multiblock hexahedral mesh of a submarine, showing (a) block structure, and (b) avertical slice through the mesh. (ICEM CFD)degenerate hexahedra such as prisms [66, 67]. In this section, we describe three approachesto hexahedral mesh generation that vary in their degree of structure and strictness.6.1 Multiblock MeshesWe start with the approach that produces meshes with the most structure (and quite oftenthe highest quality elements). A multiblock mesh contains a number of small structuredmeshes that together form a large unstructured mesh. Typically a user must supply thetopology of the unstructured mesh, but the rest of the process is automated. Figure 18 showsa multiblock mesh created by ICEM Hexa, a system developed by ICEM CFD Engineering.In this system the user controls the placement of the block corners, and then the meshgenerator projects the implied block edges onto domain curves and surfaces automatically.Due to the need for human interaction, multiblock meshes are not well suited to adaptivemeshing, nor to rapidly iterated design and simulation.23



Figure 19. A two-dimensional Cartesian mesh for a biplane wing. (W. Coirier)6.2 Cartesian MeshesWe move on to a recently developed \quick and dirty" approach to hexahedral mesh gener-ation. The Cartesian approach o�ers simple data structures, explicit orthogonality of meshedges, and robust and straightforward mesh generation. The disadvantage of this approachis that it uses non-hexahedral elements around the domain boundary, which then requirespecial handling.A Cartesian mesh is formed by cutting a rectangular box into eight congruent boxes,each of which is split recursively until each minimal box intersects the domain 
 in a simpleway or has reached some small target size. (This construction is essentially the same as anoctree, described in Section 7.3.) Requiring neighboring boxes to di�er in size by at most afactor of two ensures appropriate mesh grading.Boxes cut by the boundary are classi�ed into a number of patterns by determiningwhich of their vertices lie interior and exterior to 
. Each pattern corresponds to a di�erenttype of non-hexahedral element. Boxes adjacent to ones half their own size can similarly beclassi�ed as non-hexahedral elements, or alternatively the solution value at their subdivisionvertices can be treated as implicit variables using Lagrange multipliers [1].Recent 
uid dynamics simulations have used Cartesian meshes quite successfully in both�nite element and �nite volume formulations [41, 42, 144]. The approach can be adaptedeven to very di�cult meshing problems. For example, Berger and Oliger [21] and Bergerand Colella [20] have developed adaptive Cartesian-based methods for rotational 
ows and
ows with strong shocks.6.3 Unstructured Hexahedral MeshesHexahedral elements retain some advantages over tetrahedral elements even in unstruc-tured meshes. Hexahedra �t man-made objects well, especially objects produced by CADsystems. The edge directions in a box-shaped hexahedron often have physical signi�cance;for example, hexahedra show a clear advantage over tetrahedra for a stress analysis of abeam [19]. The face normals of a box meet at the center of the element; this property canbe used to de�ne control volumes for �nite volume methods. These advantages are notinherent to hexahedra, but rather are properties of box-shaped elements, which degrade asthe element grows less rectangular. Thus it will not su�ce to generate an unstructured24



hexahedral mesh by transforming a tetrahedral mesh.Armstrong et al. [4] are currently developing an unstructured hexahedral mesh generatorbased on the medial axis transform. The medial axis of a domain is the locus of centers ofspheres that touch the boundary in two or more faces. This construction is closely relatedto the Vorono�� diagram of the faces of the domain; Srinivasan et al. [124] have previouslyapplied this construction to two-dimensional unstructured mesh generation. The medialaxis is a natural tool for mesh generation, as advancing fronts meet at the medial axis inthe limit of small, equal-sized elements. By precomputing this locus, a mesh generator canmore gracefully handle the junctures between sections of the mesh.Tautges and Mitchell [127] are developing an all-hexahedral mesh generation algorithmcalled whisker weaving . Whisker weaving is an advancing front approach that �xes thetopology of the mesh before the geometry. It starts from a quadrilateral surface mesh,which can itself be generated by an advancing-front generator within each face [28]. Thealgorithm forms the planar dual of the surface mesh, and then �nds closed loops in theplanar dual around the surface of the polyhedron. Each loop will represent the boundaryof a layer of hexahedra in the eventual mesh. A layer of hexahedra can be represented byits dual, called a sheet , which has one vertex per hexahedron and edges between adjacenthexahedra. As the algorithm runs, it �lls in sheets from the boundary inwards.This approach to hexahedral meshing raises an interesting theoretical question: whichquadrilateral surface meshes can be extended to hexahedral volume meshes? Mitchell [94]and Thurston [132] (see also Eppstein [54]) answered this question in a topological sense byshowing that any surface mesh on a simple polyhedron with an even number of quadrilateralscan be extended to a volume mesh formed by (possibly curved) topological cubes. Thegeometric question remains open.7 Tetrahedral MeshesTetrahedra have several important advantages over hexahedra: unique linear interpolationfrom vertices to interior, greater 
exibility in �tting complicated domains, and ease ofre�nement and dere�nement. In order to realize the last two of these advantages, tetrahedralmeshes are almost always unstructured.Most of the approaches to unstructured triangular mesh generation that we surveyedin Section 5 can be generalized to tetrahedral mesh generation, but not without some newdi�culties. Before describing Delaunay, advancing front, and octree mesh generators wediscuss three theoretical obstacles to unstructured tetrahedral meshing, ways in which IR3di�ers from IR2.First, not all polyhedral domains can be triangulated without Steiner points. Fig-ure 20(a) gives an example of a non-tetrahedralizable polyhedron, a twisted triangularprism in which each rectangular face has been triangulated so that it bends in towards theinterior. None of the top three vertices is visible through the interior to all three of the bot-tom vertices; hence no tetrahedron formed by the vertices of this polyhedron can include thebottom face. Chazelle [37] gave a quantitative bad example, shown in Figure 20(b). Thispolyhedron includes 
(n) grooves that nearly meet at a doubly-ruled curved surface; anytriangulation of this polyhedron must include 
(n2) Steiner points and 
(n2) tetrahedra.Bad examples such as these appear to rule out the possibility of generalizing constrainedDelaunay triangulation to three dimensions.25



