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Edge Insertion for Optimal Triangulations 11 IntroductionA triangulation of a �nite set of points S in <2 is a maximally-connected, straight-line planar graphwith vertex set S. Each bounded face is a triangle, and the triangulation includes the boundary ofthe convex hull. Triangulations �nd use in areas such as �nite element analysis [BeEp92, StFi73],computational geometry [PrSh85], and surface approximation [DLR90]. Applications typically re-quire triangulations with \well-shaped" triangles, meaning|for example|that triangles with verysmall or large angles should be avoided. Taking a worst-case approach, one can de�ne the quality of atriangulation to be the quality of its worst triangle. Interesting algorithmic questions then arise whenwe ask for a triangulation of a given point set that optimizes some quality criterion. These questionstake the form of minmax or maxmin problems, where the �rst quanti�er is over all triangulations ofthe point set, and the second is over all triangles in the triangulation.The problem of automatically generating optimal triangulations has been a subject for researchsince the 1960's (see e.g. the discussion in [Geor71]). In spite of this attention, very little is knownabout constructing optimal triangulations in polynomial time. Exhaustive search can be ruled outsince a set of n points has, in general, exponentially many triangulations. Greedy approaches (suchas eliminating triangles from worst to best) are ruled out by the NP-completeness of the followingdecision problem [Llo77]: given a collection of points and edges, decide whether a subset of the edgesde�nes a triangulation of the points.Most positive results are related to the Delaunay triangulation [Del34]. It has been shown thatamong all triangulations of a given �nite point set, the Delaunay triangulation optimizes various crite-ria. The Delaunay triangulation maximizes the minimum angle [Sib78], minimizes the maximum cir-cumscribing circle [D'AS89], and minimizes the maximum smallest enclosing circle [D'AS89, Raj91].E�cient algorithms for constructing Delaunay triangulations are abundant in the literature andbased on such diverse algorithmic paradigms as edge-
ipping [Laws72, Laws77], divide-and-conquer[ShHo75, GuSt85], geometric transformation [Brow79], plane-sweep [For87], and randomized incre-mentation [GuKS90].Recently, Edelsbrunner, Tan, and Waupotitsch devised a polynomial-time algorithm that mini-mizes the maximum angle [EdTW92]. This algorithm constructs a minmax-angle triangulation byiteratively inserting a new edge, removing old edges crossed by the new edge, and then retriangulatingthe polygonal \holes" on either side of the new edge.This paper presents an abstraction of the minmax-angle algorithm, which we call the edge-insertion paradigm, and applies it to obtain polynomial-time algorithms for some other optimaltriangulation problems. The speci�c new results are an O(n2 logn)-time algorithm that constructsa triangulation with maxmin triangle height, an O(n3)-time algorithm for minmax triangle eccen-tricity (distance from circumcenter), and|most signi�cantly|an O(n3)-time algorithm for �ndinga triangulated surface, interpolating given points in <3, with minmax gradient. All three criteria arementioned in a survey article on \systematic" triangulations [WaPh84].Section 2 formulates the edge-insertion paradigm, which locally improves a triangulation ac-cording to a generic criterion. When instantiated to a speci�c criterion, the basic paradigm givesa local optimum in time O(n8). Section 3 states two abstract conditions for quality criteria, the�rst strictly weaker than the second. Section 4 proves that even the weaker condition su�ces to



Edge Insertion for Optimal Triangulations 2show that the edge-insertion paradigm computes a global optimum; the argument is rather delicate.Section 5 discusses re�nements of the basic paradigm with improved running times; here we showthat the weaker condition implies an O(n3)-time algorithm and the stronger condition implies anO(n2 logn)-time algorithm. (We do not yet know of any quality criteria globally optimized by theO(n8) basic algorithm, but not by the O(n3) algorithm.) Sections 6, 7, and 8 prove that the threespeci�c optimization criteria mentioned above satisfy one or the other of the two conditions. Section9 o�ers some concluding remarks.2 The Edge-Insertion ParadigmWe start with some de�nitions. A triangulation of a �nite point set S in <2 is de�ned above as amaximally-connected, straight-line planar graph with vertex set S. A constrained triangulation is amaximally-connected, straight-line planar graph restricted to lie within a given connected polygonalregion; the vertex set of the triangulation includes the vertices of the polygonal region along withany interior point \holes". Thus, a triangulation of a point set S is the special case in which thepolygonal region is the convex hull of S. Another special case is polygon triangulation in which thereare no holes.We denote by xy the relatively open line segment that connects the points x; y 2 <2. Forx; y; z 2 <2, xyz is the open triangle with corners x; y; z. For a given �nite point set S in <2 andx; y; z 2 S, we call xyz an empty triangle if all other points of S lie outside the closure of xyz.Let � be a function that maps each triangle xyz to a real value �(xyz), called the measure ofxyz. We restrict our attention to minmax criteria, that is, for each � we consider the constructionof a triangulation that minimizes the maximum �(xyz) over all triangles xyz. Maxmin criteria canbe simulated by considering ��. The measures of particular interest in this paper are largest angle,height (actually, negative height, since we desire maxmin height), eccentricity, and the gradient ona triangulated (nonplanar) surface.The measure of a triangulation A is de�ned as �(A) = maxf�(xyz) j xyz a triangle of Ag. If Aand B are two triangulations of the same point set then B is called an improvement of A, denotedB � A, if �(B) < �(A) or �(B) = �(A) and the set of triangles xyz in B with �(xyz) = �(B) isa proper subset of the set of such triangles in A. A triangulation A is optimal for � if there is noimprovement of A.The edge-insertion paradigm uses a natural local improvement operation, not surprisingly calledan \edge-insertion". Given a triangulation A of a point set S, the edge-insertion of qs, for q; s 2 S,goes as follows.Function Edge-insertion(A,qs): triangulation.1. B := A.2. Add qs to B and remove from B all edges that intersect qs.3. Retriangulate the polygonal regions P and R constructed in step 2.4. return B.For now we assume that polygonal regions P and R (see Figure 2.1) are retriangulated in an



