
Provably Good Mesh GenerationMarshall Bern� David Eppstein�y John Gilbert�AbstractWe study several versions of the problem of generating triangular meshes for �niteelement methods. We show how to triangulate a planar point set or polygonally boundeddomain with triangles of bounded aspect ratio; how to triangulate a planar point setwith triangles having no obtuse angles; how to triangulate a point set in arbitrarydimension with simplices of bounded aspect ratio; and how to produce a linear-sizeDelaunay triangulation of a multi-dimensional point set by adding a linear number ofextra points. All our triangulations have size (number of triangles) within a constantfactor of optimal, and run in optimal time O(n logn+k) with input of size n and outputof size k. No previous work on mesh generation simultaneously guarantees well-shapedelements and small total size.1. IntroductionGeometric partitioning problems ask for the decomposition of a geometric input into simplerobjects. These problems are fundamental in many areas, such as solid modeling, computer-aided design, graphical rendering, and scienti�c computation. Some geometric decompo-sitions are binary space partitions, epsilon nets, convex decomposition, triangulations andtetrahedralizations, and k-D trees, quadtrees, and their relatives.A partitioning problem of particular interest in computational geometry is optimal tri-angulation of a planar point set [6]. This problem �nds application in cartography, spatialdata analysis, and �nite element methods. Optimization criteria include maximizing theminimum angle (solved by the well-known Delaunay triangulation [24, 27]), minimizing themaximum angle [13], minimizing a maximum min-containment ellipse [11], and minimizingtotal length (an outstanding open problem in the �eld [16, 20]). Variants of these problemsallow one to add extra vertices, called Steiner points, in order to further improve the qualityof the solution.In this paper we use quadtrees to solve several \Steiner triangulation" problems moti-vated by �nite element methods. A point set or polygon is to be triangulated, with Steinerpoints allowed, into \well-shaped" triangles. Though the literature contains extensive workon mesh generation algorithms (some using quadtrees), this paper is the �rst to simultane-ously optimize element shape and total number of triangles. Some of our results generalizeto higher dimensions, for which we know of no previous guarantees on either measure.�Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304.yDepartment of Information and Computer Science, Univ. of California, Irvine, CA 92717.1



Figure 1. Part of a triangulation of a region with three holes (Barth and Jespersen).1.1. MotivationThe �nite element method [29] is a collection of techniques for approximating continuousproblems by �nite structures. The domain is subdivided into a mesh of polygonal or poly-hedral elements, and the function of interest is approximated by a piecewise polynomial onthe elements. We consider the most common case, in which the domain is a subset of theplane or of Rd, and the elements are triangles or simplices. The mesh must satisfy severalconditions, depending on the problem.� The mesh must conform to the boundary of the region, which may consist of morethan one connected component (e.g., in Figure 1 the boundary includes the threeairfoils).� The mesh must be �ne enough to produce an acceptable approximation to the originalproblem. Parts of the domain where the solution is complicated or rapidly changingmay require much smaller elements than other parts.� The number of elements in the mesh should be small, because the complexity of solvingthe �nite element problem depends on the mesh size.� The individual elements must be \well-shaped". There are two important restrictions:No small angles. For some methods, elements with small angles lead to ill-conditionedlinear systems that are di�cult to solve accurately [15]. Angles close to 180� presentfurther problems [1].No obtuse angles. In two dimensions, some methods require the center of the circum-circle of each element to lie in the element [2, 4], so that the perpendicular bisectorsof element edges form the planar dual of the mesh. Circumcenters lie within their(closed) elements if and only if no angle is greater than 90�. For circumcenters to bewell separated from the element boundary, all angles should be bounded away from90�. 2



1.2. Summary of resultsWe consider the following problems, obtaining the results described.1. 2D point set triangulation with no small angles. Given n points in the plane, �nda triangulation (of a convex region of the plane) that includes the given points asvertices and has all angles larger than some constant (or, equivalently, the aspectratios of all triangles smaller than some constant). We give an algorithm to producesuch a triangulation of size within a constant factor of the minimum possible size.The size of the triangulation is also bounded by O(n logA), where A is the worstaspect ratio in a Delaunay triangulation of the original point set. In addition, thetriangulation can be constructed to have no obtuse angles at the cost of a largerconstant factor in size.2. 2D point set triangulation with no obtuse angles. Given n points in the plane, �nd atriangulation with no obtuse angles. We give an algorithm to produce such a triangu-lation of size O(n). Thus for some point sets, forbidding small angles requires a muchlarger triangulation than forbidding obtuse angles.3. 2D point set triangulation with only acute angles. Given n points in the plane, �nd atriangulation with only acute angles. We modify Algorithm 1 above so that all anglesare between 36� and 80�. We modify Algorithm 2 so that all angles are strictly smallerthan (though perhaps arbitrarily close to) 90�.4. 2D polygon triangulation with no small angles. The input is a connected planar regionbounded by a union of disjoint polygons (that may degenerate to paths or points);there is a lower bound on boundary angles facing the interior of the region. Theproblem is to triangulate the region so that each vertex of the boundary is a vertex ofthe triangulation, each edge of the boundary is a union of edges of the triangulation,and each angle is larger than some constant. We give an algorithm to produce sucha triangulation of size within a constant factor of minimum. The angle bound weachieve is 18:4�; that is, each new angle in the triangulation measures at least thismuch. The maximum angle is smaller than 153:2�.5. Point set triangulation with no small solid angles. Given n points in Rd, �nd atriangulation with d-dimensional solid angles larger than some constant. Equivalently,all simplices must have bounded aspect ratio. We give an algorithm to produce sucha triangulation of size within a constant factor of minimum.6. Linear-size Delaunay triangulation in d � 3 dimensions. The Delaunay triangulationmay have size �(ndd=2e) [12]. We give an algorithm that adds O(n) new points suchthat the Delaunay triangulation of the entire set has size O(n), and, in fact, boundedvertex degree.In addition, our methods can be easily adapted to satisfy user-supplied conditions onthe degree of re�nement in various areas. All our algorithms run in time O(n logn + k),where n is the input size and k is the output size. If the input includes the sorted orderingin each coordinate, the running times of all except Algorithm 4 are O(n+ k).3



