
CS 189 Introduction to Machine Learning
Spring 2024 Jonathan Shewchuk HW6
Due: Wednesday, April 17 at 11:59 pm

Deliverables:

1. Submit your predictions for the test sets to Kaggle as early as possible. Include your Kaggle scores in
your write-up (see below). The Kaggle competition for this assignment can be found at

• https://www.kaggle.com/competitions/cs189-hw6-cifar-spring-2024

2. The written portion:

• Submit a PDF of your homework, with an appendix listing all your code, to the Gradescope
assignment titled “Homework 6 Write-Up”. Please see section 3.5 for an easy way to gather all
your code for the submission (you are not required to use it, but we strongly recommend it).

• In addition, please include, as your solutions to each coding problem, the specific subset of code
relevant to that part of the problem. Whenever we say “include code”, that means you can either
include a screenshot of your code, or typeset your code in your submission (using markdown or
LATEX).

• You may typeset your homework in LaTeX or Word (submit PDF format, not .doc/.docx format)
or submit neatly handwritten and scanned solutions. Please start each question on a new page.
• If there are graphs, include those graphs in the correct sections. Do not put them in an appendix.

We need each solution to be self-contained on pages of its own.

• In your write-up, please state with whom you worked on the homework.

• In your write-up, please copy the following statement and sign your signature next to it. (Mac
Preview and FoxIt PDF Reader, among others, have tools to let you sign a PDF file.) We want
to make it extra clear so that no one inadvertently cheats.
“I certify that all solutions are entirely in my own words and that I have not looked at another
student’s solutions. I have given credit to all external sources I consulted.”

3. The coding portion:

• Submit all the code needed to reproduce your results to the Gradescope assignment entitled
“Homework 6 Code”. Yes, you must submit your code twice: in your PDF write-up follow-
ing the directions as described above so the readers can easily read it, and once in the format
described below so the assignment autograder can parse them correctly.

• Your submission should include all the files in the neural networks package. Simply drag and
drop these files directly into the Gradescope submission box; don’t package them in a directory
or zip them in any way.

• Do NOT submit any data files that we provided.

• Please also include a short file named README listing your name, student ID, and instructions
on how to reproduce your results.

HW6,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 1

https://www.kaggle.com/competitions/cs189-hw6-cifar-spring-2024

• Please take care that your code doesn’t take up inordinate amounts of time or memory. If your
code cannot be executed by the autograder, your solution cannot be verified.

• Finally, also include any code you write for the PyTorch section of this homework into your
Gradescope submission. If you choose to work directly in Google Colab, feel free to simply
download your python notebook and attach it with the rest of your submission.

• At the end, your Gradescope submission screen might look like the following:

HW6,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 2

1 Honor Code
Declare and sign the following statement:

“I certify that all solutions in this document are entirely my own and that I have not looked at anyone else’s
solution. I have given credit to all external sources I consulted.”

Signature :

While discussions are encouraged, everything in your solution must be your (and only your) creation. Fur-
thermore, all external material (i.e., anything outside lectures and assigned readings, including figures and
pictures) should be cited properly. We wish to remind you that consequences of academic misconduct are
particularly severe!

2 Background
This section will provide a background on neural networks that is designed to help you complete the assign-
ment. There are no questions in this part. The questions for the homework begin in Section 4.

2.1 Neural Networks
Many of the most exciting recent breakthroughs in machine learning have come from “deep” (many-layered)
neural networks, such as the deep reinforcement learning algorithm that learned to play Atari from pixels,
or the ChatGPT model, which generates text that is nearly indistinguishable from human-generated text.

Neural network libraries such as Tensorflow and PyTorch have made training complicated neural network
architectures very easy. However, we want to emphasize that neural networks begin with fundamentally
simple models that are just a few steps removed from basic logistic regression. In this assignment, you will
build two fundamental types of neural network models, all in plain numpy: a feed-forward fully-connected
network, and a convolutional neural network. We will start with the essential elements and then build up
in complexity.

A neural network model is defined by the following.

• An architecture defining the flow of information between computational layers. This defines the
composition of functions that the network performs from input to output.

• A cost function (e.g. cross-entropy or mean squared error).

• An optimization algorithm (e.g. stochastic gradient descent with backpropagation).

• A set of hyperparameters. (Here we use this as a catch-all term to also include algorithm parameters
that technically are not “hyperparameters” in the traditional sense because they don’t help you change
the bias-variance tradeoff, such as the learning rate and the mini-batch size for stochastic gradient
descent with mini-batches.)

Each layer is defined by the following components.

• A parameterized function that defines the layer’s map from input to output (e.g. f (x) = σ(Wx+ b)).

• An activation function σ (e.g. ReLU, sigmoid, etc.).

• A set of parameters (e.g. weights and bias terms).