Edge Insertion for Optimal Triangulations 3qsP R������ � ��� � ��Figure 2.1: Inserting qs leaves two polygonal regions P and R.optimal fashion (minimizing the maximum �), e.g. by dynamic programming [Klin80]. The basic,most general, version of the edge-insertion paradigm is given below; it tries all possible edge-insertionsand halts when no edge-insertion improves the current triangulation.Input. A set S of n points in <2.Output. An optimal triangulation T of S.Algorithm. Construct an arbitrary triangulation A of S.repeat T := A;for all pairs q; s 2 S doB := Edge-insertion(A; qs);if B � A then A := B; exit the for loop endifendforuntil T = A.The edge-insertion paradigm can be viewed as a generalization of the edge-
ipping paradigm thatcomputes a Delaunay triangulation [Laws72, Laws77]. An edge-
ip inserts the diagonal of a convexquadrilateral formed by two neighboring triangles; the process halts when no edge-
ip improves thecurrent triangulation. The simpler edge-
ipping paradigm, however, fails to compute global optimafor maximum angle, height, eccentricity, and slope, as we show in later sections of this paper.We now argue that the basic algorithm above terminates after timeO(n8). A single edge-insertionoperation takes time O(n3) when retriangulating by dynamic programming [Klin80], assuming themeasures of any two triangles can be compared in constant time. The for loop thus takes time O(n5)per iteration of the repeat loop. Finally, the repeat loop is iterated at most O(n3) times, becausethere are only �n3� triangles spanned by S, and each iteration permanently discards at least one ofthem when it �nds an improvement of the current triangulation.Remark. The edge-insertion paradigm can be extended to constrained triangulations by limitingthe edge-insertion operation to edges ab that lie in the interior of the restricting polygonal region.As a consequence, a triangulation that lexicographically minimizes the decreasing vector of trianglemeasures can be constructed in the non-degenerate case, that is, when �(abc) 6= �(xyz) unlessabc = xyz. Details can be found in [EdTW92].



Edge Insertion for Optimal Triangulations 43 Two Su�cient ConditionsWe now formulate two conditions on measures �, su�cient to show that the edge-insertion paradigmcomputes a global optimum (i.e. minmax �). They are also su�cient to imply algorithmsmuch fasterthan O(n8); these will be given in Section 5.Let S be a set of n points in <2, let B be a triangulation of S, and let xyz be an empty trianglein S. We say that B breaks xyz at y if it contains an edge yt with yt\ xz 6= ;. Note that if B breaksxyz at y then it cannot break xyz at x or z.We call vertex y an anchor of an empty triangle xyz in point set S, if every triangulation B of S,with �(B) � �(xyz), either contains xyz or breaks xyz at y. For example, if �(xyz) is the measureof the largest angle in xyz, and the largest angle has vertex y, then y is an anchor. Intuitivelyspeaking, if a triangle has an anchor, it will be the triangle's \worst vertex". We can now give thetwo conditions on quality measures �.(Weak Anchor Condition) For each triangulation A, and each triangle xyz ofA with �(xyz) = �(A), there is an anchor vertex of xyz. (I)In other words, B can be an improvement of A only if it breaks a worst triangle of A at its anchor.Since B cannot break a triangle at two vertices, a triangle's anchor is unique in triangulations A with�(A) larger than the minimum. Thus, if xyz is an empty isosceles triangle with two largest angles,then no triangulation can have minmax angle less than this largest angle.(Strong Anchor Condition) For each triangulation A and each triangle xyz ofA, there is an anchor vertex of xyz. (II)Notice that � equal to the measure of the largest angle satis�es (II), since the largest angle in anytriangle xyz|not just a worst triangle|must either appear in a triangulationA with �(A) � �(xyz),or be subdivided by it. An important di�erence between the weak and strong conditions is that in(I) the triangulation A that contains xyz plays an important role, while in (II) A is insigni�cant.4 Proof of CorrectnessThe Cake Cutting Lemma (below) asserts that if A is not yet optimal for measure � satisfyingcondition (I), then there is an edge whose insertion leads to an improvement, speci�cally an edgebreaking a worst triangle at its anchor. In [EdTW92], this lemma is proved for the maximum anglemeasure using an argument that rotates edges of an optimal triangulation of S. While this argumentworks for angles, we need a di�erent argument for the general class of measures that satisfy (I).Before continuing, we remark that the regions P and R (created in step 2 of an edge-insertion)are not necessarily simple polygons in the usual meaning of the term. Although their interiors arealways simply connected, there can be edges contained in the interiors of their closures, as shown inFigure 2.1. Nevertheless, each such edge can be treated as if it consisted of two edges, one for eachside, which then allows us to treat P and R as if they were simple polygons.



