
94 Jonathan Richard Shewchuk

17 Neural Networks

NEURAL NETWORKS

Can do both classification & regression.

[They tie together several ideas from the course: perceptrons, linear regression, logistic regression, ensem-
bles of learners, and stochastic gradient descent. They also tie in the idea of lifting sample points to a
higher-dimensional feature space, but with a new twist: neural nets can learn features themselves.]

[I want to begin by reminding you of the story I told you at the beginning of the semester, about Frank
Rosenblatt’s invention of perceptrons in 1957. Remember that he held a press conference where he predicted
that perceptrons would be “the embryo of an electronic computer that [the Navy] expects will be able to
walk, talk, see, write, reproduce itself and be conscious of its existence.”]

[Perceptron research continued until something monumental happened in 1969. Marvin Minsky, one of the
founding fathers of AI, and Seymour Papert published a book called “Perceptrons.” Sounds promising?
Well, part of the book was devoted to things perceptrons can’t do. And one of those things is XOR.]

0 1
0

0
1

1

x1

x2

XOR
0
1

[Think of the four outputs here as sample points in two-dimensional space. Two of them are in class 1, and
two of them are in class 0. We want to find a linear classifier that separates the 1’s from the 0’s. Can we do
it? No.]

[So Minsky and Papert were basically saying, “Frank. You’re telling us this machine is going to be conscious
of its own existence but it can’t do XOR?”]

[The book had a devastating e↵ect on the field. After its publication, almost no research was done on neural
net-like ideas for a decade, a time we now call the “AI Winter.” Shortly after the book was published, Frank
Rosenblatt died.]

[One thing I don’t understand is why the book was so fatal when there are several almost obvious ways to
get around the XOR problem. Here’s the easiest.]

If you add one new quadratic feature, x1x2, XOR is linearly separable in 3D.

0

0 1

1
[Draw this by hand. xorcube.pdf ]

[Now we can find a plane that cuts through the cube obliquely and separates the 0’s from the 1’s.]



Neural Networks 95

[However, there’s an even more powerful way to do XOR. The idea is to design linear classifiers whose
output is the input to other linear classifiers. That way, you should be able to emulate arbitrary logic circuits.
Suppose I put together some linear decision functions like this.]

z
linear combo

linear combo

linear combo

x1

x2 [Draw this by hand. lincombo.pdf ]

[If I interpret the output as true if z is greater than one-half or false if z is less than one-half, can I do XOR
with this?]

A linear combo of a linear combo is a linear combo . . . only works for linearly separable points.

[We need one more idea to make neural nets. We need to add some sort of nonlinearity between the linear
combinations. Let’s call these boxes that compute linear combinations “neurons.” If a neuron sends the
linear combination it computes through some nonlinear function before sending it on to other neurons, then
the neurons can act somewhat like logic gates. The nonlinearity could be as simple as clamping the output
so it can’t go below zero. And that’s what people usually use in practice these days.]

[However, the traditional choice has been to use the logistic function. The logistic function can’t go below
zero or above one, which is nice because it can’t ever get huge and oversaturate the other neurons it’s sending
information to. The logistic function is also smooth, which means it has well-defined gradients and Hessians
we can use for optimization. And we know that the logistic is often a good model for posterior probabilities.]

[With logistic functions between the linear combinations, here’s a two-level perceptron that computes the
XOR function.]

s(20v + 20w � 30)

w

NAND

OR

AND

x1

x2

x1 � x2

s(30 � 20x1 � 20x2)

s(20x1 + 20x2 � 10)

v

[Draw this by hand. xorgates.pdf ]

[A natural question is: can an algorithm learn a function like this?]