HW6,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 3

https://deepmind.com/research/publications/playing-atari-deep-reinforcement-learning
https://openai.com/blog/better-language-models/

Neural networks are commonly used for supervised learning problems, where we have a set of inputs and a
set of labels, and we want to learn the function that maps inputs to labels. To learn this function, we need
to update the parameters of the network (i.e. the weights, including the bias terms). We do this using mini-
batch gradient descent. To compute the gradients for gradient descent, we use a dynamic programming
algorithm called backpropagation.

In the backpropagation algorithm, we first compute what is called a forward pass of the network. In the
forward pass, we send a mini-batch of input data (e.g. 50 training points) through the network. The output
is a set of predicted labels, which we use as input to our loss function (along with the true labels from the
training data). We then take the gradients of the loss with respect to the parameters of each layer, starting
with the output of the network and using the chain rule to propagate backwards through the layers. This is
called the backward pass. During the backward pass we compute the gradients of the loss function with
respect to each of the model parameters, starting from the last layer and “propagating” the information from
the loss function backwards through the network. This lets us calculate gradients with respect to all the
parameters of our network while letting us avoid computing the same gradients multiple times.

To summarize, training a neural network involves three steps.

1. Forward propagation of inputs.

2. Computing the cost.

3. Backpropagation and parameter updates.

2.2 Batching
When building neural networks, we have to carefully consider the data. In Homework 4, you coded both
batch gradient descent and stochastic gradient descent for logistic regression. For the stochastic version,
where only a single data point was used, the form of gradients used in gradient descent were different than
those of batch gradient descent. Neural networks usually operate on mini-batches, or subsets of the data
matrix. This is because iterating on all the data at once (batch gradient descent) is inefficient for large data
sets, whereas iterating on just one training point at a time introduces excessive stochasticity (randomness)
and makes poor use of your computer’s caches and potential for parallelism. Thus, every step of your neural
network should be defined to operate on mini-batches of data. During a single operation of mini-batch
gradient descent, you take a matrix of shape (B, d) where B is the mini-batch size and d is the number
of features, and do a forward pass on B training points at once—ideally using vector operations to obtain
some parallelism in your computations (as every training point is processed the same way). The input to a
convolutional neural network for image recognition might be a four-dimensional array of shape (B,H,W,C)
where B is the mini-batch size, H is the height of the image, W is the width of the image, and C is the
number of channels in the image (3 for RGB—that is, red, green, and blue intensities).

As you are writing the gradient descent algorithm to work on mini-batches, all of your derivations must
work for mini-batches. For that reason, many of the derivations you do for this homework will differ from
those you have seen in class. Thinking in terms of mini-batches often changes the shapes and operations
you do. Your derivations must be for mini-batches and cannot use loops to iterate over individual data
points. Be prepared to spend some time working out the tricky details of how to do this.

2.3 Feed-Forward, Fully-Connected Neural Networks
A feed-forward, fully-connected neural network consists of layers of units alternating with layers of edges.
Each layer of edges performs an affine transformation of an input, followed by a nonlinear activation func-

HW6,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 4

https://en.wikipedia.org/wiki/Affine_transformation

Figure 1: A 3-layer fully-connected neural network.
Figure 2: A single fully-connected neuron.

tion. “Fully-connected” means that a layer of edges connects every unit in one layer of units to every unit
in the next layer of units. We use the following notation when defining fully-connected layers, with su-
perscripts in brackets indexing layers (both layers of units and layers of edges) and subscripts indexing the
vector/matrix elements. In this notation, we will use row vectors (not column vectors) to represent unit
layers so that we can apply successive matrices (edge layers) to them from left to right.

• x: A single data vector, of shape 1 × d, where d is the number of features. You can think of it as “unit
layer zero.” We present a training point or a test point here.

• ŷ: A single output vector, of shape 1 × k, where k is the number of output units. These could be
regression values or they could symbolize classifications (and you can mix output units of both types).
Each training point x is accompanied by a label vector y, and the goal of training is to make x’s output
ŷ be close to y.

• n[l]: The number of units (neurons) in unit layer l.

• W[l]: A matrix of weights connecting unit layer l−1 with unit layer l, of shape n[l−1]×n[l]. This matrix
represents the weights of the connections in edge layer l. At edge layer 1, the shape is d × n[1].

• b[l]: The bias vector for layer l, of shape 1 × n[l].

• h[l]: The output of edge layer l. This is a vector of shape 1 × n[l].

• σ[l](·): The nonlinear activation function applied at layer l.

A fully-connected layer l is a function

ϕ[l](h[l−1]) = σ[l](h[l−1]W[l] + b[l]) = h[l].

The output h[l] of edge layer l is computed then used as the input to edge layer l + 1. (At edge layer 1, h[0]

is simply the input vector x.) A neural network is thus a composition of functions. We want to find weights
such that the network maps each training point x to its label y.