Edge Insertion for Optimal Triangulations 5As usual, a diagonal of a simple polygon is a line segment that connects two vertices and|exceptat its endpoints|lies interior to the polygon. An ear is a triangle bounded by two polygon edgesand one diagonal.Lemma 4.1 (Cake Cutting) Assume � satis�es condition (I). Let T � A be two triangulationsof point set S. Let pqr be a triangle in A but not in T with �(pqr) = �(A); let q be an anchor ofpqr; and let qs be an edge in T that intersects pr. Let P and R be the polygons generated by addingqs to A and removing all edges that intersect qs. Then there are triangulations P and R of P andR with �(P) < �(pqr) and �(R) < �(pqr).Proof. We prove the assertion for P , and by symmetry it follows for R. The plan is to use theedges of T to locate ears of P with small � value, thereby obtaining P . Each connected componentof an edge of T intersected with P (that is, a segment seen through the \window" P ) is called aclipped edge. As P is not necessarily convex, several clipped edges can belong to the same edge ofT . A clipped edge partitions P into two polygons, the near side supported by qs and the far sidenot supported by qs.If no clipped edge exists in the window, then P has only three vertices and therefore must be atriangle of T . This triangle is not in A, which implies that its measure is less than �(A), becauseany triangle of T with measure �(A) is also a triangle of A. So assume the existence of at least oneclipped edge. Denote by q = p0; p1; : : : ; pk; pk+1 = s the sequence of vertices of P .Claim 1. For 1 � j � k, if 6 pj�1pjpj+1 < � then pj�1pj+1 is a diagonal of P .Proof (of Claim 1). By construction of P , it is possible to �nd non-intersecting line segments pj�1xand pj+1y, both inside P , so that x and y lie on qs. (If j = 1, then x = pj�1 = q; if j = k, theny = pj+1 = s.) The (possibly degenerate) pentagon xpj�1pjpj+1y is part of P , and because theinterior angles at pj , x, and y measure less than �, edge pj�1pj+1 is a diagonal of the pentagon andtherefore also of P .Claim 2. There is at least one clipped edge whose far side is a triangle.Proof (of Claim 2). Let xy be a clipped edge so that its far side, F , contains no further clippededge. Consider the triangle in T that lies on the same side of xy as F . Polygon F must be a subsetof this triangle, and since all vertices of F|except possibly x and y|are points in S, F must be atriangle xpiy. qspi�1pipi+1 ���� � ���� � ���� � ���� �Figure 4.1: A \maximally far" clipped edge locates a good ear of P .



Edge Insertion for Optimal Triangulations 6An ear pi�1pipi+1 so that xy is a clipped edge with far side xpiy can now be removed from P ,leaving a polygon P 0 with one less vertex. Claims 1 and 2 remain true for P 0 because the removed earis not supported by qs. Hence we can iterate and compute a triangulation P of P . Symmetrically,we get a triangulation R of R. Let B be the thus obtained triangulation of S.Claim 3. �(abc) < �(pqr) for all triangles abc in P and R.Proof (of Claim 3). Let abc be a triangle in P or R with maximum �. Assume without loss ofgenerality that abc is a triangle of P and that a = pi; b = pj ; c = pk with i < j < k. At the timeimmediately before abc was removed by adding the edge ac there was a clipped edge xy with far sidexby, as shown in Figure 4.2. Hence, T does not break abc at b, and by construction, A breaks abcat b and therefore neither at a nor at c.If xy = ac (as in the leftmost picture in Figure 4.1), then abc is a triangle in T that is not in A,and therefore �(abc) < �(pqr). So assume xy 6= ac, and assume for the sake of contradiction that�(abc) � �(pqr) = �(A) � �(T ). Since we chose abc to have maximum � in P or R, this means that�(abc) = �(B). Then condition (I) requires abc to have an anchor. However, b cannot be the anchorof abc, because T neither contains abc nor breaks abc at b. Similarly, neither a nor c can be ananchor of abc because A neither contains abc nor breaks abc at a or c. This contradiction completesthe proofs of Claim 3 and Lemma 4.1. qsab c ���� � �xyFigure 4.2: Triangle abc cannot have an anchor.The Cake Cutting Lemma now shows that the basic edge-insertion paradigm cannot get stuck ina local optimum for � satisfying condition (I).Lemma 4.2 Assume � satis�es condition (I). Let A be a non-optimal triangulation of point set S.Then there is an edge-insertion operation that improves A.Proof. Let B be an improvement of A and consider a triangle pqr in A with �(pqr) = �(A) thatis not in B. Condition (I) requires pqr to have an anchor, say q, so B must contain an edge qs withqs \ pr 6= ;. Let P and R be the polygonal regions generated by adding qs and deleting the edgesthat intersect qs. The Cake Cutting Lemma implies that there are polygon triangulations P and Rof P and R with �(P) and �(R) both smaller than �(pqr).Remark. Lemmas 4.1 and 4.2 remain true for constrained triangulations provided the optimizationcriterion satis�es (I) or (II) in this more general setting. This is indeed the case for all criteriaconsidered in this paper.



