
01/29/14
23:49:03 108

 CS 61B: Lecture 8
 Wednesday, February 5, 2014

Today’s reading: Goodrich & Tamassia, Section 3.3.

THE "public" AND "private" KEYWORDS
===================================
Thus far, we’ve usually declared fields and methods using the "public" keyword.
However, we can also declare a field or method "private". A private method
or field is invisible and inaccessible to other classes, and can be used only
within the class in which the field or method is declared.

Why would we want to make a field or method private?
(1) To prevent data within an object from being corrupted by other classes.
(2) To ensure that you can improve the implementation of a class without
 causing other classes that depend on it to fail.

In the following example, EvilTamperer tries to get around the error checking
code of the Date class by fiddling with the internals of a Date object.

 public class Date { | public class EvilTamperer {
 private int day; | public void tamper() {
 private int month; | Date d = new Date(1, 1, 2006);
 |
 private void setMonth(int m) { | d.day = 100; // Foiled!!
 month = m; | d.setMonth(0); // Foiled again!!
 } | }
 | }
 public Date(int month, int day) { |
 [Implementation with |
 error-checking code here.] |
 }
 }

However, javac won’t compile EvilTamperer, because the Date class has declared
its vulnerable parts "private". setMonth is an internal helper method used
within the Date class, whereas the Date constructor is a public part of the
interface of the Date class. Error-checking code in the constructor ensures
that invalid Dates are not constructed.

Here are some important definitions.

The _interface_ of a class is a set of prototypes for public methods (and
sometimes public fields), plus descriptions of the methods’ behaviors.

An _Abstract_Data_Type_ (ADT) is a class that has a well-defined interface, but
its implementation details are firmly hidden from other classes. That way, you
can change the implementation of a class without jeopardizing the programs that
depend on it. The Date class is an ADT. We’ll implement lots of ADTs this
semester.

An _invariant_ is a fact about a data structure that is always true (assuming
the code is bug-free), no matter what methods are called by external classes.
For example, the Date ADT enforces the invariant that a Date object always
represents a valid date. An invariant is enforced by allowing access to
certain fields only through method calls.

An ADT is often a good thing to aspire to. In most of your classes, you should
declare all fields private, as well as helper functions meant only for internal
use, so that you can maintain sensible invariants on your data structures.

However, not all classes are ADTs! Some classes are nothing more than data
storage units, and do not need to enforce any invariants. In such classes, all
fields may be declared public.

The SList ADT

Last lecture, I created an SList class to solve the problems of representing
empty lists and inserting items at the beginning of a list. Today, I want to
introduce another advantage of the SList class.

We want the SList ADT to enforce two invariants:
(1) An SList’s "size" variable is always correct.
(2) A list is never circularly linked; there is always a tail node whose
 "next" reference is null.

Both these goals are accomplished by making sure that _only_ the methods of the
SList class can change the lists’ internal data structures. SList ensures this
by two means:
(1) The fields of the SList class (head and size) are declared "private".
(2) No method of SList returns an SListNode.

The first rule is necessary so that the evil tamperer can’t change the fields
and corrupt the SList or violate invariant (1). The second rule prevents the
evil tamperer from changing list items, truncating a list, or creating a cycle
in a list, thereby violating invariant (2).

01/29/14
23:49:03 208

DOUBLY-LINKED LISTS
===================
As we saw last class, inserting an item at the front of a linked list is easy.
Deleting from the front of a list is also easy. However, inserting or deleting
an item at the end of a list entails a search through the entire list, which
might take a long time. (Inserting at the end is easy if you have a ‘tail’
pointer, as you will learn in Lab 3, but deleting is still hard.)

A doubly-linked list is a list in which each node has a reference to the
previous node, as well as the next node.

 class DListNode { | class DList {
 Object item; | private DListNode head;
 DListNode next; | private DListNode tail;
 DListNode prev; | }
 } |

 ------------- ------------- -------------
 | item| | item| | item|
 head | -----| | -----| | -----| tail
 ----- |----- | 4 || |----- | 1 || |----- | 8 || -----
 | . +->|| X | -----|<-----++-. | -----|<-----++-. | -----|<-+-. |
 ----- |----- -----| |----- -----| |----- -----| -----
 |prev | .-++----->|prev | .-++----->|prev | X ||
 | -----| | -----| | -----|
 | next| | next| | next|
 ------------- ------------- -------------

DLists make it possible to insert and delete items at both ends of the list,
taking constant running time per insertion and deletion. The following code
removes the tail node (in constant time) if there are at least two items in the
DList.

 tail.prev.next = null;
 tail = tail.prev;

You’ll need a special case for a DList with no items. You’ll also need a
special case for a DList with one item, because tail.prev.next does not exist.
(Instead, head needs to be changed.)

Let’s look at a clever trick for reducing the number of special cases, thereby
simplifying our DList code. We designate one DListNode as a _sentinel_, a
special node that does not represent an item. Our list representation will be
circularly linked, and the sentinel will represent both the head and the tail
of the list. Our DList class no longer needs a tail pointer, and the head
pointer points to the sentinel.

 class DList {
 private DListNode head;
 private int size;
 }

 sentinel
 ------------- -----
 | item|<---+-. |
 --------------->| -----| -----
 | |prev | X || head
 | |----- -----|
 | || .-+------+-----------------
 | |----- -----| |
 | ---------+------+-. || |
 | | | next-----|<---------------+-----
 | | ------------- | |
 | v v |
 ---+--------- ------------- ------------- |
 | | item| | item| | item| | | | | | |
 | | -----| | -----| | -----| |
 |--+-- | 4 || |----- | 1 || |----- | 8 || |
 || . | -----|<-----++-. | -----|<-----++-. | -----| |
 |----- -----| |----- -----| |----- -----| |
 |prev | .-++----->|prev | .-++----->|prev | .-++---
 | -----| | -----| | -----|
 | next| | next| | next|
 ------------- ------------- -------------

The invariants of the DList ADT are more complicated than the SList invariants.
The following invariants apply to the DList with a sentinel.
(1) For any DList d, d.head != null. (There’s always a sentinel.)
(2) For any DListNode x, x.next != null.
(3) For any DListNode x, x.prev != null.
(4) For any DListNode x, if x.next == y, then y.prev == x.
(5) For any DListNode x, if x.prev == y, then y.next == x.
(6) A DList’s "size" variable is the number of DListNodes, NOT COUNTING the
 sentinel (denoted by "head"), that can be accessed from the sentinel by
 a sequence of "next" references.

An empty DList is represented by having the sentinel’s prev and next fields
point to itself.

Here’s an example of a method that removes the last item from a DList.

 public void removeBack() {
 if (head.prev != head) { // Do nothing if the DList is empty.
 head.prev = head.prev.prev; // Sentinel now points to second-last item.
 head.prev.next = head; // Second-last item now points to sentinel.
 size--;
 }
 }

In Lab 4 and Homework 4, you’ll implement more methods for this DList class.