HW6,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 5

In a multiclass classification problem with more than two classes, it is common to set k equal to the number of
classes and have each output unit represent a true/false value for one class. This is called one-hot encoding.
A one-hot encoded output unit used for classification might employ the labels

yi =

1 x ∈ class i,
0 otherwise.

For example, for a classification problem with 3 classes, the label for a training point in class 3 might be
(0, 0, 1) and the label for a training point in class 2 might be (0, 1, 0). However, the precise values you
choose ought to depend on the activation function σ. Moreover, for reasons explained in lecture, you might
get better results by using less extreme labels, such as 0.15 and 0.85, in lieu of 0 and 1, if σ is the logistic
(sigmoid) function. If you have only two classes, there is usually no advantage to one-hot encoding; one
output unit for the class label should suffice.

2.4 Convolutional Neural Networks
We will use the following notation when defining a convolutional neural network layer.

• X: A single image tensor (multi-dimensional array), of shape d1 × d2 × c, where d1 and d2 are the
spatial dimensions, and c is the number of channels (of which there are typically three, encoding red,
green, and blue pixel intensities).

• ŷ: A single output vector, of shape 1 × k.

• n[l]: The number of image channels in layer l. Usually n[l] = c.

• (k1, k2)[l]: The size of the spatial dimensions of each filter/mask/kernel in layer l. Sometimes called
the kernel size.1

• W[l]: The tensor of filters convolved at edge layer l. This tensor has shape k1 × k2 × n[l−1] × n[l].

• b[l]: The bias vector for layer l, of shape 1 × n[l].

• H[l]: The output of layer l. This is a tensor of shape r1 × r2 × n[l], where (r1, r2) is the shape of output
of the convolution operation. Below we will discuss how to calculate this.

• σ[l](·): The nonlinear activation function applied at layer l.

In a convolutional layer, each filter is convolved with the input image, across every image channel. This
operation is, essentially, a sliding sum of elementwise products. Figure 3 gives a visual example. Let
Z denote the intermediate result just before we apply the activation function σ to obtain H. To compute a
single element in the intermediate output Z, for a single unit n, we compute

Z[d1, d2, n] = (X ∗W)[d1, d2, n] =
∑

i

∑
j

∑
c

W[i, j, c, n]X[d1 + i, d2 + j, c] + b[n].

Note: this formula is the cross-correlation formula from signal processing and NOT the convolution for-
mula. Nevertheless this is what ML people call convolution, and so will we. It actually makes sense to use

1“Kernel” is an overloaded word. In the context of convolutional networks, the convolutional filter is also called the “convolu-
tional kernel.” This has no relationship with the “kernel” in the kernel trick and kernel methods. The convolutional kernel is also
referred to as a “mask” in lecture.

HW6,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 6

Figure 3: Figure showing an example of one convolution.

Figure 4: Figure showing an example of a max pooling layer with a kernel size of 2 and stride of 2.

cross-correlation instead of using convolution because the former can be interpreted as producing an output
which is higher at locations where the image has the pattern in the filter and low elsewhere. Convolution
is the same as cross-correlation with a flipped filter, and our filters are learned, so it makes no difference
operationally whether you implement convolution or cross-correlation. However, to pass our tests, you must
implement cross-correlation and call that convolution because that’s how we do it in ML-land.

In this equation, we drop the layer superscripts for clarity, and index elements of the matrices in brackets.
The pre-output Z is what we call a “feature map,” which essentially captures the strength of each filter at
every region in the image. In the equation above, we slide the filter over the image in increments of one
pixel. We can choose to take a larger steps instead. The size of the step taken in the convolution operation
is referred to as the stride.

The output of the convolutional layer is
H[l] = σ[l](Z[l]).

A pooling layer is used to downsample the input feature maps. It takes an input array of shape d1 × d2 × n
and outputs an array of shape r1 × r2 × n. Note that it does not change the number of channels, but typically
reduces the number of spatial dimensions, i.e., r1 < d1 and r2 < d2. In order to do this, we have a kernel
of shape k1 × k2 and a stride s. For each channel, we take either the max or the average of all the points in
the window of size k1 × k2. Then we slide the window by s pixels and repeat until we have performed this
operation over the entire input image. This is illustrated in Figure 4. When the operation performed over
each sliding window is max, it is called max pooling, whereas when the operation is averaging, then it is

HW6,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 7

called average pooling. Using similar notation as above, the function computed by a max pooling layer is

Z[r1, r2, c] = MaxPool(X)[r1, r2, c] = max{X[r1s : r1s + k1 − 1, r2s : r2s + k2 − 1, c]}.

Replacing the max function with the average function, we get an average pooling layer. This function is
abstracted away as pool fn in the code. Note that pool fn takes an array as input and outputs a single
float. The notation on the right hand side should be read as array slicing as in numpy.