Edge Insertion for Optimal Triangulations 75 Re�nements of the ParadigmThe re�ned versions of edge-insertion di�er from the basic paradigm in two major ways. First, edge-insertions are restricted to candidate edges qs that break a worst triangle pqr at its anchor q. Second,the two polygonal regions created by adding edge qs are retriangulated by repeatedly removing ears(as in the proof of the Cake Cutting Lemma), rather than by dynamic programming.Outline of re�nements. Let A be a triangulation with worst triangle pqr, that is, �(pqr) = �(A),and let q be the anchor of pqr. We denote by qs1; qs2; : : : the sequence of candidate edges. Thisorder may be arbitrary for the O(n3) re�nement, but for criteria satisfying condition (II), a carefullychosen order speeds up the running time to O(n2 logn). Both re�nements are specializations of thealgorithm given below. We use the notation si+1 = next(si).Algorithm. Construct an arbitrary triangulation A of S.repeat T := A;�nd a worst triangle pqr in A, let q be its anchor, and set s := s1;while s is de�ned doB := A, add qs to B, and remove all edges that intersect qs;(partially) triangulate the two polygonal regions P and Rby cutting o� ears xyz with �(xyz) < �(pqr);if P and R are completely triangulated thenA := B; exit the while-loopelse s := next(s)endifendwhileuntil T = A and all worst triangles pqr in A have been tried.In an implementation of the algorithm we would not really copy entire triangulations. Insteadof the assignment T := A, we would use a 
ag to check whether an iteration of the repeat-loopproduced an improved triangulation. The assignment B := A can be avoided by making changesdirectly in A and undoing them to the extent necessary. The remainder of this section explains someof the steps in greater detail and analyzes the complexity of the two re�nements.Triangulating by ear cutting. Suppose an edge qs has been added to B and the edges that inter-sect qs have been removed, thus creating two polygonal regions P andR. Let q = p0; p1; : : : ; pk; pk+1 =s be the sequence of vertices of P and let q = r0; r1; : : : ; rm; rm+1 = s be the corresponding sequencefor R. As in the proof of the Cake Cutting Lemma, the two regions are (partially) triangulated byrepeatedly removing ears with measures less than �(pqr). As implied by the proof, the sequence inwhich the ears are removed is immaterial so long as only the last is supported by qs. This methodmay be implemented using a stack for the vertices of P (R), so that it runs in time linear in the sizeof P (R). In the case of P , the stack is initialized by pushing p0 and p1. After that, for i := 2 tok+ 1 we push vertex pi, and whenever the three topmost vertices, z = pi; y; x, de�ne a triangle with�(xyz) < �(pqr) we pop y, the second vertex from the top. The triangulation is complete if, at theend of the process, pk+1 = s and p0 = q are the only two vertices on the stack.Theorem 5.1 Let S be a set of n points in <2 and let � be a measure that satis�es (I).(1) A constrained or unconstrained triangulation of S that minimizes the maximum triangle measure



Edge Insertion for Optimal Triangulations 8can be constructed in time O(n3) and storage O(n2).(2) In the non-degenerate case (i.e. when �(xyz) 6= �(abc) unless xyz = abc) the (unique) triangula-tion that lexicographically minimizes the decreasing vector of triangle measures can be constructedin the same amount of time and storage.Proof. To achieve the claimed bounds, we use the algorithm above, along with two data structuresrequiring a total of O(n2) storage. First, the quad-edge data structure of Guibas and Stol� [GuSt85]stores the triangulation in O(n) memory and admits common operations, such as removing an edge,adding an edge, and walking from one edge to the next in constant time each.Second, to record the status of candidate edges, we use an n-by-n bit array whose elementscorrespond to the edges de�ned by S. If the insertion of a candidate edge qs is unsuccessful, that is,the triangulation of P or R cannot be completed, then we know by the Cake Cutting Lemma that qscannot be in any improvement of the current triangulation. We then set the bit for qs, so that we donot attempt the insertion of qs again. If the insertion of qs is successful, we set the bit for the edgepr; because every improvement breaks pr (by condition (I)), it cannot be in any later improvement.The bit array can also be used to compute the sequence of candidate edges qs1; qs2; : : :: scan the rowcorresponding to q and take all edges qs that intersect pr and whose 
ag has not yet been set.Each edge-insertion, whether successful or not, causes a new 
ag set for one of the �n2� edgesde�ned by S. Therefore, at most �n2� edge-insertions are carried out taking a total of O(n3) time.Part (1) of the claim follows because an initial triangulation can be constructed in time O(n logn),most straightforwardly by plane-sweep (see [Edel87, section 8.3.1]).To obtain a triangulation that lexicographically minimizes the entire vector of triangle measureswe solve a sequence of constrained triangulation problems as in [EdTW92]. The �rst constrainingregion is de�ned by the points and edges on the boundary of the convex hull of S with the otherpoints forming holes. After computing an optimal triangulation as in (1), we remove the worsttriangle (which is unique by non-degeneracy assumption) from the constraining region and iterateuntil the region is empty. The time is still O(n3) because each edge needs to be inserted at mostonce during the entire process.A special order of insertions for condition (II). For measures � that satisfy (II) we de�nea special sequence qs1; qs2; : : : ; qsl of edge-insertions, as in [EdTW92]. The �rst edge, qs1, has theproperty that it intersects pr, but otherwise it intersects as few edges as possible. If any edge at allintersects pr, then qs1 is unique. As we explain below, each subsequent si+1 = next(si) lies on aparticular side of qsi, and on this side, the set of edges in the current triangulation B that intersectqsi+1 is the smallest proper superset of the edges that intersect qsi. The index l is the smallestinteger for which qsl leads to an improvement or sl+1 is unde�ned.On the insertion of qsi, the retriangulation process either completes its task or it gets stuckbecause all ears of the remaining regions have measure at least �(pqr). Let us now consider the casewhere the triangulation of P cannot be completed, as this is the case for which we need to de�nenext(si). In this case, the stack contains k+ 2 � 3 vertices q = p0; p1; : : : ; pk; pk+1 = si de�ning theremaining region P 0 � P ; each ear pj�1pjpj+1 of P 0 has measure at least �(pqr).



