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8 Eigenvectors and the (Anisotropic) Multivariate Normal Distribution

EIGENVECTORS

[I don’t know if you were properly taught about eigenvectors here at Berkeley, but I sure don’t like the way
they’re taught in most linear algebra books. So I’ll start with a review. You all know the definition of an
eigenvector:]

Given square matrix A, if Av = �v for some vector v , 0, scalar �, then
v is an eigenvector of A and � is the eigenvalue of A associated w/v.

[But what does that mean? It means that v is a magical vector that, after being multiplied by A, still points
in the same direction, or in exactly the opposite direction.]
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Draw this figure by hand (eigenvectors.pdf)

[For most matrices, most vectors don’t have this property. So the ones that do are special, and we call them
eigenvectors.]
[Clearly, when you scale an eigenvector, it’s still an eigenvector. Only the direction matters, not the length.
Let’s look at a few consequences.]

Theorem: if v is eigenvector of A w/eigenvalue �,
then v is eigenvector of Ak w/eigenvalue �k [k is a +ve integer; we will use Theorem later]

Proof: A2v = A(�v) = �Av = �2v, etc.

Theorem: moreover, if A is invertible,
then v is eigenvector of A�1 w/eigenvalue 1/�

Proof: A�1v = A�1( 1
�Av) = 1

�v [look at the figures above, but go from right to left.]

[Stated simply: When you invert a matrix, the eigenvectors don’t change, but the eigenvalues get inverted.
When you square a matrix, the eigenvectors don’t change, but the eigenvalues get squared.]

[Those theorems are pretty obvious. The next theorem is not obvious at all.]
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Spectral Theorem: every real, symmetric n ⇥ n matrix has real eigenvalues and
n eigenvectors that are mutually orthogonal, i.e., v>i v j = 0 for all i , j

[This takes about a page of math to prove. One detail is that a matrix can have more than n eigenvector
directions. If two eigenvectors happen to have the same eigenvalue, then every linear combination of those
eigenvectors is also an eigenvector. Then you have infinitely many eigenvector directions, but they all span
the same plane. So you just arbitrarily pick two vectors in that plane that are orthogonal to each other. By
contrast, the set of eigenvalues is always uniquely determined by a matrix, including the multiplicity of the
eigenvalues.]

We can use them as a basis for Rn.

Building a Matrix with Specified Eigenvectors

[There are a lot of applications where you’re given a matrix, and you want to extract the eigenvectors and
eigenvalues. But when you’re learning the math, I think it’s more intuitive to go in the opposite direction.
Suppose you know what eigenvectors and eigenvalues you want, and you want to create the matrix that has
those eigenvectors and eigenvalues.]

Choose n mutually orthogonal unit n-vectors v1, . . . , vn [so they specify an orthonormal coordinate system]
Let V = [v1 v2 . . . vn] ( n ⇥ n matrix
Observe: V>V = I [o↵-diagonal 0’s because the vectors are orthogonal]

[diagonal 1’s because they’re unit vectors]
) V> = V�1 ) VV> = I

V is orthonormal matrix: acts like rotation (or reflection)

Choose some eigenvalues �i:

Let ⇤ =

2
6666666666666664

�1 0 . . . 0
0 �2 0
...

. . .
...

0 0 . . . �n

3
7777777777777775

[diagonal matrix of eigenvalues]

Defn. of eigenvector: AV = V⇤
[This is the same definition of eigenvector I gave you at the start of the lecture—Av = �v—but this version
covers all n eigenvectors in one statement. How do we find the A that satisfies this equation?]