1.3. Related workMesh generation has been the subject of a great deal of work, both practical and theo-retical. However, very little previous work o�ers guarantees, and none o�ers simultaneousguarantees on mesh quality and size.Thacker [30] and Shephard [26] survey the extensive literature of heuristics. Bank [3],Joe [17], Yerry and Shephard [31] (who use quadtrees), and many others [6] have writtenautomatic mesh generation programs, but the outputs of these programs have no provenquality or size bounds.On the theoretical side, Baker et al. [2] give an algorithm to triangulate the interiorof a simple polygon with elements whose angles are between 13� and 90�. The numberof triangles used by their algorithm may be unnecessarily large; however, they suggestthat quadtrees might improve the size of the triangulation. Our paper follows up on thissuggestion, as well as giving an innovative size bound.Smith [28] shows how to triangulate a polygon with elements of bounded aspect ratiobut with no size bound in general. Chew [10] shows how to triangulate suitable polygonallybounded regions with approximately equal-sized elements having no angle less than 30�.Subject to a restriction on element size, the number of elements is immediately within aconstant factor of optimal. Our method gives no angles less than 18:4�, but can generatemeshes with elements of widely di�ering scales, and thus achieve optimal mesh size withoutrestriction.In three dimensions, Chazelle et al. [7] give an algorithm that adds O(n1=2 log3 n) pointsand guarantees a Delaunay triangulation of size O(n3=2 log3 n). Our Algorithm 6 addsmore points, but achieves much smaller size. No method is known for bounded-aspect-ratiotriangulation of polyhedra; triangulations with unbounded aspect ratio are known [8, 28].Finally, the aspect ratio bound for the d-dimensional meshes generated by our Algorithm 5implies that their skeletons have O(n1�1=d)-separators [22]. Such separators lead to e�cientalgorithms for a variety of problems; most relevantly, nested dissection [19] saves a factorof n3=d in the time to solve the linear equations that arise in the �nite element method.2. Bounded aspect ratio for point setsThe aspect ratio of a convex body is the ratio between its longest dimension and its shortestdimension. For a triangle abc, the aspect ratio A(a; b; c) is the length of the hypotenuse(longest side) divided by the length of the altitude from the hypotenuse. The aspect ratioof a triangle is closely related to its sharpest angle �, since j1= sin �j � A(a; b; c)� j2= sin �j.Another natural measure of sharpness is the ratio R(a; b; c) between a triangle's longest andshortest sides. A(a; b; c)> R(a; b; c) but R(a; b; c) may be much smaller than A(a; b; c). Wewrite jT j for the number of vertices in triangulation T , and A(T ) for the maximum valueof A(a; b; c) over all triangles abc in T . Similarly R(T ) is the maximum of R(a; b; c).The main result of this section is Theorem 1 below. This theorem claims that, givena planar point set X , we can compute a triangulation with vertex set including X , withtriangles of aspect ratio at most 4, and with total number of triangles at most a constanttimes the number in any triangulation including X that has aspect ratio at most 4. Analgorithm based on quadtrees proves Theorem 1. This algorithm is our most basic result;4



the remainder of the paper comprises numerous variations.Our algorithm uses a quadtree, a geometrical division of the plane into a tree of squareboxes [25]. Each box is either a leaf of the tree, or is split into four equal-area children. Abox has four possible neighbors in the four cardinal directions; a neighbor is a box of thesame size sharing a side. A corner of a box is one of the four vertices of its square. Thecorners of the quadtree are the points that are corners of its boxes. We say that the sideof a box is split if either of the neighboring boxes sharing it is split. All our quadtrees arebalanced : any side of an unsplit box may contain only one quadtree corner in its interior.We now show how to produce the quadtree triangulation QT (X) for an input point setX . We normally start with a root box twice as large as, and concentric with, a minimumbounding square of X . Below we vary the choice of root box, for the purpose of proof only.All we really require of the root box is that its side length is at most a constant times thediameter of X , and that its sides lie su�ciently far from all points X .An extended neighbor of a box b is another box the same size sharing either a side or acorner of b. Box b is crowded if b contains at least one point of X , and one or more of thefollowing conditions holds.C1. Box b contains two points of X .C2. Box b has side length `, and contains a single point x with a nearest neighbor in Xcloser than 2p2` units away.C3. One of the extended neighbors of b is split.While there is any crowded box b, we split b, and if necessary split b's extended neighborsso b's children have all eight extended neighbors. We also split any boxes necessary tomaintain the balance property. After all splitting has been done, every leaf box containinga point of X is surrounded by eight leaf boxes of the same size.Then we \warp" the quadtree framework as follows. Let y be the corner nearest x of thebox containing x; we replace y by x as a corner of the quadtree. Finally, we triangulate theresulting planar subdivision. Unwarped boxes are triangulated with isosceles right trianglesby adding a point in the center. Only boxes with unsplit sides have warped corners; for thesewe choose the diagonal that gives better aspect ratio. Figure 2(a) shows a triangulationresulting from a slightly di�erent version of this method. Figure 2(b) shows the triangulationafter some simple heuristics have reduced its size while preserving the aspect ratio bound.Lemma 1. The method above gives triangulations QT (X) with A(QT (X)) � 4.Proof: The isosceles right triangles used to triangulate the unwarped boxes have aspectratio 2. If a box|with side length `|is warped, we have two cases.In the �rst case, the input point is inside the square of the original box. Then we assumethat the diagonal touching the warped point is chosen; otherwise the aspect ratio can onlybe better than what we prove. Consider one of the two triangles formed, with corners theinput point and two other box corners. The maximum length hypotenuse is formed whenthe warped point is on its original location, and has length h = `p2. The minimum area isformed when the point is in the center of the square, and has area a = `2=4. The maximumaspect ratio is therefore at most h2=2a = 4.In the second case, the input point is outside the original square. Then we assumethat the diagonal not touching the warped point is chosen. This divides the box into an5



Figure 2. Triangulation of 18 random points: (a) QT (X); (b) heuristic size reduction.isosceles right triangle and another triangle. If the chosen diagonal is the hypotenuse of theother triangle, then as before the area is at least `2=4 and the aspect ratio is at most 4.Otherwise, the hypotenuse touches the input point. The altitude is minimized when thetriangle is isosceles with as sharp an angle as possible; the altitude in this case has length(p7�1)`=p2. The maximum possible hypotenuse length is p18`. Therefore the maximumaspect ratio is at most the quotient of the two, which is less than 3:65.An improved analysis of this algorithm would give a tighter aspect ratio bound. Weomit this, as we later describe algorithms that dramatically improve the aspect ratio.Lemma 2. There is a constant c0, independent ofX , such that j QT (X)j � c0�P logR(a; b; c),where the sum is over all triangles in DT (X).Proof: Boxes that split to maintain the balance condition can be amortized againstcrowded boxes. Therefore we need only count the total number of crowded boxes in thequadtree data structure.Linearly many crowded boxes have more than one child with points in them. It canhappen at most linearly many times that a point within 2p2` of another point, where `is the side length of the box containing the �rst point, becomes further away due to theshrinking sizes of boxes as they split. If a box b containing a point is split because anextended neighbor was split, but no extended neighbor contains any points, then, wheneither b or b's parent was split, a nearby point became farther away than 2p2`. Again, thiscan only happen linearly many times.Finally a box may contain two points, or several extended neighbor boxes may containpoints, and this situation may persist when the boxes split. If splitting the children of thebox or of its neighbors separates the points, we can charge linear total work. Otherwise, letY be a maximal set of points in the union of box b and its neighbors, such that splitting b,its neighbors, or the children of b and its neighbors does not further divide Y . Then sometriangle of DT (X) connects two points y1 and y2 in Y with a point z outside Y .Each split not yet accounted for occurs between the step when Y is separated from z,and the step when y1 and y2 become more than 2p2` units apart. These steps are at mostO(logR(y1; y2; z)) quadtree levels apart, so we can charge all the crowded boxes caused byY to triangle y1y2z. This triangle will not be charged by any other boxes, because once6