Edge Insertion for Optimal Triangulations 9Lemma 5.2 Let T be an improvement of B for � satisfying condition (II), and let P 0 be the un-completed part of P as above. Then all edges of T that intersect P 0 also intersect qsi. In particular,all edges of T incident to q avoid P 0.Proof. As in the proof of the Cake Cutting Lemma we consider P 0 as a \window" through whichwe see clipped edges of T . Now suppose the claim is not true, that is, there is a clipped edgethat does not have one of its endpoints on qsi. Then, as in the proof of the Cake Cutting Lemma,we can �nd a clipped edge xy whose far side is a triangle xpjy. But now condition (II) implies�(T ) > �(pj�1pjpj+1) if pj is an anchor of the ear pj�1pjpj+1, and �(B) > �(pj�1pjpj+1) if pj�1 orpj+1 is an anchor. This contradicts the assumption that P 0 has no such ear.It is interesting to observe that the proof of Lemma 5.2 breaks down if we assume that � satis�esonly (I), since pj�1pjpj+1 need not be a worst triangle.As we search for an insertion, we maintain an open wedge W containing all the remainingcandidate insertion edges. Initially, W is the wedge between the ray ~qp (starting at q and passingthrough p) and the ray ~qr. If the edge-insertion of qsi turns out to be unsuccessful because thetriangulation of P cannot be completed, then Lemma 5.2 allows us to rede�ne W as the part ofthe old W on R's side of ~qsi. Similarly, if the triangulation of R cannot be completed then W canbe narrowed down to P 's side of ~qsi. (As a consequence, if neither P nor R can be completelytriangulated, then it is impossible to improve the current triangulation by breaking pqr at q.)As soon as one of P or R has been found to be non-completable, wedge W is updated and anedge-insertion is attempted with si+1 = next(si). If it is P that could not be completed (the R caseis symmetrical), then we choose si+1 by looking �rst at the triangle on the far side of rmrm+1 (thelast edge of R) from q. If the third vertex s of this triangle lies in wedge W , then we choose si+1 tobe s. If this is not the case, then we move on to the next triangle sharing an edge with rmrm+1s,and test whether its far vertex z lies in the wedge. We eventually either run out of triangles (then noedge-insertion at q is possible), or we �nd a vertex si+1 such that the set of edges in B that intersectqsi+1 is the smallest proper superset of the edges that intersect qsi. See Figure 5.1.When we move from qsi to qsi+1, most of the work done to triangulate P and R can be saved.Assume that qsi has failed because P could not be completely triangulated. Because qsi+1 intersectsrmrm+1 all ears cut o� P remain the same and do not have to be reconsidered. On the other hand,rm+1 is no longer a vertex of R, so all ears cut o� R that are incident to rm+1 must be returned toR's territory. When we move to qsi+1 some additional edges are removed from B which, in e�ect,expands P and R. The new vertices can be pushed on their respective stacks, one by one, so thatthe triangulation process can continue where it left o�.The only place where we waste time in this process (i.e. where time spent is not proportionalto good ears found) is when ears cut o� R are returned to R. Since ears are returned for onlyone polygon, we can limit the waste by strictly alternating between cutting an ear of P and one ofR. This way, for each returned ear (except maybe the last) there is a permanently removed ear.Therefore, the total number of operations performed while edge-inserting qs1; qs2; : : : ; qsl is linear inthe number of edges in B that intersect qsl.As in the proof of Theorem 5.1, a successful edge-insertion, complete with retriangulation, takes



Edge Insertion for Optimal Triangulations 10� �q