Traditional CNNs operate on images by combining convolutional layers with pooling layers to progressively
“shrink” the spatial size of the input until it is small enough to be fed to fully-connected network layers for
classification.

3 The Neural Nets Package

3.1 Structure
We have provided a modularized codebase for constructing neural networks. The codebase has the following
structure.

Figure 5: The structure of the starter codebase.

As you can see, the modules in the codebase reflect the structure outlined above. Different losses, activations,
layers, optimizers, hyperparameters, and neural network architectures can be combined to yield different
architectures.

In the codebase we have provided, each layer is an object with a few relevant attributes.

• parameters: An OrderedDict containing the weights and biases of the layer.

• gradients: An OrderedDict containing the gradients of the loss with respect to the weights and
biases of the layer, with the same keys as parameters.

• cache: An OrderedDict containing intermediate quantities calculated in the forward pass that are
useful for the backward pass.

• activation: An Activation instance that is the activation function applied by this layer.

• n in: The number of input units (or, input channels in the case of a CNN).

HW6,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 8

• n out: The number of output units (or, output channels in the case of CNN).

You will pass the layer a parameter that selects an activation function from those defined in activations.py.
This will be stored as an attribute of the layer, which can be called as layer.activation(). The forward
and backward passes of the layer are defined by the following methods.

• forward This method takes as input the output X from the previous layer (or input data). This method
computes the function ϕ(·) from above, combining the input with the weights W and bias b that are
stored as attributes. It returns an output out and saves the intermediate value Z to the cache attribute,
as it is needed to compute gradients in the backward pass.
def forward(self, X: np.ndarray) -> np.ndarray:

"""Forward pass: multiply by a weight matrix, add a bias, apply activation.

Also, store all necessary intermediate results in the `cache` dictionary
to be able to compute the backward pass.

"""

...

• backward This method takes the gradient of the downstream loss (i.e., the gradient of the loss with
respect to the output of the current layer) as input. Then it uses the cache from the forward pass to
compute the gradient of its output with respect to its inputs and weights. Via chain rule, it then returns
the gradient of the loss with respect to the input of the layer.
def backward(self, dLdY: np.ndarray) -> np.ndarray:

"""Backward pass for fully connected layer.

Compute the gradients of the loss with respect to:

1. the weights of this layer (mutate the `gradients` dictionary)
2. the bias of this layer (mutate the `gradients` dictionary)
3. the input of this layer (return this)

"""

...

Each activation function has a similar (but simpler) structure:
class Linear(Activation):

def __init__(self):

super().__init__()

def forward(self, Z: np.ndarray) -> np.ndarray:

"""Forward pass for f(z) = z."""

return Z

def backward(self, Z: np.ndarray, dY: np.ndarray) -> np.ndarray:

"""Backward pass for f(z) = z."""

return dY

3.2 Testing
We have provided you with some local test cases that are run using the unittest module built into Python
for testing. We test the forward and backward methods of all the layers that you implement, along with a
few that you don’t have to implement (which should already be passing their tests). We also test the weight
initialization of the FullyConnected layer so that you have some guidance when you implement a layer
for the first time. When you are done with the homework, your code should be passing all the tests, i.e.
you should have 23/23 tests passing at the end.

To run all the tests, make sure that you are in the root directory of the project (and not in either of the
neural networks/ and tests/ directories). Then run the following:

HW6,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 9

python -m unittest -v

A total of 23 tests will be run. Before you implement anything, 15 tests should fail and 8 should pass.

The tests are located in the tests/ directory. Please do not modify the pre-existing tests because they
rely on data generated by a correct implementation, and any modifications can cause the tests to fail. The
data is located in the tests/data directory. However, if you wish to write your own tests in addition to the
ones that are already provided, then please refer to this tutorial and the official documentation. Note that we
don’t require you to write your own tests as part of this homework.

The tests are organized into separate classes that mirror the structure of the classes that they test. For
example, the forward method of the Conv2D class located in neural networks/layers.py is tested by
the test forward method of the TestConv2D class located in tests/test layers.py. If you want to
run that specific test, you can use the following command root directory of the project:
python -m unittest -v tests.test_layers.TestConv2D.test_forward

If you instead want to run all the tests defined in the TestConv2D class, you should run:
python -m unittest -v tests.test_layers.TestConv2D

And if you want to run all the tests in test layers.py, then you should run:
python -m unittest -v tests.test_layers

3.3 Autograder
Note that the local tests above are not comprehensive, so it is possible that your code passes all the
tests locally but is still broken and gives you poor performance. They can still be a valuable debugging
tool but if you want to properly test for correctness, submit your code to Gradescope by following the
instructions on the front page of this PDF. The Gradescope autograder generates a suite of randomized tests
(with randomized parameters and inputs) every time it is run and will also test for certain gradients that the
local test cases miss.