) AVV> = V⇤V> [which proves . . . ]

Theorem: A = V⇤V> =
Pn

i=1 �i viv>i|{z}
outer product: n ⇥ n matrix, rank 1

has chosen eigenvectors/values

This is a matrix factorization called the eigendecomposition. [every real, symmetric matrix has one]
Example: [Using the eigenvectors and eigenvalues from the start of the lecture]

A =
"

1/
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2 1/
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#
=

"
3/4 5/4
5/4 3/4

#
.

[This completes our task of finding a symmetric matrix with specified orthonormal eigenvectors and eigen-
values. Again, it is more common in practice that you are given a symmetric matrix, such as a sample
covariance matrix, and you need to compute its eigenvectors and eigenvalues. That’s harder. But I think that
going from eigenvectors to the matrix helps to build intuition.]
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Observe: A2 = V⇤V>V⇤V> = V⇤2V> A�2 = V⇤�2V>

[This is another way to see that squaring a matrix squares its eigenvalues without changing its eigenvectors.
It also suggests a way to define a matrix square root.]
Given a symmetric PSD matrix ⌃, we can find a symmetric square root A = ⌃1/2:

compute eigenvectors/values of ⌃
take square roots of ⌃’s eigenvalues
reassemble matrix A [with the same eigenvectors as ⌃ but changed eigenvalues]

[Again, the first step of this algorithm—computing the eigenvectors and eigenvalues of a matrix—is much
harder than the remaining two steps.]

Visualizing Quadratic Forms

[My favorite way to visualize a symmetric matrix is to graph something called the quadratic form, which
shows how applying the matrix a↵ects the length of a vector.]

The quadratic form of M is x>Mx.

Suppose you want a matrix whose quadratic form has the isocontours at right below, which are circles
transformed by A. [The same matrix A I’ve been using, which stretches along the direction with eigenvalue 2
and shrinks along the direction with eigenvalue �1/2.]
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circles.pdf, ellipses.pdf, circlebowl.pdf, ellipsebowl.pdf
[Both figures at left are plots of kzk2, and both figures at right are plots of x>A�2x.
(Draw the stretch direction (1, 1) with eigenvalue 2 and the shrink direction (1,�1) with
eigenvalue � 1

2 on the ellipses at right.)]
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That is, we want q2(Az) = q1(z).
Answer: set x = Az.
Then q2(x) = q1(z) = q1(A�1x) = kA�1xk2 = x>A�2x.

The isocontours of the quadratic form x>A�2x are ellipsoids determined by the eigenvectors/values of A.
{x : x>A�2x = 1} is an ellipsoid with axes v1, v2, . . . , vn and

radii �1, �2, . . . , �n
because if vi has length 1 (vi lies on unit circle), x = Avi has length �i (Avi lies on the ellipsoid).

Therefore, contours of x>Mx are ellipsoids determined by eigenvectors/values of M�1/2.
[The eigenvalues of M�1/2 are the inverse square roots of the eigenvalues of M.]

Special case: A (or M) is diagonal , eigenvectors are coordinate axes
, ellipsoids are axis-aligned

[Draw axis-aligned isocontours for a diagonal metric.]

A symmetric matrix M is
positive definite if w>Mw > 0 for all w , 0, all eigenvalues positive
positive semidefinite if w>Mw � 0 for all w, all eigenvalues nonnegative
indefinite if +ve eigenvalue & �ve eigenvalue
invertible if no zero eigenvalue

pos definite pos semidefinite indefinite

posdef.pdf, possemi.pdf, indef.pdf
[Examples of quadratic forms for positive definite, positive semidefinite, and indefinite ma-
trices. Positive eigenvalues correspond to axes where the curvature goes up; negative eigen-
values correspond to axes where the curvature goes down. (Draw the eigenvector directions,
and draw the flat trough in the positive semidefinite bowl.)]

Every squared matrix is pos semidef, including A�2. [Eigenvalues of A�2 are squared, cannot be negative.]
If A�2 exists, it is pos def. [An invertible matrix has no zero eigenvalues.]

What about the isosurfaces of x>Mx for a +ve semidef, singular M?

[If M is only positive semidefinite, but not positive definite, the isosurfaces are cylinders instead of ellipsoids.
These cylinders have ellipsoidal cross sections spanning the directions with nonzero eigenvalues, but they
run in straight lines along the directions with zero eigenvalues.]
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ANISOTROPIC GAUSSIANS

[Let’s revisit the multivariate Gaussian distribution, with di↵erent variances along di↵erent directions.]