sip1pk rmr1si+1�P R������ �� ��Figure 5.1: The next candidate qsi+1 must lie in wedge W .time linear in the number of old edges intersected by the new edge. We now prove that the old edgesremoved will never be reinserted in any later successful edge-insertion.Lemma 5.3 Assume � satis�es condition (II); let A be a triangulation of S with worst triangle pqr;and let B be obtained from A by the successful insertion of edge qsi. Then no edge xy in A thatintersects qsi can be an edge of any improvement of B.Proof. Lemma 5.2 implies that every improvement of B has an edge qw that lies inside the wedgeW computed when qsi is inserted into A. Every edge xy in A that intersects qsi also intersects everyother edge qt with t 2 W . In particular, xy \ qw 6= ; which implies that xy is neither in B nor inany improvement of B.Theorem 5.4 Let S be a set of n points in <2 and let � be a measure that satis�es (II).(1) A constrained or unconstrained triangulation of S that minimizes the maximum triangle measurecan be constructed in time O(n2 logn) and storage O(n).(2) In the non-degenerate case (i.e. when �(xyz) 6= �(abc) unless xyz = abc) the (unique) triangula-tion that lexicographically minimizes the decreasing vector of triangle measures can be constructedin the same amount of time and storage.Proof. As before, the algorithm uses the quad-edge data structure of [GuSt85] to store the tri-angulation. The bit array, however, is replaced by a priority queue that holds the triangles of Aordered by measure. It admits inserting and deleting triangles and �nding a triangle with maximummeasure in logarithmic time [CLR90]. Lemma 5.3 implies that only O(n2) edges and triangles aremanipulated in the main loop of the algorithm, which thus takes time O(n2 logn). Lemma 5.3 alsoimplies a quadratic upper bound on the number of iterations of the repeat-loop, which implies thatthe total time needed to �nd worst triangles pqr is also O(n2 logn). This proves part (1), and part(2) follows from the same argument as in Theorem 5.1.



Edge Insertion for Optimal Triangulations 116 Maximizing the Minimum HeightThe height �(xyz) of triangle xyz is the minimum distance from a vertex to the opposite edge. Amaxmin height triangulation of S maximizes the smallest height of its triangles, over all triangulationsof S. Although the maxmin height, the maxmin angle, and the minmax angle criteria all tend toavoid thin and elongated triangles, they do not necessarily de�ne the same optima. Indeed, four-pointexamples can be constructed to show that the three criteria are pairwise di�erent.The edge-
ipping strategy [Laws72, Laws77] applied to the maxmin height criterion does notalways succeed in computing an optimal triangulation. Consider a regular pentagon abcde and thecircle through the �ve points. Perturb a slightly to a point outside the circle and c and d slightlyto points inside the circle so that h(c; db) < h(d; ec) < h(b; ca) = h(e; ad) < h(a; be), where wewrite h(x; yz) for the minimum distance between a point x and a line through points y and z. SeeFigure 6.1. The maxmin-height triangulation uses diagonals ac and ad. If the current triangulationuses be and ce, however, no edge-
ip can result in a better triangulation.� ���� a bcdeFigure 6.1: Flipping either be or ce locally decreases the minimum height. Thus, the edge-
ip method cannotchange this triangulation into the optimal one.We now show that �� satis�es condition (II), when we de�ne the vertices of xyz with maxi-mum angle to be anchors. It follows that maxmin height triangulations can be constructed by theO(n2 logn)-time implementation of the edge-insertion paradigm.Lemma 6.1 Let xyz be a triangle of a triangulation A of S and let �(xyz) = h(y; zx). Then�(T ) < �(xyz) for any triangulation T of S that neither contains xyz nor breaks xyz at y.Proof. The height �(xyz) = h(y; zx) is the distance between y and a point s 2 zx. Assume thatxyz is not in T and that T does not break xyz at y. Therefore, there exists a triangle uyv in T sothat either u = x and uv \ yz 6= ; (rename vertices if necessary), or uv intersects both yx and yz.In both cases, �(uyv) � h(y; uv) < �(xyz) because uv \ ys 6= ;.It should be clear that Lemma 6.1 also holds for constrained triangulations of S. Theorem 5.4then implies that a maxmin height triangulation, and in the non-degenerate case a triangulationlexicographically maximizing the increasing vector of heights, can be computed in time O(n2 logn)and storage O(n).