You are welcome to submit to the autograder as frequently as you wish. However, since the local tests are
quicker to run, are fully deterministic and don’t require you to submit to Gradescope every time, they should
be your first priority as a debugging tool.

3.4 Debugging
We have also included a python notebook named check gradients.ipynb, which you can further use for
debugging your layers’ gradient computations. This can provide more debuggability than simply running
the provided unit tests. It will compare the gradients you implement for various layers against gradients
computed numerically as

∂ f
∂xk

(a) ≈
f (. . . , ak + ϵ, . . .) − f (. . . , ak − ϵ, . . .)

2ϵ

for some small ϵ. If your gradient implementations are correct, they should be close enough to the numerical
approximations such that the error between them is very small (usually on the order of 10−8 or smaller).

Something to note, however, is that this notebook only checks if the gradients you implement in the back-
ward pass are consistent with the implementation of your forward pass. It’s possible to have an incorrect

HW6,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 10

https://www.digitalocean.com/community/tutorials/how-to-use-unittest-to-write-a-test-case-for-a-function-in-python
https://docs.python.org/3/library/unittest.html

forward pass implementation and a consequently incorrect backward pass implementation that still yields
low errors in the notebook. To check if your implementations are correct, you should submit to the Grade-
scope autograder!

3.5 Submission
Please run

python3 generate_submission.py --help

for instructions on how to use the script to extract your implementations for the submission.

The script generate submission.py extracts all the code from your implementations and produces either
a LATEX or markdown file containing your code implementations, when given the flag --format latex and
--format markdown respectively. The generated document contains your functions in separate sections for
activation functions, layers, losses, and the model. These can be sections, subsections, or subsubsections de-
pending on whether you supply the flag --heading level 1, --heading level 2, or --heading level
3.

For example, if you want LATEX output with each part (activations, layers, losses, and the model) in a
different subsection, with the output saved to submission.tex, you would run the following:

python3 generate_submission.py --format latex --heading_level 2 --output submission.tex

whereas if you want markdown output with each part (activations, layers, losses, and the model) in a different
subsubsection, with the output saved to submission.md, you would run the following:

python3 generate_submission.py --format markdown --heading_level 3 --output submission.md

We would suggest running these commands to see exactly what they do.

The markdown document will compile by itself, but you would most likely want to create a markdown cell
in a Jupyter Notebook and copy-paste the generated markdown into that cell. That should work seamlessly
provided you can already compile Jupyter Notebooks into PDFs.

Note that the LATEX document will not compile by itself. It is meant to generate code that you can then
\input{} into your LATEX document.

Feel free to play around with the script if you want to. Notably, if you change some function which is not in
the student implementations list, then you could add that function to the student implementations
list to have the script automatically gather your code from that function (but we think that most students will
not have to do this).

HW6,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 11

Questions
The background section of the homework has ended. The following sections contain the questions you
must complete.

4 Basic Network Layers
In this question you will implement the layers needed for basic classification neural networks. For each part,
you will be asked to 1) derive the gradients, 2) write the matching code, 3) pass the tests.

Keep in mind that your solutions to all layers must operate on mini-batches of data and should not use
loops to iterate over the training points in a mini-batch.

4.1 ReLU
First, you will implement the ReLU activation function in activations.py. ReLU is a very common
activation function that is typically used in the hidden layers of a neural network and is defined as

σReLU(γ) =

0 γ < 0,
γ otherwise.

Note that the activation function is applied elementwise to a vector or matrix input.

Instructions

1. First, derive the gradient of the downstream loss with respect to the input of the ReLU activation
function, Z. You must arrive at a solution in terms of ∂L/∂Y , the gradient of the loss w.r.t. the
output of ReLU Y = σReLU(Z), and the batched input Z, i.e., where Z ∈ Rm×n. Include your
derivation in your writeup.

Hint: you are allowed to use operations like elementwise multiplication and/or division!

2. Next, implement the forward and backward passes of the ReLU activation in the script activations.py.
Include your code in your writeup (either a screenshot or typesetting is fine). Do not iterate over
training examples, use batched operations.

HW6,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 12

4.2 Fully-Connected Layer
Now you will implement the forward and backward passes for the fully-connected layer in the layers.py
script. The code is marked with YOUR CODE HERE statements indicating what to implement and where.
Please read the docstrings and the function signatures too. Write the fully-connected layer for a general
input h that contains a mini-batch of m examples with d features.

When implementing a new layer, it is important to manually verify correctness of the forward and backward
passes. For debugging tips, please refer back to section 3.3.

