
54 Jonathan Richard Shewchuk

10 Regression, including Least-Squares Linear and Logistic Regression

REGRESSION aka Fitting Curves to Data

Classification: given point x, predict class (often binary)
Regression: given point x, predict a numerical value

[Classification gives a discrete prediction, whereas regression gives us a quantitative prediction, usually on a
continuous scale. We’ve already seen an example of regression in Gaussian discriminant analysis. QDA and
LDA don’t just give us a classifier; they also give us the probability that a particular class label is correct.
So QDA and LDA do regression on probability values.]

– Choose form of regression fn h(x; w) with parameters w (h = hypothesis)
– like decision fn in classification [e.g., linear, quadratic, logistic in x]

– Choose a cost fn (objective fn) to optimize
– usually based on a loss fn; e.g., empirical risk = expected loss on data

Some regression fns:
(1) linear: h(x; w,↵) = w · x + ↵
(2) polynomial [equivalent to linear regression with added polynomial features]
(3) logistic: h(x; w,↵) = s(w · x + ↵) recall: logistic fn s(�) = 1

1+e��
[The last choice is interesting. You’ll recall that LDA produces a posterior probability function with this
expression. So the logistic function seems to be a natural form for modeling certain probabilities. If we want
to model posterior probabilities, sometimes we use LDA; but alternatively, we could skip fitting Gaussians
to points, and instead just try to directly fit a logistic function to a set of probabilities.]

Some loss fns: let z be prediction h(x); y be true label
(A) L(z, y) = (z � y)2 squared error
(B) L(z, y) = |z � y| absolute error
(C) L(z, y) = �y ln z � (1 � y) ln(1 � z) logistic loss, aka cross-entropy: y 2 [0, 1], z 2 (0, 1)

Some cost fns to minimize:
(a) J(h) = 1

n
Pn

i=1 L(h(Xi), yi) mean loss [you can leave out the “ 1
n ”]

(b) J(h) = maxn
i=1 L(h(Xi), yi) maximum loss

(c) J(h) =
Pn

i=1 !i L(h(Xi), yi) weighted sum [some points are more important than others]
(d) J(h) = (a), (b), or (c) +�kwk2 `2 penalized/regularized
(e) J(h) = (a), (b), or (c) +�kwk`1 `1 penalized/regularized

Some famous regression methods:
Least-squares linear regr.: (1) + (A) + (a)
Weighted least-squ. linear: (1) + (A) + (c)
Ridge regression: (1) + (A) + (a) + (d)
Lasso: (1) + (A) + (a) + (e)
Logistic regr.: (3) + (C) + (a)
Least absolute deviations: (1) + (B) + (a)
Chebyshev criterion: (1) + (B) + (b)

9>>=
>>; quadratic cost; minimize w/calculus

quadratic program
convex cost; minimize w/gradient descent�
linear program

[I have given you several choices of regression function, several choices of loss function, and several choices
of objective function. You can snap one part out and replace it with a di↵erent one. But the optimization
algorithm and its speed depend crucially on which parts you pick. Let’s consider some examples.]

Regression, including Least-Squares Linear and Logistic Regression 55

LEAST-SQUARES LINEAR REGRESSION (Gauss, 1801)

Linear regression fn (1) + squared loss fn (A) + cost fn (a).

Find w,↵ that minimizes
nX

i=1

(Xi · w + ↵ � yi)2.

•• •

•
•

• •
••

• •
••

•

•

•

••

•
•
•

•
•

•

•

••

•

•• •
•

•

•

•
•

•
• •

•

•

•

•

•

•

•

•

•

•

•

•• •

•

•

•

•
•

•

• •
•

• •

•
•

• •
••

•

•

•

•

X1

X2

linregress.pdf (ISL, Figure 3.4) [An example of linear regression.]

Convention: X is n ⇥ d design matrix of sample pts
y is n-vector of scalar labels

2
66666666666666666666666666666666664

X11 X12 . . . X1 j . . . X1d
X21 X22 X2 j X2d
...

Xi1 Xi2 Xi j Xid
...

Xn1 Xn2 Xn j Xnd

3
77777777777777777777777777777777775

 point X>i

2
666666666666666666666666666666664

y1
y2

...

yn

3
777777777777777777777777777777775

" "
feature column X⇤ j y

Usually n > d. [But not always.]

Recall fictitious dimension trick [from Lecture 3]: rewrite h(x) = x · w + ↵ as

[x1 x2 1] ·

2
666666664

w1
w2
↵

3
777777775 .

Now X is an n ⇥ (d + 1) matrix; w is a (d + 1)-vector. [We’ve added a column of all-1’s to the end of X.]
[We rewrite the optimization problem above:]

Find w that minimizes kXw � yk2 = RSS(w), for residual sum of squares

56 Jonathan Richard Shewchuk

Optimize by calculus:

minimize RSS(w) = w>X>Xw � 2y>Xw + y>y
r RSS = 2X>Xw � 2X>y = 0

) X>X|{z}
(d+1)⇥(d+1)

w = X>y| {z }
(d+1)�vectors

(the normal equations [w unknown; X & y known]

If X>X is singular, problem is underconstrained.
[. . . because the sample points all lie on a common subspace (through the origin).]
[Notice that X>X is always positive semidefinite, but not always positive definite.]