Edge Insertion for Optimal Triangulations 127 Minimizing the Maximum EccentricityConsider a triangle xyz and let (c1; �1) be its circumcircle, with center c1 and radius �1. Theeccentricity of xyz, �(xyz), is the in�mum over all distances between c1 and points of xyz. Clearly,�(xyz) = 0 i� c1 lies in the closure of xyz. Note that eccentricity is related to the size of the maximumangle, �(xyz), only with large triangles counting more. Speci�cally, unless �(xyz) = �(abc) = 0,�(xyz) < �(abc) i� �(xyz)�1 < �(abc)�2where �2 is the radius of the circumcircle of abc. The triangulation of the pentagon in Figure 6.1 canbe used to show that edge-
ipping does not always succeed in minimizing the maximum eccentricity.Eccentricity is our �rst example of a measure satisfying condition (I), but not (II). As in thecases of minmax angle and maxmin height, we must de�ne y to be an anchor (to be more precise, a\candidate anchor") of xyz if y is the vertex of a largest angle in xyz. (Actually it does not matterhow we de�ne candidate anchor for triangles with all angles at most 90�. If for some obtuse triangle,however, the candidate anchor is not de�ned to be the vertex with angle larger than 90�, then wecan create a four-point counterexample to condition (II) using this obtuse triangle and one morevertex.) Not every candidate anchor will be an anchor. Consider Figure 7.1. In this �gure, vertex vlies very close to yz, so that the circumcircle of xyv is signi�cantly smaller than the one of xyz, and�(xyv) < �(xyz). In fact, �(xyz) exceeds the eccentricity of every triangle of the minmax-eccentricitytriangulation T , even though T does not break xyz at its vertex with largest angle, y. We now showthat � satis�es the weaker condition (I). ��� ��x zy vwFigure 7.1: T is the triangulation with diagonals vx and vw, and A the one with diagonals zx and zy. Then�(A) < �(xyz), but T does not break xyz at y, in contradiction to condition (II).Lemma 7.1 Let xyz be a triangle of a triangulation A of S, such that �(xyz) > 0, and let y be avertex with maximum angle in xyz. Then maxf�(A); �(T )g > �(xyz) for every triangulation T of Sthat neither contains xyz nor breaks xyz at y.Proof. Assume that T neither contains xyz nor breaks it at y. Therefore, T must contain a triangleuyv so that u = x and uv \ yz 6= ; (renaming vertices if necessary), or uv intersects yx and yz,



Edge Insertion for Optimal Triangulations 13as in Figure 7.2. Let (c1; �1) be the circumcircle of xyz. If neither u nor v are enclosed by thiscircle then �(xyz) < �(uyv) � �(T ). Otherwise, assume that v is enclosed by (c1; �1) and considerthe line segment c1v. It intersects a sequence of edges of A, ordered from c1 to v. For an edgeab in this sequence let abc be the supporting triangle so that c and c1 lie on di�erent sides of ab.Assume that ab is the �rst edge in the sequence so that (c1; �1) encloses c but not a and not b. Then�(A) � �(abc) > �(xyz). � ��� �:c1u vyx zFigure 7.2: The triangle xyz in A is neither contained in T nor is it broken at y by T . Therefore, T containsa triangle uyv that intersects xyz as shown. There must be a triangle with eccentricity greater than �(xyz)intersecting c1v.Theorem 5.1 thus implies that a minmax-eccentricity triangulation of n points can be constructedin time O(n3) and storage O(n2). In the non-degenerate case, the same time and storage su�ce toconstruct a triangulation lexicographically minimizing the decreasing vector of eccentricities.8 Minimizing the Maximum SlopeConsider a function f : <2 ! < de�ning a surface x3 = f(x1; x2) in <3. The gradient of f isthe vector rf = ( @f@x1 @f@x2 ), each component of which is itself a function from <2 to <. De�ner2f = ( @f@x1 )2 + ( @f@x2 )2, and call pr2f at a point (x1; x2) the slope at this point.Let S be a point set in <2 and let Ŝ be the corresponding set in <3 where each point of S has athird coordinate called elevation. For a point x of S, we write x̂ for the \lifted" point, that is, thecorresponding point in Ŝ. Analogous to the de�nitions in <2, x̂ŷ denotes the relatively open linesegment with endpoints x̂ and ŷ, and x̂ŷẑ denotes the relatively open triangle with corners x̂; ŷ; ẑ.We can think of x̂ŷẑ as a partial function f on <2, de�ned within xyz. At each point in xyz, thegradient is well de�ned and the same as for any other point in xyz. We can therefore set �(xyz)equal to the slope at any point of xyz, and call it the slope of xyz. For a triangulation A of S de�ne�(A) = maxf�(xyz) j xyz a triangle of Ag, as usual. A minmax-slope triangulation of S minimizesthe maximum � of any triangle.Triangulations are commonly used to compute surfaces interpolating point set data with ele-vations. Rippa [Rip90] recently proved that, regardless of elevations, the Delaunay triangulationminimizes the integral (over the convex hull of S) of r2f among all triangulations of S. See [DLR90]for other interesting optimization criteria.The �ve-point example of Figure 6.1 again shows that the edge-
ipping strategy does not in



Edge Insertion for Optimal Triangulations 14general compute a minmax-slope triangulation. Just imagine that points a; b; c; d; e are not perturbedand thus form a regular pentagon. Let the elevations of a; b; c; d; e be 5; 11; 0; 10; 0, in this sequence.The optimal triangulation is de�ned by the diagonals ac and ad, and the current triangulation (withdiagonals be and ce as shown) cannot be improved by a single edge-
ip.Observe that the direction of steepest descent at any point on a triangle xyz is given by � = �rfat that point. We call the vertex y a candidate anchor of xyz unless the line y+��, � 2 <, intersectsthe closure of xyz only at y. In other words, a candidate anchor is a vertex �rst hit when sweepingwith a line perpendicular to the direction of steepest descent. In the non-degenerate case xyz hasonly one candidate anchor, but if � is parallel to an edge then there are two candidate anchors.Call the intersection of the closure of x̂ŷẑ with the plane parallel to the x3-axis through y + �� thedescent line `(xyz) of xyz, assuming y is an anchor of xyz.As in the case of eccentricity, we can show that � does not satisfy the strong condition (II).Simple four-point examples force us to de�ne anchor as above. Figure 8.1 gives a �ve-point examplein which an improvement T of A, does not break a triangle xyz with �(T ) < �(xyz) at its anchor.��� ��x̂; 0 ẑ; 0ŷ; 10 v̂; 10ŵ; 10Figure 8.1: Triangulation T with diagonals vx and vw is an improvement of A with diagonals zx and zy. T hasno triangle with slope as large as �(xyz), but does not break xyz at y.The remainder of this section shows that � does satisfy the weak condition (I). For technicalreasons it is necessary to assume that no four points of S are coplanar. Indeed, the strict inequalityin Lemma 8.1 is incorrect without this assumption. (This general position assumption, however,does not diminish the generality of our algorithm, because a simulated perturbation of the pointscan be used to enforce general position [EdM�u90].)� ��� �û v̂ŷx̂ ẑ`1Figure 8.2: The triangle xyz with candidate anchor y in A is neither contained in T nor is it broken at y by T .Therefore, T contains a triangle uyv that intersects xyz as shown. It is possible that u = x or v = z, but not bothat the same time.