Figure 20. (a) Sch�onhardt's twisted prism cannot be tetrahedralized without Steiner points. (b)Chazelle's polyhedron requires 
(n2) Steiner points.
Sliver

CapSpindle

Needle WedgeFigure 21. The �ve types of bad tetrahedra.Second, the very same domain may be tetrahedralized with di�erent numbers of tetra-hedra. For example, a cube can be triangulated with either �ve or six tetrahedra. Aswe shall see below, the generalization of the edge 
ip to three dimensions exchanges twotetrahedra for three or vice versa. This variability does not usually pose a problem, exceptin the extreme cases. For example, n points in IR3 can have a Delaunay triangulation with
(n2) tetrahedra, even though some other triangulation will have only O(n).Finally, tetrahedra can be poorly shaped in more ways than triangles. In two dimensions,there are only two types of failure, angles close to 0� and angles close to 180�, and no failuresof the �rst kind implies no failures of the second. In three dimensions, we can classify poorlyshaped tetrahedra according to both dihedral and solid angles [22]. There are then �ve typesof bad tetrahedra, as shown in Figure 21. A needle permits arbitrarily small solid angles,but not large solid angles and neither large nor small dihedral angles. A wedge permitsboth small solid and dihedral angles, but neither large solid nor large dihedral angles, andso forth. Notice that a sliver or a cap can have all face angles bounded away from both0� and 180�, although the tetrahedron itself may have arbitrarily small solid angles andinterior volume. An example is the sliver with vertex coordinates (0; 0; 0); (0; 1; �); (1; 0; �),and (1; 1; 0), where �! 0.Many measures of tetrahedron quality have been proposed [75], most of which havea maximum value for an equilateral tetrahedron and a minimum value for a degeneratetetrahedron. One suitable measure, which forbids all �ve types of bad tetrahedra, is theminimum solid angle. A weaker measure, which forbids all types except slivers, is the ratioof the minimum edge length to the radius of the circumsphere [88].26



Figure 22. In three dimensions, an edge 
ip exchanges three tetrahedra sharing an edge for twotetrahedra sharing a triangle, or vice versa.7.1 Delaunay triangulationAs in two dimensions, point placement followed by Delaunay triangulation is a popularapproach to mesh generation, especially in aerodynamics. The same point placement meth-ods work fairly well: combining structured meshes [68], advancing front [10, 78, 79], andrandom scattering with �ltering [137]. As in two dimensions, the placement phase must putsu�ciently many points on the domain boundary to ensure that the Delaunay triangulationwill be conforming. Although the three-dimensional conforming Delaunay triangulationproblem is not too hard for most domains of practical interest, we do not know of publishedsolutions.The �rst two point placement methods su�er from the same liability in three dimensionsas in two: points may be improperly spaced at junctures between fronts or patches. Allthree methods su�er from a new sort of problem: even a well spaced point set may includesliver tetrahedra in its Delaunay triangulation, because a sliver does not have an unusuallylarge circumsphere compared to the lengths of its edges. For this reason, some Delaunaymesh generators [10] include a special postprocessing step that �nds and removes slivers.Chew (personal communication) has recently devised an algorithm that removes slivers byadding Steiner points at a random location near their circumcenters.The triangulation phase of mesh generation also becomes somewhat more di�cult inthree dimensions. The generalization of edge 
ipping exchanges the two possible triangula-tions of �ve points in convex position, as shown in Figure 22. We call a 
ip a Delaunay 
ipif, after the 
ip, the triangulation of the �ve points satis�es the empty sphere condition|nocircumsphere encloses a point. In three dimensions, it is no longer true that any tetrahe-dralization can be transformed into the Delaunay triangulation by a sequence of Delaunay
ips [69], and it is currently unknown whether any tetrahedralization can be tranformedinto the Delaunay triangulation by arbitrary 
ips. Nevertheless, there are provably correct,incremental Delaunay triangulation algorithms based on edge 
ipping [50, 70, 104].There are other practical three-dimensional Delaunay triangulation algorithms as well.Bowyer [30] and Watson [136] gave incremental algorithms with reasonable expected-caseperformance. Barber [15] implemented a randomized algorithm in arbitrary dimension.This algorithm can be used to compute Delaunay triangulations through a well-knownreduction [31] which \lifts" the Delaunay triangulation of points in IRd to the convex hullof points in IRd+1. 27