X ⇠ N(µ,⌃) [X and µ are d-vectors. X is a random variable with mean µ.]

f (x) =
1

p
(2⇡)d |⌃|

exp
 
�1

2
(x � µ)> ⌃�1 (x � µ)

!

" determinant of ⌃

⌃ is the d ⇥ d SPD covariance matrix.
⌃�1 is the d ⇥ d SPD precision matrix.

Write f (x) = n(q(x)), where q(x) = (x � µ)> ⌃�1 (x � µ)
" "

R! R, exponential Rd ! R, quadratic

[Now q(x) is a function we understand—it’s just a quadratic bowl centered at µ, the quadratic form of the
precision matrix ⌃�1. The other function n(·) is a simple, monotonic, convex function, an exponential of the
negation of half its argument. This mapping n(·) does not change the isosurfaces.]

Principle: given monotonic n : R! R, isosurfaces of n(q(x)) are same as q(x) (di↵erent isovalues).
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f (x) = n(q(x))
ellipsebowl.pdf, ellipses.pdf, exp.pdf, gauss3d.pdf, gausscontour.pdf

[(Show this figure on a separate “whiteboard” for easy reuse next lecture.) A paraboloid
(left) becomes a bivariate Gaussian (right) after you compose it with a suitable scalar func-
tion (center).]
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[One of the main ideas is that if you understand the isosurfaces of a quadratic function, then you understand
the isosurfaces of a Gaussian, because they’re the same. The di↵erences are in the isovalues—in particular,
the Gaussian achieves its maximum at the mean, and decreases to zero as you move infinitely far away from
the mean.]

The isocontours of (x � µ)>⌃�1(x � µ) are determined by eigenvectors/values of ⌃1/2.
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Aside: q(x) is the squared distance from ⌃�1/2x to ⌃�1/2µ. Consider the metric

d(x, µ) =
���⌃�1/2x � ⌃�1/2µ

��� =
q

(x � µ)>⌃�1(x � µ) =
p

q(x).

[So we think of the precision matrix as a “metric tensor” which defines a metric, a sort of warped distance
from x to the mean µ.]

Covariance

Let R, S be random variables—column vectors or scalars
Cov(R, S ) = E[(R � E[R]) (S � E[S ])>] = E[RS >] � µR µ>S
Var(R) = Cov(R,R)
If R is a vector, covariance matrix for R is

Var(R) =

2
6666666666666664

Var(R1) Cov(R1,R2) . . . Cov(R1,Rd)
Cov(R2,R1) Var(R2) Cov(R2,Rd)

...
. . .

...
Cov(Rd,R1) Cov(Rd,R2) . . . Var(Rd)

3
7777777777777775

[symmetric; each Ri is scalar]

For a Gaussian R ⇠ N(µ,⌃), one can show Var(R) = ⌃. [. . . as you did in Homework 2.]
[An important point is that statisticians didn’t just arbitrarily decide to call ⌃ a covariance matrix. Rather,
statisticians discovered that if you find the covariance of the normal distribution by integration, it turns out
that the covariance is ⌃. This is a happy fact; it’s rather elegant.]

Ri, R j independent ) Cov(Ri,R j) = 0 [the reverse implication is not generally true, but . . . ]
Cov(Ri,R j) = 0 AND multivariate normal dist. ) Ri, R j independent

all features pairwise independent ) Var(R) is diagonal [the reverse is not generally true, but . . . ]
Var(R) is diagonal AND joint normal

, f (x)|{z}
multivariate

= f (x1) f (x2) · · · f (xd)|                   {z                   }
univariate Gaussians

) ellipsoids are axis-aligned, with squared radii on diagonal of ⌃ = Var(R)

[So when the features are independent, you can write the multivariate Gaussian PDF as a product of uni-
variate Gaussian PDFs. When they aren’t, you can do a change of coordinates to the eigenvector coordinate
system, and write it as a product of univariate Gaussian PDFs in eigenvector coordinates. You did something
very similar in Q6.2 of Homework 2.]