we perform the splits charged to it all three points become far away from each other in thequadtree.Therefore the number of crowded boxes can be counted as a linear term, plus terms ofthe form O(logR(a; b; c)) for some Delaunay triangles abc.We are now in a position to state the main result of this section.Theorem 1. Given any point set X , we can �nd a triangulation QT (X) such that eachpoint of X is a vertex of QT (X) and A(QT (X)) � 4. There is a constant c00, independentof X , such that if T is any triangulation containing the points of X as vertices, j QT (X)j �c00 � jT j logA(T ).Proof: Let Y be the set of vertices of T . Lemma 2 states that there is a constant c suchthat j QT (Y )j � c0 �P logR(a; b; c), where the triangles abc range over all triangles in theDelaunay triangulation DT (Y ). If Y = X , then using the maxmin-angle characterizationof the Delaunay triangulation, A(T ) � 12 �A(DT (X)) � 12 �R(DT (X)). Hence j QT (X)jj �c0 �P logR(DT (X)) � c0 � jT j logR(DT (X)) � 2c0 � jT j logA(T ) as required.Otherwise, Y � X . Imagine running our algorithm on point set Y , choosing the root boxforQT (Y ) so that some subdivision of it coincides with the root box of QT (X). This choiceof root box does not a�ect the lemmas above. It now follows from our construction thatj QT (X)j � jQT (Y )j, which, by the same argument as above, is at most 2c0 � jT j logA(T )).Again the theorem follows.In the next section we reduce our aspect ratio bound from 4 to 5/3 at a constant factorcost in the size of the generated triangulations. Corollary 1 shows that any algorithm witha weaker aspect ratio bound can achieve at most a constant factor improvement in size. Inthis sense, our results are independent of our actual aspect ratio bounds.Corollary 1. For any � � 4, let OPT�(X) be the minimum size of a triangulation of Xachieving aspect ratio �. Then there is a constant c� such that j QT (X)j � c� �OPT�(X).Proof: Let T be the triangulation achieving OPT�(X). Then j QT (X)j is O(jT j log�),which is O(OPT�(X)) since � is a constant.Corollary 2. j QT (X)j is O(n logA(DT (X))).Corollary 2 is tight, as some point sets require size 
(n logA(DT (X))) to achieve anyconstant aspect ratio. An example is the set of points (0; k�) and (1; k�) for � > 1 and k =1; 2; : : : ; n=2; the aspect ratio of the Delaunay triangulation of these points is approximately�, and 
(log�) new points must be added between successive pairs of points to interpolatebetween the distance within a pair and the distance between pairs. Consider a triangulationof these points that achieves, say, aspect ratio 4. There must be a triangle with an edgeof length no greater than one incident to (0; �). Now in any \path" of triangles (i.e., asequence of triangles such that each triangle shares an edge with its predecessor) from(0; �) to (0; 2�), the maximum possible edge length quadruples at each step. Thus such apath of triangles must have length log4 �. 7



Figure 3. Non-obtuse triangulation: (a) when point is central; (b) shifted grid.3. No obtuse anglesIn this section we show how to triangulate a set of input points so that no angle is obtuse.Any triangulation without obtuse angles is a Delaunay triangulation of its vertices.3.1. Bounded aspect ratio nonobtuse triangulationWe now describe a modi�cation to QT (X) that eliminates obtuse angles while maintainingthe aspect ratio bound. We �rst describe a solution that works when the input points arenot too near quadtree box sides. Recall that, after all crowded boxes are split, the nearestquadtree corner to each input point is a corner of four equal-size surrounding boxes. Anybox is a surrounding box of at most one point. In Figure 3(a), the large box is the unionof the four surrounding boxes of an input point lying in the small dashed square. We saythat point x is central to square s if x is contained in the square concentric with s butwith half the side length. Thus each input point is central to the square that is the unionof its four surrounding boxes. For now we assume that each point is also central to thebox containing it. Up to rotations and re
ections, the small dashed square in Figure 3(a)contains all locations central to both the containing square and the surrounding-box square.We now add points at the centers of the boxes orthogonal to the input point. We add apoint to the box diagonal from the input point, halfway between its center and the centerof the square formed by the four boxes. Each surrounding box now contains one point; weconnect these points to their corresponding outside corners, and also to the points in thetwo orthogonally adjacent surrounding boxes. Finally, we connect the input point to thepoint in the surrounding box diagonal from it. This construction is depicted in Figure 3(a).Lemma 3. The construction above triangulates the boxes surrounding an input pointwith no obtuse angles, and with maximum aspect ratio 2.Proof: It is not di�cult to see that all triangles are obtuse; this also follows immediatelyfrom the aspect ratio bound. Of the 14 triangles in the �gure, 8 are �xed by the constructionand have maximum aspect ratio 2. The remaining six fall into three cases. We denote thelength of the surrounding box sides by `. 8



