01/29/14
23:49:03

CS 61B: Lecture 8
Wednesday, February 5, 2014

Today's reading: GCoodrich & Tamassia, Section 3.3.

THE "public" AND "private" KEYWORDS

Thus far, we’ve usually declared fields and nethods using the "public" keyword.
However, we can also declare a field or nmethod "private". A private nethod

or field is invisible and inaccessible to other classes, and can be used only
within the class in which the field or nethod is decl ared.

Wiy would we want to nake a field or nethod private?

(1) To prevent data within an object from being corrupted by other classes.

(2) To ensure that you can inprove the inplenentation of a class without
causi ng other classes that depend on it to fail.

In the followi ng exanple, Evil Tanperer tries to get around the error checking
code of the Date class by fiddling with the internals of a Date object.

public class Evil Tanperer {
public void tanmper() {
Date d = new Date(1, 1, 2006);

public class Date {
private int day;
private int nonth;

d.day = 100; /1l Foiled!!
d.setMonth(0); // Foiled again!!

|
|
|
|
private void setMnth(int m { |
month = m |
I
|
|
|

} }
}
public Date(int nonth, int day) {
[Inpl enentation with
error-checking code here.]
}
}
However, javac won't conpile Evil Tanperer, because the Date class has declared
its vulnerable parts "private". setMnth is an internal hel per nmethod used

within the Date class, whereas the Date constructor is a public part of the
interface of the Date class. Error-checking code in the constructor ensures
that invalid Dates are not constructed.

Here are sone inportant definitions.

The _interface_ of a class is a set of prototypes for public nmethods (and
sonetimes public fields), plus descriptions of the nethods’ behaviors.

An _Abstract _Data_Type_ (ADT) is a class that has a well-defined interface, but
its inmplementation details are firmy hidden fromother classes. That way, you
can change the inplenentation of a class w thout jeopardizing the prograns that
depend on it. The Date class is an ADT. W' Il inplenment lots of ADTs this
senester.

An _invariant_ is a fact about a data structure that is always true (assum ng
the code is bug-free), no matter what nmethods are called by external classes.
For exanple, the Date ADT enforces the invariant that a Date object always
represents a valid date. An invariant is enforced by allow ng access to
certain fields only through nethod calls.

An ADT is often a good thing to aspire to. |In npost of your classes, you should
declare all fields private, as well as hel per functions neant only for internal
use, so that you can mmintain sensible invariants on your data structures.

However, not all classes are ADTs! Sone classes are nothing nore than data
storage units, and do not need to enforce any invariants. In such classes, all
fields nmay be declared public.

08

The SList ADT

Last lecture, | created an SList class to solve the problenms of representing
enpty lists and inserting items at the beginning of a list. Today, | want to
i ntroduce anot her advantage of the SList class.

We want the SList ADT to enforce two invariants:

(1) An SList’s "size" variable is always correct.

(2) Alist is never circularly linked; there is always a tail node whose
"next" reference is null.

Both these goals are acconplished by nmeking sure that _only_ the nmethods of the
SList class can change the lists’ internal data structures. SList ensures this
by two neans:

(1) The fields of the SList class (head and size) are declared "private".

(2) No nethod of SList returns an SLi st Node.

The first rule is necessary so that the evil tanperer can’t change the fields
and corrupt the SList or violate invariant (1). The second rule prevents the
evil tanperer fromchanging list items, truncating a list, or creating a cycle
inalist, thereby violating invariant (2).

01/29/14
23:49:03

DOUBLY- LI NKED LI STS

As we saw last class, inserting an itemat the front of a linked list is easy.
Deleting fromthe front of a list is also easy. However, inserting or deleting
an itemat the end of a list entails a search through the entire list, which
mght take a long time. (Inserting at the end is easy if you have a ‘tail’
pointer, as you will learn in Lab 3, but deleting is still hard.)

A doubly-linked list is a list in which each node has a reference to the
previ ous node, as well as the next node.

cl ass DLi st Node { | class DList {
bj ect item | private DLi st Node head;
DLi st Node next; | private DListNode tail;
|
|

DLi st Node prev; }
}
iten | iten | iten
head | ----- | T T I | tail
----- |--=-- 1 4] |- 1 1] ===] 8] -----
| +>| X | ----- | <----- B I | <=---- - | - | <-+-. |
----- |- o] |---m- e S R
[prev | .-++---->lprev | .-++---->lprev | X|]
I - | | - | I - |
| next | | next | | next |

DLists nake it possible to insert and delete itens at both ends of the |ist,
taking constant running tine per insertion and deletion. The follow ng code
renoves the tail node (in constant tine) if there are at least two items in the
DLi st .

tail.prev.next = null;
tail = tail.prev;

You' Il need a special case for a DList with no itens. You'll also need a
special case for a DList with one item because tail.prev.next does not exist.
(I nstead, head needs to be changed.)

Let’s look at a clever trick for reducing the nunber of special cases, thereby
sinplifying our DList code. W designate one DListNode as a _sentinel_, a
speci al node that does not represent an item Qur list representation will be
circularly linked, and the sentinel wll represent both the head and the tail
of the list. Qur DList class no |longer needs a tail pointer, and the head
pointer points to the sentinel.

08

class DList {
private DLi st Node head;
private int size;

}
sentin
|
--------------- >|
| | prev
| [-----
| .-+
| [-----
[Heno s
| | | nex
| N
| v
e,
[iten] |
----- !
|-+] 4] [-----
AR EESEEE | <-----hbe |
|--om e ! [-----
|prev | .-++----- >| prev
|- | |
| next | |

The invariants of the DList ADT
The following invariants apply t
(1) For any DList d, d.head !=
(2) For any DListNode x, Xx.next
(3) For any DListNode x, X.prev
(4) For any DListNode x, if x.n
(5) For any DListNode x, if x.p
(6) A DList's "size" variable i

sentinel (denoted by "head"

a sequence of "next" refere

An enpty DList is represented by
point to itself.

Here’s an exanple of a nethod th

public void renoveBack() {
if (head.prev != head) {
head. prev = head. prev. prev
head. prev. next = head,
si ze--;
}
}

In Lab 4 and Homework 4, you’ll

el
itenm <---+-. |
_____ | e e o -
X 1] head
______ T

-+]
t-----

v

iten

1]
----- [<oommmbe

e > prev
----- | | -l
next | | next |

are nore conplicated than the SList invariants.
o the DList with a sentinel.

null. (There's always a sentinel.)
I'= null.

'=null.

ext ==y, then y.prev == x.

rev ==y, then y.next == x.

s the nunber of DLi st Nodes, NOT COUNTI NG t he
), that can be accessed fromthe sentinel by
nces.

having the sentinel’s prev and next fields

at renmoves the last itemfroma DList.

/1 Do nothing if the DList is enpty.
; /1 Sentinel now points to second-last item
/'l Second-last itemnow points to sentinel.

i npl ement nore nethods for this DList class.