7.2 Advancing FrontWe have already mentioned an advancing front approach to placing Steiner points for De-launay triangulation. A pure advancing front mesh generator [77, 79, 97, 101] places theelements themselves, rather than just the Steiner points. This approach gives more directcontrol of element shapes, especially near the boundary, which is often a region of spe-cial interest. Advancing front generators seem to be especially popular in aerodynamicssimulations [64, 65, 79, 85, 101].We describe an advancing front algorithm of L�ohner and Parikh [79, 80] as it containsthe essential ideas. Desired element size (and perhaps stretching directions) are de�nedat the vertices of a coarse `background" tetrahedralization and interpolated to the rest ofthe domain. The background mesh can also be de�ned by an octree, the three-dimensionalgeneralization of a quadtree. To get started, the boundaries of the domain are triangulated;the initial front consists of the boundary faces. The algorithm then iteratively chooses aface of the front and builds a tetrahedron over that face. The algorithm attempts to �llin clefts left by the last layer of tetrahedra before starting the next layer; within a layer,the algorithm chooses small faces �rst in order to minimize collisions. The fourth vertex ofthe tetrahedron will be either an already existing vertex or a vertex specially created forthe tetrahedron. In the latter case, the algorithm tries to choose a smart location for thenew vertex; for example, the new vertex may be placed along a normal to the base faceat a distance determined by aspect ratios and length functions ultimately derived from thebackground triangulation [59]. In either case, cleft or new vertex, the tetrahedron must betested for collisions before �nal acceptance.Figure 23 shows the surface of a fairly isotropic tetrahedral mesh computed by anadvancing front mesh generator developed by ANSYS, Inc. This generator, like the onejust described, places elements directly.Marcum and Weatherill [81] have devised an algorithm somewhere between pure advanc-ing front and advancing-front point placement followed by Delaunay triangulation. Theiralgorithm starts with a coarse mesh, and then uses advancing front to place additionalSteiner points, simply subdividing the coarse tetrahedra to maintain a triangulation. Thismesh is then improved �rst by Delaunay and then by minmax-solid-angle 
ips. Other re-searchers agree that applying 
ips in this order is more e�ective than using either type of
ip alone.7.3 OctreesAn octree is the natural generalization of a quadtree. An initial bounding cube is split intoeight congruent cubes, each of which is split recursively until each minimal cube intersectsthe domain 
 in a simple way. As in two dimensions, a balance condition ensures thatno cube is next to one very much smaller than itself; balancing an unbalanced quadtreeor octree expands the number of boxes by a constant multiplicative factor. The balancecondition need not be explicit, but rather it may be a consequence of an intrinsic localspacing function [134].Shephard and his collaborators [114, 116, 115, 142] have developed several octree-basedmesh generators for polyhedral domains. Their original generator [142] tetrahedralizes leafcubes using a collection of prede�ned patterns. To keep the number of patterns manageable,the generator makes the simplifying assumption that each cube is cut by at most three facets28