There are two triangles de�ned by the input point and an outside edge of the surroundingbox. If the outside edge is the hypotenuse, the altitude is at least `=2 and the aspect ratiois at most 2. Otherwise, the hypotenuse length is at most p9=8`, and the altitude is atleast p7=16`, so the aspect ratio is at most p18=7.There are two triangles formed by the input point, a point in an adjacent box, and thepoint in the opposite box. The hypotenuse has length at most p9=8`, and the altitude isat least p81=208`, so the aspect ratio is at most p26=9.Finally, there are two triangles formed by the input point, a point in an adjacent box,and the outside corner shared by the two boxes. If the hypotenuse's angle is �xed, the aspectratio is maximized when the input point is on an edge of the small dashed square. If it ison the edge opposite the adjacent box, at distance (x+ 1=2)` from the outside edge of thebox, then the aspect ratio can be computed to be 2(x2+ 1)=(x+ 1), which for 0 � x � 1=2is at most 2. If the point is on the other edge of the square, the altitude is minimized andhypotenuse maximized at the corner of the square, for which the aspect ratio is 17=10.Now we show how to make all points central to their surrounding boxes. Our strategyis to \shift" the grid of the quadtree near the point. Initially, each point is in the center ofa three by three grid of boxes, each of size `. We split each of these nine boxes, splittingother nearby boxes if necessary to maintain the quadtree balance condition. This increasesthe size of the construction by at most a constant factor. Our point will now be containedin the center box of a �ve by �ve grid of identically sized boxes. We split the inner nineboxes of this grid again, into boxes of side length `=4. The outer sixteen boxes are alsosubdivided into triangles and squares, such that their outside edges remain undivided andthe input point is in the center box of a seven by seven grid. There are four possible waysof recombining the squares of this grid into a larger grid with side length `=2. In one ofthose ways, the input point will be central to its square. Find four such squares surroundingthe grid corner nearest the input point. Remove the box sides and corners dividing thosesquares, which (because the grid is seven by seven) will not remove any points on theoutside boundaries of the original nine boxes. The removed sides are shown as dotted linesin Figure 3(b). The remainder of the quadtree can be triangulated with isosceles righttriangles.This gives us a set of four surrounding squares for which the construction of Lemma 3is possible. We summarize our results so far:Theorem 2. For any point set X , there is a triangulation containing the points of X asvertices, with no obtuse angle, with aspect ratio at most 2, and with size O(j QT (X)j).3.2. Linear-size nonobtuse triangulationIf we eliminate the aspect ratio bound, similar techniques yield triangulations with linearlymany new points. The only nonlinear behavior of the previous algorithm occurs when acrowded box is split without separating any input points. If this happens repeatedly, sometightly spaced cluster of points must be escaping separation by the quadtree sides. We needto \shortcut" the quadtree construction to produce small boxes around the cluster withoutpassing through many intermediate sizes of boxes.We triangulate the cluster recursively, resulting in a small triangulated square, whichwe treat as an individual point. We shift the grid so that the square is appropriately placed9



Figure 4. Connection between cluster and containing quadtree: (a) main features; (b) detail.in four surrounding boxes, copy the square (but not its internal structure) at the corners ofa rectangle, and connect the rectangle with the corners of the surrounding boxes.The main features of this construction are shown in Figure 4(a). However we mustsurround the square with some machinery in order to achieve no obtuse angles. In particularwe form a small grid of rectangles and triangles, shown in Figure 4(b). The triangle sides aretangent to a circle centered on the opposite corner of the surrounding box, so the trianglesformed by connecting those sides to the opposite corner are nonobtuse. The grid itself canbe triangulated by right triangles.Theorem 3. For any point set X , there is a triangulation containing the points of X asvertices, with no obtuse angles, and with size O(jX j).4. Only acute anglesWe have shown that triangulations with aspect ratio at most 2, and maximum angle at most90�, are possible. A natural question is how far these bounds can be extended. The twobounds are closely interlinked; a triangle with aspect ratio bounded below 2 has maximumangle bounded below 90�, and conversely any triangle with maximum angle bounded below90�� � has bounded aspect ratio. In this section, we �rst show that the aspect ratio boundcan be reduced to 5=3; triangles with this aspect ratio have maximum angle at most 80�.Our triangulation also achieves a minimum angle of at least 36�. Second, we extend ourlinear-size nonobtuse triangulation algorithm to one that �nds a triangulation in whichall angles are strictly acute. Of course, some angles may be arbitrarily close to 90�, forotherwise we would have a bound on the aspect ratio.Recall that, in our previous constructions, we triangulated unwarped boxes with isoscelesright triangles. Clearly, this must be changed to improve the aspect ratio beyond 2. Indeed,the main di�culty is triangulating unwarped boxes; the boxes near input points can be dealtwith by grid-shifting and special constructions analogous to those above.Thus we �rst consider an unwarped quadtree. In the previous constructions we imposeda balance condition on the quadtree, namely, that no unsplit box is orthogonally adjacentto a box with 1=4 its side length. Now we need a somewhat stricter condition: diagonally10
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Figure 5. Acute triangulation: (a) tiles for labeled squares; (b) example triangulation.adjacent boxes must also be within a factor of two in size. This does not a�ect the numberof boxes by more than a constant. We say a quadtree satisfying this condition is stronglybalanced .We assign labels from the set fa; b; cg to the sides of each unsplit box. If a box isorthogonally adjacent to two smaller boxes, the corresponding side is labeled a. If a box isadjacent to one its own size, the side is labeled b. And if a box is adjacent to a larger box,the side is labeled c. This causes b labels to be matched opposite other b's, and a labels tobe matched opposite pairs of c's. Given a labeled box, we describe its labeling by writingthe edge labels clockwise starting from the top; for example, abbb would be a box with thetop side subdivided, and the other sides adjacent to boxes of the same size.Lemma 4. All boxes in a strongly balanced quadtree are labeled with a re
ection orrotation of one of the following nine label patterns: aaaa, abbb, aabb, abab, aaab, abcb, bbbb,bbcc, and bbbc.Proof: Most other possible patterns contain an a label adjacent to a c label, which cannothappen because of the balance condition. The remaining cases have a c opposite another c.This would imply two larger neighbors separated by half their side length, an impossibilityin a quadtree.Now we deform each box (with side length `) as follows. Each side labeled c is split intotwo equal-length segments, which project out a distance of `=6 from the square of the box.Each side labeled a is split into four equal-length segments, which project into the square,matching the projections on the corresponding half-size sides labeled c. Finally, each sidelabeled b is split into three equal-length segments, running in a line along the side of thesquare.Lemma 5. Each deformed box can be triangulated with maximum aspect ratio 5=3.11