96 Jonathan Richard Shewchuk

Network with 1 Hidden Layer

Input layer: x1, . . . , xd ; xd+1 = 1
Hidden units: h1, . . . , hm ; hm+1 = 1
Output layer: z1, . . . , zk

Layer 1 weights: m ⇥ (d + 1) matrix V V>i is row i
Layer 2 weights: k ⇥ (m + 1) matrix W W>i is row i

V33
1

1

W24

x2

h2

h3

z1

z2

W12x1

V11

V21

h1

[Draw this by hand. 1hiddenlayer.pdf ]

Recall [logistic function] s(�) =
1

1 + e��
. Other nonlinear fns can be used, called the activation fns.

For vector v, s(v) =

2
66666666664

s(v1)
s(v2)
...

3
77777777775
, s1(v) =

2
6666666666666664

s(v1)
s(v2)
...
1

3
7777777777777775

[We apply s to a vector component-wise.]

h = s1(V x) . . . that is, hi = s(V>i x)
z = s(Wh) = s(Ws1(V x))

[Neural networks often have more than one output. This allows us to build multiple classifiers that share
hidden units. One of the interesting advantages of neural nets is that if you train multiple classifiers simul-
taneously, sometimes some of them come out better because they can take advantage of particularly useful
hidden units that first emerged to support one of the other classifiers.]

[We can add more hidden layers, and for image recognition tasks it’s common to have 8 to 200 hidden
layers. There are many variations you can experiment with—for instance, you can have connections that go
forward more than one layer.]



Neural Networks 97

Training

Usually stochastic or batch gradient descent.

Pick loss fn L(z, y) e.g., L(z, y) = kz � yk2
" "

predictions true labels (could be vectors)

Cost fn is J(V,W) = 1
n
Pn

i=1 L(z(Xi),Yi)

[I’m using a capital Y here because now Y is a matrix with one row for each sample point and one column for
each output unit of the neural net. Sometimes there is just one output unit, but many neural net applications
have more.]
[Now we want to find the weight matrices V and W that minimize J.]

Usually there are many local minima!

[The cost function for a neural net is, generally, not even close to convex. Sometimes, it’s possible to wind
up in a bad minimum. We’ll talk later about some clever ways to coax neural nets into better minima.]

[Now let me ask you this. Suppose we start by setting all the weights to zero, and then we do gradient
descent on the weights. What will go wrong?]

[This neural network has a symmetry: there’s really no di↵erence between one hidden unit and any other
hidden unit. The gradient descent algorithm has no way to break the symmetry between hidden units. You
can get stuck in a situation where all the weights out of an input unit have the same value, and all the weights
into an output unit have the same value, and they have no way to become di↵erent from each other. To avoid
this problem, and in the hopes of finding a better local minimum, we start with random weights.]

Let w be a vector containing all the weights in V & W. Batch gradient descent:

w vector of random weights
repeat

w w � ✏ rJ(w)

[We’ve just rewritten all the weights as a vector for notational convenience. When you actually write the
code, for the sake of speed, you should probably operate directly on the weight matrices V and W.]

[It’s important to make sure the random weights aren’t too big, because if a unit’s output gets too close to
zero or one, it can get “stuck,” meaning that a modest change in the input values causes barely any change
in the output value. Stuck units tend to stay stuck. I’ll say more about that next lecture.]

[Instead of batch gradient descent, we can use stochastic gradient descent, which means we use the gradient
of one sample point’s loss function at each step. Typically, we shu✏e the points in a random order, or just
pick one randomly at each step.]

[The hard part of this algorithm is computing the gradient. If you simply derive one derivative for each
weight, you’ll find that for a network with many layers of hidden units, it takes time linear in the number of
edges in the neural network to compute a derivative for one weight. Multiply that by the number of weights.
We’re going to spend the rest of this lecture learning to improve the running time to linear in the number of
edges.]

Naive gradient computation: O(edges2) time
Backpropagation: O(edges) time



98 Jonathan Richard Shewchuk

Computing Gradients for Arithmetic Expressions

[Let’s see what it takes to compute the gradient of an arithmetic expression. It turns into repeated applica-
tions of the chain rule from calculus.]