Instructions

1. Derive the gradients of the loss L ∈ Rwith respect to weight matrix W ∈ Rn[l]×n[l+1]
and bias row vector

b ∈ R1×n[l+1]
in the fully-connected layer, ∂L/∂W and ∂L/∂b. You will also need to take the gradient

of the loss with respect to the input of the layer ∂L/∂X, which will be passed to lower layers, where
X ∈ Rm×n[l]

is the batched input. Again, you must arrive at a solution that uses batched X and Z.
Please express your solution in terms of ∂L/∂Z, which you have already obtained in 4.1, where
Z = XW + 1b and 1 ∈ Rm×1 is a column of ones. Note that 1b is a matrix (it’s an outer product)
whose each row is the row vector b so we are adding the same bias vector to each sample during the
forward pass: this is the mathematical equivalent of numpy broadcasting. Include your derivations in
your writeup.

2. Implement the forward and backward passes of the fully-connected layer in layers.py. First, initial-
ize the weights of the model using init parameters, which takes the shape of the design matrix as
input and initializes the parameters, cache, and gradients of the layer. The backward method takes in
an argument dLdY, the gradient of the loss with respect to the output of the layer, which is computed
by higher layers and backpropagated. This should be incorporated into your gradient calculation.
In your writeup, include the code you have implemented. Do not loop over training points; use
batched operations.

HW6,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 13

4.3 Softmax Activation
Next, we need to define an activation function for the output layer. The ReLU activation function returns
continuous values that are (potentially) unbounded to the right. Since we are building a classifier, we want to
return probabilities over classes. The softmax function has the desirable property that it outputs a probability
distribution. That is, the softmax function squashes continuous values into the range [0, 1] and normalizes
the outputs so that they add up to 1. For this reason, many classification neural networks use the softmax
activation. The softmax activation takes in a vector s of k un-normalized values s1, . . . , sk and outputs a
probability distribution over the k possible classes. The forward pass of the softmax activation on input si is

σi =
esi∑k

j=1 es j
,

where k ranges over all elements in s. Due to issues of numerical stability, the following modified version
of this function is commonly used.

σi =
esi−m∑k

j=1 es j−m
,

where m = maxk
j=1 s j. We strongly recommend implementing the latter formula.

Instructions

1. Derive the Jacobian of the softmax activation function. You do not need to use batched inputs for
this question; an answer for a single training point is acceptable. You do not need to write out
the entire matrix, but please write out what ∂σi/∂s j is for an arbitrary (i, j) pair. Include your
derivation in your writeup.

2. Implement the forward and backward passes of the softmax activation in activations.py. We
recommend vectorizing the backward pass for efficiency. For this question only may you use a
“for” loop over the training points in the mini-batch. In your writeup, include the code you have
implemented.

HW6,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 14

4.4 Cross-Entropy Loss
For this classification network, we will be using the multi-class cross-entropy loss function

L = −y · ln ŷ,

where y is the binary one-hot vector encoding the ground truth labels and ŷ is the network’s output, a vector
of probabilities over classes. Note that ln ŷ is ŷ with the natural log applied elementwise to it and · represents
the dot product between y and ln ŷ. The cross-entropy cost calculated for a mini-batch of m samples is

L = −
1
m

(m∑
i=1

yi · ln (ŷi)
)
.

Let Y ∈ Rm×k and Ŷ ∈ Rm×k be the one-hot labels and network outputs for the m samples, stacked in a
matrix. Then, yi and ŷi in the expression above are just the ith rows of Y and Ŷ .

Instructions

1. Derive ∂L/∂Ŷ the gradient of the cross-entropy cost with respect to the network’s predictions, Ŷ . You
must use batched inputs. Include your derivation in your writeup.

Hint: you are allowed to use operations like elementwise multiplication and/or division!

2. Implement the forward and backward passes of the cross-entropy cost. Note that in the codebase
we have provided, we use the words “loss” and “cost” interchangeably. This is consistent with most
large neural network libraries, though technically “loss” denotes the function computed for a single
datapoint whereas “cost” is computed for a batch. You will be computing over batches. Do not
iterate over training examples; use batched operations. In your writeup, include the code you
have implemented.

HW6,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 15

5 Two-Layer Fully Connected Networks
Now, you will use the methods you’ve written to train a two-layer network (also referred to as a one-hidden-
layer network). You will use the Iris Dataset, which contains 4 features for 3 different classes of irises.

Instructions

1. Fill in the forward, backward, and predict methods for the NeuralNetwork class in models.py.
In your writeup, include the code you have implemented. Define the parameters of your network in
train ffnn.py. We have provided you with several other classes that are critical for the training
process.

• The data loader (in datasets.py), which is responsible for loading batches of data that will
be fed to your model during training. You may wish to alter the data loader to handle data
pre-processing. Note that all datasets you are given have not been normalized or standardized.

• The stochastic gradient descent optimizer (in optimizers.py), which performs the gradient
updates and optionally incorporates a momentum term.

• The learning rate scheduler (in schedulers.py), which handles the optional learning rate de-
cay. You may choose to use either a constant or exponentially decaying learning rate.