Proof: Tiles for the patterns of Lemma 4 are depicted in Figure 5(a). The aspect ratiobound follows from a tedious calculation on each of the triangles in each of the tiles.Thus it follows that any balanced quadtree can be triangulated with aspect ratio 5=3.An example of how di�erently sized copies of the tiles in Figure 5(a) �t together to make atriangulation is shown in Figure 5(b).Theorem 4. For any point set X , there is a triangulation containing the points of X asvertices, with no obtuse angle, with aspect ratio at most 5=3, and with size O(j QT (X)j).Proof: We use a strongly balanced quadtree, and triangulate unwarped boxes using thelabels and tiles described above. It remains to show how to warp the quadtree boxes to�t the input points. As before, we use the grid shifting technique. With a large enoughconstruction, we can use this technique to force each input point to be within a square thatis as small as we desire relative to its surrounding box, and that lies at any desired locationin that box. Thus, all we need is a tile such that, if one of its interior points is moved withina small neighborhood, all aspect ratios remain no larger than 5=3. Equivalently, the interiorpoint must be adjacent to triangles with aspect ratios all strictly less than 5=3. The centerpoint of the aaaa tile, as drawn in Figure 5(a), is adjacent to triangles with aspect ratio8=5, and so satis�es this condition.It seems likely that a similar algorithm, with a stronger balance condition and a morecomplicated labeling system, can achieve improved aspect ratio and angle bounds. Inparticular, it might be possible to construct optimal size triangulations with maximumangle 72�. Further improvements would be more di�cult, as they would force all internalvertices to have degree six or more. It is also reasonable to consider improving the minimumangle of our triangulations. The construction used in Theorem 4 gives a minimum angleof 36:87� (a little better than the angle implied by aspect ratio 5=3), and the constructionof Theorem 2 can be modi�ed to achieve a minimum angle of 45� � �, for any � > 0. Butagain it seems likely that more complicated constructions can achieve minimum angle 51:4�.Again, any further improvement would be di�cult, as such an improvement would eliminateinterior vertices with degree seven or more.Finally, we consider possible improvements to Theorem 3. There is little to do; boundingall angles below 90� � �, for constant �, would imply bounded aspect ratio and nonlinearsize for some inputs. However our previous construction includes many right triangles; wenow modify it so that all triangles are strictly acute.Theorem 5. For any point set X , there is a triangulation containing the points of X asvertices, with no obtuse or right angles, and with size O(jX j).Proof: Our algorithm is as before, but using the strongly balanced quadtree and thelabeled tiles of Figure 5(a). There are two problems to solve. First, we must connect thesetiles to the gadget depicted in Figure 4(a). Second, we must cause all triangles in the gadgetto be acute, rather than right.The �rst problem is solved as follows. The gadget of Figure 4(a) lies in a square withsides subdivided into two equal segments. We have no tiles of this kind; however, we canmodify the bbbb tile, so that it has such a square in its center. More precisely, let s be asquare with sides divided into three equal segments, as in the bbbb tile. Let s0 be a square12



Figure 6. Linear-size acute triangulation: (a) connecting tile; (b) moving corners out.concentric with s, but with half the side length, and with sides divided into two equalsegments. Then the space between s and s0 can be triangulated with acute triangles ofaspect ratio at most 3=2, as in Figure 6(a).As before, we can use grid shifting to move the small cluster into any desired positionrelative to the square in Figure 6(a). We assume that the cluster is triangulated by aquadtree with all outside box sides labeled b. By choosing an appropriately-sized root boxfor the cluster, we can arrange that there will be exactly 8 box sides along each side ofthe root box. Then the three copies of the cluster that are symmetrically placed in thegadget of Figure 4(a) can be made from 64 bbbb tiles. Recall that each copy of the clusterlies inside a roughly triangular section of \gridwork" abutting a circular arc of segments;in Figure 4(b) the gridwork comprises all the rectangles and triangles that do not run o�the edge of the �gure. By slightly tilting all the vertical and horizontal line segments in thegridwork towards the closest corner of the large surrounding box (that is, the verticals inFigure 4(b) tilt from northwest to southeast), we can make all the triangles in the gridworkacute. The rectangles become parallelograms that can be triangulated by acute triangles.Finally, between each copy of the cluster and in the center of the whole construction,there are a number of rectangles. We move two copies of the cluster outwards, so thatthese rectangles become parallelegrams that can be triangulated by acute triangles. Thisrearrangement, and the gridwork distortion mentioned above, are depicted in Figure 6(b).As drawn, there are some obtuse angles, because the gridwork distortion is not to scale; ifthe distortion were made su�ciently small, all angles would be acute.5. Segments and polygonsIn this section, we generalize the point set input �rst to a set of nonintersecting line segmentsand then to a polygonal region with polygonal holes. A triangulation T respects the inputif each vertex of the input is a vertex of T , and each nondegenerate edge of the input isa union of edges of T . For line segment input, T is a triangulation of a convex polygoncovering the input; for a polygonal region, all triangles of T must lie within the input region.In each case, we seek a triangulation with bounded aspect ratio that respects the input.13



5.1. Nonintersecting segmentsLet S be a set of line segments that do not intersect even at endpoints, and let X be theset of endpoints of segments in S. For a point x of a segment, the nearest foreign neighborof x is the closest point of a di�erent segment. A quadtree box b of side ` is crowded if oneof the following holds.C1. Box b contains a member of X whose nearest neighbor in X is as close as 2p2 `.C2. Box b contains a member of X and one of the extended neighbors of b is split.C3. Box b contains a point x of a segment of S and the nearest foreign neighbor of x is asclose as 2p2 `.As in the basic algorithm, we can start with any root box that has side length only aconstant factor times the diameter of the input, and that places all input segments well awayfrom its boundary. For example, we may start with a root box twice the size and concentricwith the minimum bounding square. As in Section 4, we impose stronger balance conditions:no leaf box may be orthogonally adjacent to one more than twice its size, nor may it beboth adjacent (diagonally or orthogonally) to one twice its size and orthogonally adjacentto one half its size. Each leaf box containing a point of X must be surrounded by 24 boxes(i.e., two layers) its own size. These conditions simplify the analysis and improve the aspectratio, while changing the size by only a constant factor.A q-vertex is the point at which a segment of S crosses a quadtree box boundary. Anedge of the quadtree subdivision is an edge of its graph structure; thus a split side of a leafbox is a path of two edges. A side is a maximal segment along the boundary of a polygon.We warp the quadtree to �t S in the following steps.1. Each point of X chooses its closest quadtree vertex, and we replace each chosen vertexwith the (unique) endpoint that chose it. This destroys q-vertices on edges incidentto a chosen vertex.2. Next each remaining q-vertex chooses its closest quadtree vertex that has not yetmoved, and we warp chosen vertices to their choosing segments. With one exception,we warp vertically (that is, along a vertical trajectory) to segments with slope in therange [�1; 1] and horizontally to other segments. The exception is that when a cornerof an already-warped box is chosen only once, we warp it to its chooser.3. Now we have two rules involving split sides. As in step 2, vertices move horizontallyor vertically depending on the segment's slope.(a) If the two endpoints of a split side of a box both warped to a segment s in step 2,then we also warp the midpoint to s if we have not already done so.(b) If a split side of a box is crossed by segment s, then both endpoints of the crossededge must warp to s. We now warp such an endpoint (corner or midpoint) to s if wehave not already done so.Each face in the planar subdivision is then triangulated by �rst choosing the diagonalsthat lie along segments of S and then choosing the remaining diagonals that give the best14