Edge Insertion for Optimal Triangulations 15Lemma 8.1 Let xyz be a triangle of a triangulation A of S, and let the intersection of line y+ ��with the closure of xyz be strictly larger than point y. Then maxf�(A); �(T )g > �(xyz) for everytriangulation T of S that neither contains xyz nor breaks xyz at y.Proof. The slope of xyz, �(xyz), is also the slope of the descent line `1 = `(xyz). Assume withoutloss of generality that `1 descends from ŷ down to where it meets the closure of x̂ẑ. (If it ascends, weuse the same argument only with the x3 axis reversed.) Assume also that T neither contains xyz norbreaks it at y. It follows that T contains an edge uv so that either u = x and uv \ yz 6= ; (renamevertices if necessary), or uv intersects both yx and yz. If �(uyv) > �(xyz) then �(T ) > �(xyz) andthere is nothing to prove.Otherwise, the edge ûv̂ must pass above `1 in <3. By this we mean that there is a line parallel tothe x3-axis that meets ûv̂ and `1 and the elevation of its intersection with ûv̂ exceeds the elevationof its intersection with `1, as in Figure 8.2. Then at least one of û and v̂ must lie above the planeh1 through points x̂; ŷ; ẑ; say v̂ lies above h1. Consider the triangle yvz, and note that it is notnecessarily a triangle of A or T , nor even an empty triangle of S. We have �(yvz) > �(xyz) becausethe x3-parallel projection of `1 onto the plane h2 through ŷ; v̂; ẑ is steeper than `1 but not steeperthan `2 = `(yvz). We distinguish three cases depending on which vertex is the candidate anchor ofyvz, that is, through which one a line of steepest descent on ŷv̂ẑ passes.Case 1. v is a candidate anchor of yvz. Then `2 connects v̂ with a point on the closure of ŷẑ.Consider the intersection of A with a plane parallel to the x3-axis through `2. This intersectionincludes a polygonal chain that connects v̂ with that same point on the closure of ŷẑ (since yz is anedge in A). One of the segments in the chain must have slope at least the average slope of the chain;hence one of the triangles abc in A has �(abc) � �(yvz) > �(xyz), and �(A) > �(xyz).Case 2. z is a candidate anchor of yvz. Then `2 connects ẑ with a point on the closure of ŷv̂. Thenwe use the same argument as in Case 1, only applied to T . Since yv is an edge in T at least one ofthe triangles abc in T that intersect the projection of `2 has �(abc) � �(yvz) > �(xyz), and therefore�(T ) > �(xyz).Case 3. y is a candidate anchor of yvz. In this case `2 connects ŷ with a point ŵ on the closure of v̂ẑ.Furthermore, it is impossible that `2 descends from ŷ to ŵ because ŵ lies above h1, which contradicts�(yvz) > �(xyz). Thus, it must be that `2 descends from ŵ down to ŷ. Then �(uyv) > �(yvz)because ûv̂ passes above `2. But �(yvz) > �(xyz), so we have shown �(T ) > �(xyz).Note that Lemma 8.1 also holds for constrained triangulations of S. We can therefore applyTheorem 5.1 and obtain an O(n3)-time and O(n2)-storage algorithm for constructing a minmaxslope triangulation, and in the non-degenerate case for constructing a triangulation lexicographicallyminimizing the decreasing vector of slopes.Remark. It would be interesting to �nd other optimality criteria for point sets with elevations,that are amenable to edge-insertion. However, we know that several natural measures, e.g. �(xyz)equal to the maximum angle on the lifted triangle x̂ŷẑ, do not satisfy either (I) or (II). A six-pointcounterexample can be formed with the vertices of a regular hexagon. There are two triangulationsof the hexagon with an equilateral triangle in the middle; no single edge-insertion transforms one intothe other. By appropriately setting elevations, one can make these two triangulations local optima.
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