• Weight initializers (in weights.py). We provide you with many options to explore, but we
recommend using xavier uniform as a default.

• A logger (in logs.py), which saves hyperparameters and learned parameters and plots the loss
as your model trains.

Outputs will be saved to the folder experiments/. You can change the name of the folder a given
run saves to by changing the parameter called model name. Be careful about overwriting folders; if
you forget to change the name and perform a run with identical hyperparameters, your previous run
will be overwritten!

2. Train a 2-layer neural network on the Iris Dataset while varying the following hyperparameters.

• Learning rate

• Hidden layer size (number of units per hidden layer)

You must try at least 3 different combinations of these hyperparameters. Report the results of your
exploration, including the values of the parameters you explored and which set of parameters gave the
best test error. Provide plots showing the loss versus iterations for your best model and report your
final test error.

HW6,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 16

https://machinelearningmastery.com/learning-rate-for-deep-learning-neural-networks/

6 CNN Layers
In this problem, you will write the forward and backward passes for the convolutional and pooling layers
that are used within convolutional neural networks.

Again, remember that all your implementations and derived gradients must be for mini-batches, and not
single examples. For both CNN layers, the input tensor will be of shape (m,H,W,C) where m denotes the
number of mini-batch samples, H and W are height and width of each sample (the spatial dimensions) and
C is the number of channels (3 for RGB images of 1 for grayscale images).

6.1 The Einsum Function
The np.einsum function is a powerful tool for performing various linear algebra operations on arrays in
NumPy, a popular numerical computing library in Python. It allows for efficient computation of multi-
dimensional array operations through a concise and flexible notation.

The np.einsum function takes in one or more input arrays and a string specifying the desired output format.
The string consists of subscripts that define how the arrays should be multiplied, summed, and contracted.
The output of the function is a new array that represents the result of the specified operation.

Here are some basic rules that help you understand how to use np.einsum, as this may help you with some
of the coding parts in the CNN section.

• Einsum notation uses subscripts to represent the dimensions of the input arrays. Each subscript string
is a range of single uppercase or lowercase letters, with each letter denoting an axis of a numpy array.
For example, the subscript string i represents a 1-D array of length i while the subscript string ijk
represents an array of shape (i, j, k).

• The einsum string consists of two or more subscript strings separated by a comma, followed by an
arrow (->), and a final subscript string that specifies the dimensions of the output array. For example,
i,j->ij specifies the multiplication of two arrays with of lengths i and j, resulting in an output array
with shape (i, j). You might recognize this as the outer product between the two input arrays.

• The same subscript letter can appear in multiple input subscript strings, indicating that the corre-
sponding dimensions should be multiplied and summed over. For example, ij,j->i performs an
elementwise multiplication and sum over the second axis of the first input array and the entire second
input array, resulting in an output array with one axis and length i. You might recognize this as the
regular matrix-vector product between the first input array (a matrix of shape (i, j)) and the second
input array (a vector of length j).

• If a subscript appears only in the output subscript string, the corresponding axis is preserved in the
output array. For example, ij->j returns a one-dimensional array of length j, whose components are
the components of the input array summed along the first axis.

• Ellipses (...) can be used to represent a range of axes in an input or output subscript string. For
example, i...->i performs a summation over all axes except the first of the input array, resulting in
a one-dimensional output array with length i.

For more details please refer to the NumPy API. This tutorial should also be very helpful!

Please accomplish the following tasks using both regular NumPy methods and np.einsum. Confirm you
get the same answer by subtracting the two results and show that its norm is zero (or virtually zero, barring

HW6,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 17

https://rockt.github.io/2018/04/30/einsum

numerical approixmation errors). In your writeup, include any code you write as well as a confirmation that
both methods yield the same result (for example, printing the norm and including it as a screenshot is fine).

1. For a random matrix A ∈ R5×5, find its trace.

2. For random matrices A, B ∈ R5×5, compute their matrix product.

3. For a batch of random matrices of shapes (3, 4, 5) and (3, 5, 6) (the batch size is 3 here),
compute their batchwise matrix product (the resulting batch will have shape (3, 4, 6)).

HW6,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 18

6.2 Convolutional Layer
1. Derive the gradient of the loss with respect to the input and parameters (weights and biases) of a

convolutional layer. For this question your answer may be in the form of individual component
partial derivatives. Assume you have access to the full 3d array ∂L

∂Z[d1, d2, n] , which is the gradient
of the pre-activation w.r.t the loss You may also ignore stride and assume both the filter and image
are infinitely zero-padded outside of their bounds. Include your derivations in your writeup.

(a) What is ∂L
∂b[f] for an arbitrary f ∈ [1, . . . , n]?

(b) What is ∂L
∂W[i, k, c, f] for arbitrary i, k, c, f indexes?

(c) What is ∂L
∂X[x, y, c] for arbitrary x, y, c indexes?