Figure 7. The warped quadtree framework for a segment: (a) typical case; (b) worst-case angle.aspect ratio. The resulting triangulation is denoted QT (S). Figure 7(a) shows the warpedquadtree for a single segment input. The upper right corner of the lower left box is anexample of the exception in step 2.Lemma 6. QT (S) respects S.Proof: Each member of X chooses a quadtree vertex to be warped to it, and no quadtreevertex is chosen by two distinct members of X . In the second warping step, each edge ofthe quadtree that is crossed by a segment s warps so that at least one of its endpoints lieson s. This destroys all q-vertices. The third step does not introduce new q-vertices, sothe interior of a warped box contains a point of a segment s only if s crosses the box as adiagonal.Lemma 7. For all S, A(QT (S)) � 5 and the minimum angle in QT (S) measures at least18:4�.Proof: The proof involves a rather tedious case analysis, so we omit some details. Letb be a box of side ` in the original unwarped quadtree subdivision. Let b0 be the warpedcounterpart of b. Vertices of b0 lie either in their original locations or along a segment s 2 S.There are three cases. The �rst case is: b is surrounded by eight boxes its own size. Inthis case, at most two vertices of b warp. Now there are two subcases, depending on whethera vertex of b0 lies at a member of X or not. If not, then two vertices of b that warp bothmove in the same direction (i.e., either horizontally or vertically), thus maintaining theiroriginal distance from each other. All edges along the boundary of b0 have lengths between`=2 and 3`=2, and it is not hard to con�rm that all angles (between adjacent sides of b0 orbetween a side of b0 and s) measure at least arctan(1=2) > 26:5�. If there is a member ofX , the worst case occurs when the vertex lies at the center of b, as shown in Figure 7(b).The sharpest angle is then 45� � arctan(1=2) = arctan(1=3) > 18:4�, and the aspect ratioof a triangle with angles arctan(1=2) and arctan(1=3) is 5.The second case is: b has no split sides, but is adjacent (orthogonally or diagonally) toa box twice its own size. Edges along the boundary of b0 have lengths between `=2 and 2`,but the ratio of longest to shortest is again no more than 3, since vertices of b all move15



horizontally or all move vertically. Notice that warping step 3(b) may reduce b0 to onlythree sides. Again all angles measure at least 26:5�.The last, and most complicated, case is: b has at least one split side. Arbitrarily smallangles may arise between sides of the warped box and s when the two endpoints, but notthe midpoint, of a split side warp. Warping step 3(a) removes these angles. Warping step3(b) guarantees that all edges of b0 have lengths between `=2 and 3`=2. Notice that twovertices of b that both warp to s either maintain (at least) their original distance apart orcoalesce (reducing to the case of an unsplit side). All angles in b0 and between sides of b0and s turn out to be at least 18:4�. The triangulation of b0 can be completed with anglesno smaller than 18:4�.Let CDT (S) denote the constrained Delaunay triangulation [9, 18] of S. Each segmentof S is an edge of CDT (S), and another edge e between vertices of X appears in CDT (S)i� there is an \empty" circumcircle of e. A circumcircle is empty if each vertex of X in itsinterior is not visible to one of the endpoints of e. CDT (S) maximizes the minimum angleamong all triangulations that respect S and add no new vertices [18].Lemma 8. j QT (S)j is O(PA(a; b; c)), where the sum is over all triangles abc in CDT (S).Proof: As in the proof of Lemma 2, the size increase due to the balance condition isamortized against crowded boxes. The number of boxes that are crowded due only to C2 islinear in jX j. Lemma 2 bounds the number of boxes crowded (by C1) because they containboth endpoints of a single segment.Condition C3 requires segments to be well separated. As an example, consider twoclosely spaced parallel segments e and f . The quadtree will split until segment e intersectsboxes of side length about one-fourth the distance between e and f . The number of suchboxes is bounded by a constant times the aspect ratio of a triangle with base e and apexat one of the vertices of f . One of the two such triangles must be a triangle of CDT (S).In general, let b be a box that is crowded because it contains a point of a segment eand some nearby box (up to two away) contains points of another segment f . Consider thefour triangles in CDT (S) that are supported by either e or f , and charge b's split to theone with minimum altitude. Thus each triangle in CDT (S) is charged only by boxes of sidelength at least a constant fraction of its altitude. Since b must also be within two boxes ofa side of the triangle it charges, each triangle of CDT (S) is charged by a number of boxesproportional to its aspect ratio.Theorem 6. Suppose S is a set of strictly nonintersecting segments and T is any trian-gulation respecting S. The quadtree method produces a triangulation QT (S) respecting S,with aspect ratio at most 5, and with size O(jT jA(T )).Proof: We generalize the line-segment problem somewhat to allow an input that includessubdivided line segments, that is, segments with vertices in the middle. A triangulationmust include these vertices as well. The quadtree algorithm remains unchanged, thoughnow X must be interpreted as all vertices, and \segment" means an entire straight chain.Lemma 8 follows exactly as above.Triangulation T subdivides the segments of S in some way. Let S 0 be the segments ofS, subdivided according to T , along with the other vertices of T included as zero-length16



segments. As in the case of point set input, the quadtree algorithm (with a suitable rootbox) is monotonic; that is, if S � S0, then j QT (S)j � jQT (S 0)j. Now the bound on thesize of QT (S) follows from Lemma 8 and A(CDT (S 0)) � 2A(T ).Corollary 3. For � � 5, let OPT�(S) be the minimum size of a triangulation respectingS with aspect ratio at most �. Then there is a constant c� such that for all S, j QT (S)j �c� �OPT�(S).5.2. Polygonal regionsNow we generalize the input to a closed polygonal region P with polygonal, possibly de-generate, holes. We initially assume that no angle of @P facing the interior of P is acute.Later we relax this restriction to an arbitrary, �xed lower bound.Let x be a point of @P . Point y of @P is foreign to x if y is on another connectedcomponent of @P , or if every walk from x to y along @P includes at least two vertices. Theendpoints of the walk count; thus all vertices of @P are foreign to each other. The nearestforeign neighbor of x is the closest point of @P foreign to x, where distance is now geodesicdistance. (The geodesic distance between two points in P is the length of a shortest pathbetween them that lies entirely in P .) A quadtree box b of side ` is crowded if one of thefollowing holds, where X now denotes vertices of @P .C1. Box b contains a point x of @P and the nearest foreign neighbor of x is as close as2p2 `.C2. Box b contains a point of X and one of the extended neighbors of b is split.As in previous sections we recursively split crowded boxes and propagate these splits.We impose the same balance and 24-neighbor conditions as for segments. Further assumethat no member of X lies exactly in the center of a box. Again a q-vertex is an intersectionof an edge of @P and a box boundary. In degenerate cases, a single point may be the siteof two di�erent q-vertices, for example, in the case of a line-segment hole.We now describe how to warp the quadtree subdivision to �t P . There is an addedcomplication in this warping procedure: a single quadtree box b may contain vertices inmore than one connected component of P \ b. Roughly speaking, we warp b separately foreach connected component.For a quadtree vertex y let By denote the union of the three or four boxes whoseboundaries contain y. In the warping steps below, distance is Euclidean distance in theplane, not geodesic distance.1. Each member of X and each q-vertex chooses its closest quadtree vertex. We \split"a vertex y that is chosen by at least one member of X into at most four copies. Wewarp a copy of y to each member of X that chooses it, and to the closest q-vertexchoosing y in a connected component of P \By that contains no member of X . (If yis chosen only by q-vertices, then we do not move it yet.)2. Next each remaining q-vertex chooses its closest quadtree vertex that has not yetmoved. We warp a copy of a chosen vertex y to each edge of @P containing a q-vertex that chose y. (We show below that there will be at most one such edge for17