We use a linear solver to find w = (X>X)�1X>| {z }
X+, the pseudoinverse of X, (d+1)⇥n

y. [never actually invert the matrix!]

[We never compute X+ directly, but we are interested in the fact that w is a linear transformation of y.]
[X is usually not square, so X can’t have an inverse. However, every X has a pseudoinverse X+, and if X>X
is invertible, then X+ is a “left inverse.”]

Observe: X+X = (X>X)�1X>X = I ((d + 1) ⇥ (d + 1) [which explains the name “left inverse”]

Observe: the predicted values of yi are ŷi = w · Xi) ŷ = Xw = XX+y = Hy
where H|{z}

n⇥n

= XX+ is called the hat matrix because it puts the hat on y.

[Ideally, H would be the identity matrix and we’d have a perfect fit, but if n > d + 1, then H is singular.]

Advantages:
– Easy to compute; just solve a linear system.
– Unique, stable solution. [. . . except when the problem is underconstrained.]

Disadvantages:
– Very sensitive to outliers, because errors are squared!
– Fails if X>X is singular. [Which means the problem is underconstrained, has multiple solutions.]

[In discussion section 6, we’ll address how to handle the underconstrained case where X>X is singular.]

[Apparently, least-squares linear regression was first posed and solved in 1801 by the great mathematician
Carl Friedrich Gauss, who used least-squares regression to predict the trajectory of the planetoid Ceres.
A paper he wrote on the topic is regarded as the birth of modern linear algebra.]

LOGISTIC REGRESSION (David Cox, 1958)

Logistic regression fn (3) + logistic loss fn (C) + cost fn (a).
Fits “probabilities” in range [0, 1].

Usually used for classification. The input yi’s can be probabilities,
but in most applications they’re all 0 or 1.

QDA, LDA: generative models
logistic regression: discriminative model
[We’ve learned from LDA that in classification, the posterior probabilities are often modeled well by a
logistic function. So why not just try to fit a logistic function directly to the data, skipping the Gaussians?]

Regression, including Least-Squares Linear and Logistic Regression 57

With X and w including the fictitious dimension; ↵ is w’s last component . . .
Find w that minimizes

J =
nX

i=1

L(s(Xi · w), yi) = �
nX

i=1

0
BBBB@yi ln s(Xi · w) + (1 � yi) ln (1 � s(Xi · w))

1
CCCCA .

L(z, 0)

0.0 0.2 0.4 0.6 0.8 1.0
z

1

2

3

4
L(z)

L(z, 0.7)

0.0 0.2 0.4 0.6 0.8 1.0
z

1

2

3

4
L(z)

logloss0.pdf, loglosspt7.pdf [Plots of the loss L(z, y) for y = 0 (left) and y = 0.7 (right). As
you might guess, the left function is minimized at z = 0, and the right function is minimized
at z = 0.7. These loss functions are always convex.]

J(w) is convex! Solve by gradient descent.
[To do gradient descent, we’ll need to compute some derivatives.]

s0(�) =
d

d�
1

1 + e��
=

e��

(1 + e��)2

= s(�) (1 � s(�))

-4 -2 0 2 4
x

0.2

0.4

0.6

0.8

1.0
s(x)

-4 -2 0 2 4
x

0.05

0.10

0.15

0.20

0.25
s� (x)

logistic.pdf, dlogistic.pdf [Plots of s(�) (left) and s0(�) (right).]

Let si = s(Xi · w)

rw J = �
X

yi

si
rsi �

1 � yi

1 � si
rsi

!

= �
X

yi

si
� 1 � yi

1 � si

!
si(1 � si) Xi

= �
X

(yi � si) Xi

= �X>(y � s(Xw)) where s(Xw) =

2
6666666666666664

s1
s2
...
sn

3
7777777777777775

[applies s component-wise to Xw]

58 Jonathan Richard Shewchuk

Gradient descent rule: w w + ✏ X>(y � s(Xw))

Stochastic gradient descent: w w + ✏ (yi � s(Xi · w)) Xi
Works best if we shu✏e points in random order, process one by one.
For very large n, sometimes converges before we visit all points!

[This looks a lot like the perceptron learning rule. The only di↵erence is that the “�si” part is new.]

Starting from w = 0 works well in practice.

problogistic.png, by “mwascom” of Stack Overflow

http://stackoverflow.com/questions/28256058/plotting-decision-boundary-of-logistic-regression
[An example of logistic regression.]

If sample pts are linearly separable and w · x = 0 separates them (with decision boundary touching no pt),
scaling w to have infinite length causes s(Xi ·w)! 1 for a pt i in class C, s(Xi ·w)! 0 for a pt not in class C,
and J(w)! 0 [in the limit as kwk ! 1].

[Moreover, making w grow extremely large is the only way to get the cost function J to approach zero.]

Therefore, logistic regression always separates linearly separable pts!

[In this case, the cost function J(w) has no finite local minimum, but gradient descent will “converge” to a
solution, in the sense that the cost J will get arbitrarily close to zero, though of course the weight vector w
will never become infinitely long. Mathematically speaking, w doesn’t converge at all—it diverges—though
J(w) does converge to zero.]

[A 2018 paper by Soudry, Ho↵er, Nacson, Gunasekar, and Srebro shows that gradient descent applied to
logistic regression eventually converges to the maximum margin classifier, but the convergence is very, very
slow. A practical logistic regression solver should use a di↵erent optimization algorithm.]