2. Fill in the forward and backward passes of the Conv2D layer in layers.py. In your writeup, include
the code you have implemented. Unlike the mathematical derivation, you will have to account for
padding and stride, as well as batching, in your code. Do not iterate over training examples; use
batched operations. You may find the einsum operation helpful here.

HW6,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 19

6.3 Pooling Layers
1. Explain how we can use the backprop algorithm to compute gradients through the max pooling and

average pooling operations. (A plain English answer will suffice; equations are optional.) Carefully
consider the values you must keep track of!

2. Fill in the forward and backward passes of the Pool2D layer in layers.py. In your writeup, include
the code you have implemented. Do not iterate over training examples, use batched operations.

6.4 (Optional) Convolutional Neural Network
Convolutional neural networks take considerably longer to train than the feedforward layers we have built,
and the numpy implementation you have written will be impractically unoptimized compared to industry-
grade neural network packages. So, you are not required to train a proper CNN for this part of the assign-
ment.

That said, if you wish to see your convolutional and pooling layers in action, we have included a file called
train conv.py where you can construct a CNN and train it on the MNIST Dataset. This can be another
good way to test the correctness of your CNN layers (think of this as an integration test compared to all
the unit tests). The default architecture implemented in that file is called LeNet and, along with the default
hyperparameters, it should achieve around a 96 − 97% validation accuracy after just one training epoch,
assuming your neural network layers are correctly implemented. Feel free to play around with different
hyperparameters to see how they might impact CNN training. You don’t have to submit anything for this
part in your writeup.

HW6,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 20

https://en.wikipedia.org/wiki/LeNet

7 PyTorch
Please see the Google Colab Notebook here that contains the questions.

As with every homework, you are allowed to use any setup you wish. However, we highly recommend that
you use Google Colab for free access to GPUs, which will significantly improve the speed of neural network
training. Instructions are provided in the notebook itself. If you have access to GPUs locally, then feel free
to run the notebook on your computer.

The following sections mirror the Colab Notebook and provide the deliverables for each question.

7.1 MLP for Fashion MNIST
Deliverables:

1. Provide code for training an MLP on the fashion MNIST dataset (can be tagged from colab notebook
and in the code appendix)

2. A plot of the training and validation loss for each epoch of training for at least 8 epochs.

3. A plot of the training and validation accuracy for each epoch, achieving a final validation accuracy of
at least 82%.

7.2 CNNs for CIFAR-10
Deliverables:

1. Provide the code for training your CNN model (can be in appendix).

2. Submit to Kaggle and include your test accuracy in your report. Our simple reference solution gets a
test accuracy of 74.8% after 10 epochs.

3. Provide at least 1 training curve for your model, depicting loss per epoch or step after training for at
least 8 epochs.

4. Explain the components of your final model, and how you think your design choices contributed to its
performance.

HW6,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 21

https://colab.research.google.com/drive/1D103qRtT1xFbYdXYKozENiabrnIwdMSY?usp=sharing
https://colab.research.google.com

Submission Checklist
Please ensure you have completed the following before your final submission.

At the beginning of your writeup...
1. Have you copied and hand-signed the honor code specified in Question 1?

2. Have you listed all students (Names and ID numbers) that you collaborated with?

In your writeup for Question 7...
1. Have you included your Kaggle Score and Kaggle Username?

2. Have you included your generated plots and visualizations?

At the end of the writeup...
1. Have you provided a code appendix including all code you wrote in solving the homework?

Code Submission
1. Have you dragged and dropped every file in the neural networks package, along with train ffnn.py,

into the Gradescope submission box?

2. Have you included a README.md in your archive containing any special instructions to reproduce your
results?

3. Have you included the code you wrote for the PyTorch section with the rest of your submission?

Submissions
1. Have you submitted your written solutions to the Gradescope assignment titled HW6 Write-Up and

selected pages appropriately?

2. Have you submitted your code files to the Gradescope assignment titled HW6 Code?

3. Have you submitted your test set predictions for CIFAR-10 dataset to the appropriate Kaggle chal-
lenge?

4. Is your Kaggle submission in integer format? Submissions in decimal format will recieve a score of
zero!

Congratulations! You have completed Homework 6.

HW6,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 22

	Honor Code
	Background
	Neural Networks
	Batching
	Feed-Forward, Fully-Connected Neural Networks
	Convolutional Neural Networks

	The Neural Nets Package
	Structure
	Testing
	Autograder
	Debugging
	Submission

	Basic Network Layers
	ReLU
	Fully-Connected Layer
	Softmax Activation
	Cross-Entropy Loss

	Two-Layer Fully Connected Networks
	CNN Layers
	The Einsum Function
	Convolutional Layer
	Pooling Layers
	(Optional) Convolutional Neural Network

	PyTorch
	MLP for Fashion MNIST
	CNNs for CIFAR-10