Figure 8. Warping to a polygon.each connected component of P \B0y , where B0y is the current warped version of By .)Vertices move horizontally or vertically exactly as in the case of segments.3. We again have the two rules involving split sides.(a) If the two endpoints of a split side of a box both moved to an edge s of @P in step2, then we must also warp the midpoint of that side to s.(b) If a split side of a box is crossed by an edge s of @P , then we must warp bothendpoints of the crossed edge to s.For example, step 1 moves a copy of the upper right corner of the lower left box to eachof two vertices of @P in Figure 8. Step 2 splits the lower left corner of the upper right boxand warps these copies to two q-vertices. Edges crossing @P are removed, but edges thatdo not cross @P remain.After the warping steps, we remove vertices and quadtree edges contained in the com-plement of P . Finally, we triangulate faces of the warped quadtree subdivsion by choosingall diagonals lying along @P and the remaining diagonals that give the best aspect ratio.The resulting triangulation is denoted QT (P ).Lemma 9. QT (P ) respects P .Proof: After step 1 above, each vertex of @P coincides with a quadtree box corner.Suppose that in step 2 a quadtree vertex y is chosen by two distinct q-vertices p and q. Weassert that either p and q are in separate connected components of P \B0y or p and q lie onthe same edge of @P . Assume the contrary. Then p and q must lie on adjacent edges of @P ,or else they would be foreign to each other and the quadtree would have re�ned further.So let v be the vertex of @P between p and q. Our assumptions imply that v is nearer to ythan to any other quadtree vertex. Hence y should have warped to v in step 1, destroying pand q, a contradiction. It is now straightforward to con�rm that after step 2, all q-verticeshave disappeared. 18



Lemma 10. A(QT (P )) � 5, and the minimum angle in QT (P ) measures at least 18:4�.Proof: Let f 0 be a face in warped box b0 after all warping steps have taken place, butbefore any diagonals have been chosen. The vertices of f 0 are all warped copies of thevertices of some box b. Face f 0 is bounded by at most two edges lying along @P . If f 0 isbounded by fewer than two such edges, then face f 0 could have arisen in the case of linesegment input, so the aspect ratio is bounded by Lemma 7.If f 0 is bounded by two edges s1 and s2 lying along @P , then vertex v|the meeting pointof s1 and s2|lies on the boundary of f 0, and b was a box surrounded by eight boxes itsown size. First assume that v lies inside b, and without loss of generality, in the upper-leftquarter of b. Then we distinguish a number of cases, depending upon which corners of bare closest to the q-vertices at which s1 and s2 cross the boundary of b. The assumptionthat the angle between s1 and s2 is at least 90� makes this case analysis quite easy. Second,assume that v lies outside b, and a corner of b warped out to it. Again the bounds followby a straightforward case analysis.Theorem 7. Suppose P is a polygonal region (with holes) in which no interior angle isacute, and T is any triangulation respecting P . The quadtree method produces a triangu-lation QT (P ) respecting P , with A(QT (P )) � 5, and with size O(jT jA(T )).Proof: We de�ne CDT (P ) to be the portion of the constrained Delaunay triangulation of@P that lies within P . The size bound then follows analogously to the previous arguments.Finally we consider the general case of polygonal regions with all interior angles greaterthan �. Our strategy is to reduce the general case to the case just considered by cuttingo� isosceles triangles containing the acute interior angles; this idea also appears in [2].Suppose there is an acute interior angle of P with vertex v. We grow the quadtree justas if P had no acute interior angles. Vertex v ends up in a leaf box b surrounded by eightneighbors its own size. We cut o� the largest isosceles triangle with legs along @P and apexv that �ts inside the union of these nine boxes. This introduces a new side, called a cutside, to P . We do the same for each acute interior angle of P . This leaves a polygon P 0with no acute interior angles that can be triangulated by the method above. Where theyoverlap, the quadtree subdivision for P 0 is a re�nement of the one for P , and we have addedonly O(1) boxes per cut side, with the exact constant depending upon �. For simplicitywe further subdivide until all boxes intersecting any one cut side are the same size. Thenin the warping step, the quadtree vertices that warp to a cut side subdivide the cut sideinto equal-length edges, except for the �rst two and last two edges. The size j QT (P 0)j isO(jT jA(T )) for any triangulation T of P .It remains to triangulate the isosceles triangles in a way that is compatible with QT (P 0).Assume we are given an isosceles triangle I with an acute angle at its apex and a base thatis subdivided into some number of edges with endpoints v1; v2; : : : ; vm. Further assume thatall base edges vivi+1, except v1v2, v2v3, vm�2vm�1, and vm�1vm, have the same length `and that the lengths of the exceptional edges are in the range [`=2; 3`=2]. We now showhow to compute a linear-size, bounded-aspect-ratio triangulation of I .If the base s of I consists of a single edge then we are done. Otherwise we gather thevertices along s into overlapping groups of three: G1 = fv1; v2; v3g, G2 = fv3; v4; v5g, and19