2e

d

c

feb

a

1

1

d

c

@ f
@z =

@ f
@n
@n
@z

@ f
@a

@ f
@ f = 1

= d @ f
@e

= @ f
@e
@e
@c

= @ f
@d
@d
@a

= @ f
@d

@ f
@d

@ f
@e =

@ f
@ f
@ f
@e

= c @ f
@e

= @ f
@d

= @ f
@d
@d
@b

@ f
@c

@ f
@b

@e
@c = d @e

@d = c

f = e2

@d
@a = 1 @d

@b = 1

d = a + b e = cd
@ f
@e = 2e

= 2e @ f
@ f

= @ f
@e
@e
@d

computed during forward pass

+

“backpropagation”

where z is an input to n.

Goal: compute r f =

2
6666666666666664

@ f
@a
@ f
@b
@ f
@c

3
7777777777777775

e2

Each value z gives partial derivative of the form

⇥

computed during backward pass after forward pass

[Draw this by hand. gradientsarith.pdf Draw the black diagram first. Then the goal (upper
right). Then the green and red expressions, from left to right, leaving out the green arrows.
Then the green arrows, starting at the right side of the page and moving left. Lastly, write
the text at the bottom. (Use the same procedure for the next two figures.)]



Neural Networks 99

[What if a unit’s output goes to more than one unit? Then we need to understand a more complicated version
of the chain rule. This is a standard rule of multivariate calculus:]

@

@⌧
L(z1(⌧), z2(⌧)) =

@L
@z1

@z1

@⌧
+
@L
@z2

@z2

@⌧
= rzL ·

@

@⌧
z

[With this rule, let’s compute gradients for an expression from least-squares linear regression.]

w1

w2

↵

+X21
@L
@z2

+X22
@L
@z2

= @L
@z1
+ @L@z2

@L
@↵ + @L@z2

@z2
@↵= @L

@z1

@z1
@↵

@L
@w1

@L
@w2

@L
@z1
= 2(z1 � y1)

@L
@z2
= 2(z2 � y2)

= @L
@z1

@z1
@w1
+ @L@z2

@z2
@w1

= @L
@z1

@z1
@w2
+ @L@z2

@z2
@w2

= X11
@L
@z1

= X12
@L
@z1

X21w1 + X22w2 + ↵

Loss

z1

z2

X11w1 + X12w2 + ↵

kz � yk2

[Draw this by hand. gradientsmulti.pdf ]

[Observe that we’re doing dynamic programming here. We’re computing the solutions of subproblems, then
using each solution to compute the solutions of several bigger problems.]



100 Jonathan Richard Shewchuk

The Backpropagation Alg.

[Backpropagation is a dynamic programming algorithm for computing the gradients we need to do neural
net stochastic gradient descent in time linear in the number of weights.]

V>i is row i of weight matrix V [and likewise for rows of W]

Recall s0(�) = s(�) (1 � s(�))

hi = s(Vi · x), so rVi hi = s0(Vi · x) x = hi (1 � hi) x
z j = s(W j · h), so rW j z j = s0(W j · h) h = z j (1 � z j) h

rh z j = z j (1 � z j) W j

[Here is the arithmetic expression for the same neural network I drew for you three illustrations ago. It looks
very di↵erent when you depict it like this, but don’t be fooled; it’s exactly the same network I started with.
But now we treat the weights V and W as the inputs, rather than the point x.]

V

W

h

= @L@z j
rW j z j

= @L@hi
rVi hi =

Pk
j=1
@L
@z j
rh z j

= @L@z j
z j (1 � z j) h

= @L@hi
hi (1 � hi) x =

P
j z j (1 � z j) @L@z j

Wj

rW j L

rVi L rh L

s(Wh)

Compute rV L, rW L one row at a time.

kz � yk2
Lz

s(V x)

rz L = 2(z � y)

[Draw this by hand. backpropalg.pdf ]