Figure 23. The surface of a tetrahedral mesh computed by an advancing front generator. (ANSYS,Inc.)
Figure 24. The surface of a tetrahedral mesh derived from an octree. (M. Yerry and M. Shephard)of the input polyhedron. Perucchio et al. [102] give a more sophisticated way to conform toboundaries. Buratynski [32] uses rectangular octrees and a hierarchical set of warping rules.The octree is re�ned so that each domain edge intersects boxes of only one size. Boxes arewarped to domain vertices, then edges, and �nally faces.Mitchell and Vavasis [91] generalized the quadtree mesh generator of Bern et al. [25] tothree dimensions. The generalization is not straightforward, primarily because vertices ofpolyhedra may have very complicated local neighborhoods. This algorithm is guaranteed toavoid all �ve types of bad tetrahedra, while producing a mesh with only a constant times theminimum number of tetrahedra in any such bounded-aspect-ratio tetrahedralization. So farthis is the only three-dimensional mesh generation algorithm with such a strong theoreticalguaranty. Vavasis [134] has recently released a modi�ed version of the algorithm (calledQMG for \Quality Mesh Generator"), including a simple geometric modeler and equationsolver to boot. The modi�ed algorithm includes a more systematic set of warping rules; in29



particular, the new warping method for an octree cube cut by a single facet generalizes toany �xed dimension [92].7.4 Re�nement and ImprovementWe discuss improvement before re�nement, because less is known on the subject. As wementioned above, edge 
ipping generalizes to three dimensions, and 
ipping �rst by theDelaunay empty sphere criterion and then by the minmax solid angle criterion seems tobe fairly e�ective. Laplacian smoothing also generalizes, although experimental results [57]indicate that it is no longer as e�ective as in two dimensions. Optimization-based smooth-ing [2, 57] appears to be more powerful than simple Laplacian smoothing. Freitag andOllivier-Gooch [57] recommend combining Delaunay 
ipping with smoothing for maxmindihedral angle or maxmin dihedral-angle sine.We now move on to re�nement and discuss two di�erent re�nement algorithms basedupon the natural generalization of bisection to three dimensions. To bisect tetrahedronv0v1v2v3 across edge v0v1, we add the triangle v01v2v3, where v01 is the midpoint of v0v1, asshown in Figure 25. This operation creates two child tetrahedra, v0v01v2v3 and v01v1v2v3,and bisects the faces v0v1v2 and v0v1v3, which, unless they lie on the domain boundary, areeach shared with an adjacent tetrahedron. Two tetrahedra that share a face must agree onhow it is to be bisected; otherwise an invalid mesh will be constructed.
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8 ConclusionsWe have described the current state of the art in mesh generation for �nite element meth-ods. Practical issues in mesh generation are|roughly in order of importance|algorithmrobustness, �t with underlying physics, element quality, and mesh e�ciency.Unstructured triangular and tetrahedral mesh generation already makes frequent use ofdata structures and algorithms familiar in computational geometry. We expect this trendto continue. We also expect|and recommend|computational geometers to focus someattention on structured meshes and hexahedral meshes.We close with a short list of open problems of both practical and theoretical interest. Itis no coincidence that these problems focus on three-dimensional mesh generation.1. Is the 
ip graph for a point set in IR3 connected? In other words, is it possible toconvert any triangulation of a point set (even a point set in convex position) into anyother using only 
ips (Figure 22)?2. Is there a smoothing algorithm guaranteed to remove slivers? A sliver (Figure 21) isthe only type of bad tetrahedron with well spaced vertices and small circumspheres.3. Is there an algorithm for conforming Delaunay triangulation in IR3? In other words,place vertices on the boundary of a polyhedron, so that the Delaunay triangulationof all vertices, original and new, contains the polyhedron.4. Is there an algorithm for unstructured tetrahedral mesh generation that guaranteesan M-matrix for the �nite element formulation of Poisson's equation?5. Give an algorithm for computing the blocks in a multiblock mesh. Such an algo-rithm should give a small number of nicely shaped blocks, quadrilaterals in IR2 andhexahedra in IR3.6. Can any quadrilateral surface mesh with an even number of quadrilaterals be extendedto a hexahedral volume mesh?AckonwledgementsWe would like to thank Lori Freitag, Paul Heckbert, Scott Mitchell, Carl Ollivier-Gooch,Jonathan Shewchuk, and Steve Vavasis for help in preparing this survey.References[1] M. Aftosmis, J. Melton, and M. Berger. Adaptation and surface modeling for Cartesian meshmethods. AIAA Paper 95-1725, 12th AIAA CFD. Conf., San Diego, CA. June, 1995, 1995.[2] N. Amenta, M. W. Bern, and D. Eppstein. Optimal point placement for mesh smoothing. InProc. 8th ACM-SIAM Symp. Disc. Algorithms, pages 528{537, 1997.[3] E. Amezua, M. V. Hormaza, A. Hernandez, and M. B. G. Ajuria. A method of the improvementof 3d solid �nite-element meshes. Advances in Engineering Software, 22:45{53, 1995.[4] C. G. Armstrong, D. J. Robinson, R. M. McKeag, T. S. Li, and S. J. Bridgett. Medials formeshing and more. In Proc. 4th International Meshing Roundtable. Sandia National Labora-tories, 1995. 32
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