Figure 9. An acute interior angle.so forth. There may be one group of only two at the end. We choose the line segment e,parallel to s and distance ` closer to the apex of I , as shown in Figure 9. For each groupGi, except the �rst and last, we place a vertex ui along e perpendicularly across from themiddle member of Gi. These vertices are distance 2` apart. The �rst and last ui verticesare the endpoints of e. If the �rst segment u1u2 has length greater than 3`, we add a vertexat distance 2` from u2; we treat the last segment similarly.We triangulate the trapezoid between s and e by adding edges between members of Giand ui, except for the �rst and last groups. We complete the triangulation at the beginningand end of e with diagonals giving best aspect ratio. We then recursively triangulate thetriangle with base e.Theorem 8. Suppose P is a polygonal region (with holes) in which each interior anglemeasures at least �. Let T be any triangulation respecting P . The quadtree methodproduces a triangulation QT (P ) respecting P , with aspect ratio at most max f5; 1= sin�gand minimum angle at least min f18:4�; �g, and with size O(jT jA(T )).Corollary 4. Let OPT�(P ) be the minimum size of a triangulation respecting P withaspect ratio no more than � � maxf5; 1= sin�g. There is a constant c� such that for all P ,j QT (P )j � c� �OPT�(P ).6. Dimensions 3 and aboveA triangulation in d � 3 dimensions is a partition into d-simplices. The quadtree algorithmof Section 2 extends immediately to a 2d-tree algorithm for general dimension.Theorem 9. Suppose X is a point set in Rd and T is a triangulation that respects X .Then there is a triangulation QT (X) that respects X and has bounded aspect ratio andsize O(jT j logA(T )). 20



Proof: The construction follows that of Theorem 1, re�ning a balanced 2d-tree until eachbox with a point is surrounded by 3d � 1 empty boxes the same size, moving the nearestbox corner to the point, and �nally dividing each box into simplices.The analysis di�ers from the planar case because the Delaunay triangulation may not bewithin a constant of minimum aspect ratio. Instead, we bound j QT (X)j by O(P logA(t)),where t ranges over the simplices of an arbitrary triangulation T . As in Lemma 2, theonly nonlinear behavior occurs when a crowded box is split repeatedly without separatinga cluster.If any two points of the cluster are adjacent in T , then some two cluster points andone non-cluster point are the vertices of a two-dimensional triangle in T . That triangle haslarge aspect ratio, and therefore so do the simplices of T that it bounds. We charge thesize increase for the cluster to one of those simplices.If on the other hand no cluster points are adjacent, let y1 and y2 be any two clusterpoints. Since line segment y1y2 does not lie within a single simplex, there is a simplex t 2 Twith d � 1 facets meeting in a vertex at y1 for which y1y2 intersects the d-th facet. Somealtitude of t is at most the diameter of the cluster, and the other vertices of t are all outsidethe cluster, so t has aspect ratio at least the cluster's distance from its nearest neighbordivided by its diameter. We charge the size increase for the cluster to t.Corollary 5. Let OPT�(X) be the minimum size of a triangulation of the point set Xachieving aspect ratio �. For each su�ciently large �, there is a constant c� such thatj QT (X)j � c� �OPT�(X).Theorem 10. Fix a dimension d, and let X be a point set in Rd. Then there is a setY � X of O(jX j) points for which the d-dimensional Delaunay triangulation contains onlyO(jX j) simplices.Proof: The proof is similar to that of Theorem 3. We re�ne a balanced tree until eachbox with a point is surrounded by empty boxes the same size, move the nearest box cornerto each point, and take Y to be the set of box corners. As in Theorem 3, when a constantnumber of splits fail to separate a cluster, we triangulate the cluster recursively. By usinga somewhat larger root box for the cluster, we guarantee that every d-sphere that containsboth cluster points and non-cluster points has one of the new points in its interior. Thenevery point is incident on a bounded number of maximal empty spheres, so the Delaunaytriangulation has bounded degree.7. ConclusionsWe have shown how to generate triangular meshes of guaranteed quality and size for severalclasses of input and two measures of quality. We have also shown that a planar point setadmits a linear-size acute triangulation, and a d-dimensional point set admits a linear-size\Steiner Delaunay" triangulation. The key points of the quadtree re�nement algorithmsare keeping the tree locally balanced (at a constant factor in amortized cost), and eithercharging the cost of narrow parts of the tree to expensive features of the input, or skippingover them altogether with constructions of constant cost.21



Subsequent to the work reported here, Eppstein [14] showed how to use essentiallythe same algorithm as that of Theorem 1 to approximate the minimum-total-length Steinertriangulation of a point set. Bern and Eppstein [5] devised an algorithm for triangulating ann-sided polygonal domain with O(n2) nonobtuse triangles; Melissaratos and Souvaine [21]merged our methods with those of Baker et al. to produce triangulations with no small andno obtuse angles; and Mitchell and Vavasis [23] showed how to use octrees to triangulatepolyhedra with bounded-aspect-ratio tetrahedra. Bern and Eppstein [6] survey recent workin computational geometry motivated by mesh generation.There remain several avenues for further research. The �rst is to extend our quadtreemethods to more complicated inputs: triangulating a planar straight line graph (in whichvertices may have degree greater than two), and tetrahedralizing polyhedral cell complexes.These problems have application to domains composed of more than one material.Second, it would be nice to reduce the constant factors in our algorithms, both in theaspect ratio and|especially|in the mesh size. As Figure 2(b) shows, simple heuristics canbe e�ective in removing unnecessary points from the triangulations our algorithm produces.Using binary trees of rectangles with aspect ratio p2 in place of quadtrees might alsoimprove the size.Finally, there seem to be some \threshold phenomena" worth investigating. As we haveshown, triangulations with angles at most 90� require only linear size. Angles boundedbelow 90� imply bounded aspect ratio, and hence nonlinear worst case size. We believe afurther barrier in triangulation di�culty occurs at maximum angle 72�, or minimum angle51:4�, beyond which all vertices except those near the boundary must have exactly sixneighbors. It seems that triangulations with angles arbitrarily close to 60� can always befound, but that they may require many more triangles than we used in our constructions.However we have not proved any upper or lower bounds for this case.AcknowledgementsWe thank Randy Bank, Paul Chew, Eric Grosse, Rob Schreiber, and Warren Smith for dis-cussions of mesh generation in theory and practice; Dennis Jespersen and Steve Hammondfor Figure 1; and David Dobkin for bringing the no-obtuse-angles problem to our attention.References[1] I. Babu�ska and A. K. Aziz. On the angle condition in the �nite element method. SIAMJournal on Numerical Analysis, 13:214{226, 1976.[2] Brenda S. Baker, Eric Grosse, and Conor S. Ra�erty. Nonobtuse triangulation ofpolygons. Discrete and Computational Geometry, 3:147{168, 1988.[3] R. E. Bank. PLTMG User's Guide. SIAM, 1990.[4] Timothy J. Barth and Dennis C. Jespersen. The design and application of upwindschemes on unstructured meshes. In 27th Aerospace Sciences Meeting. AIAA, 1989.22
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