
CS 189 Introduction to Machine Learning
Spring 2024 Jonathan Shewchuk HW1
Due: Wednesday, January 24 at 11:59 pm

This homework comprises a set of coding exercises and a few math problems. While we have you
train models across three datasets, the code for this entire assignment can be written in under 250
lines. Start this homework early! You can submit to Kaggle only twice a day.

Deliverables:

1. Submit your predictions for the test sets to Kaggle as early as possible. Include your Kaggle
scores in your write-up (see below).

2. Submit a PDF of your homework, with an appendix listing all your code, to the Gradescope
assignment entitled “HW1 Write-Up”. You may typeset your homework in LaTeX or Word
or submit neatly handwritten and scanned solutions. Please start each question on a new
page. If there are graphs, include those graphs in the correct sections. Do not put them in an
appendix. We need each solution to be self-contained on pages of its own.

• On the first page of your write-up, please list students who helped you or whom you
helped on the homework. (Note that sending each other code is not allowed.)

• On the first page of your write-up, please copy the following statement and sign your
signature next to it. (Mac Preview, PDF Expert, and FoxIt PDF Reader, among others,
have tools to let you sign a PDF file.) We want to make extra clear the consequences of
cheating.
“I certify that all solutions are entirely in my own words and that I have not looked at
another student’s solutions. I have given credit to all external sources I consulted.”

3. Submit all the code needed to reproduce your results to the Gradescope assignment entitled
“HW1 Code”. You must submit your code twice: once in your PDF write-up (above) so
the readers can easily read it, and again in compilable/interpretable form so the readers can
easily run it. Do NOT include any data files we provided. Please include a short file named
README listing your name, student ID, and instructions on how to reproduce your results.
Please take care that your code doesn’t take up inordinate amounts of time or memory.

The Kaggle score will not be accepted if the code provided a) does not compile or b) compiles
but does not produce the file submitted to Kaggle.

HW1,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 1

Python Configuration and Data Loading
This section is only setup and requires no submitted solution. Please follow the instructions
below to ensure that your Python environment is configured properly, and you are able to success-
fully load the data provided with this homework. For all coding questions, we recommend using
Anaconda for Python 3.

(a) Either install Anaconda for Python 3, or ensure you’re using Python 3. To ensure you’re run-
ning Python 3, open a terminal in your operating system and execute the following command:
python --version

Do not proceed until you’re running Python 3.

(b) Install the following dependencies required for this homework by executing the following com-
mand in your operating system’s terminal:
pip install scikit-learn scipy numpy matplotlib

Please use Python 3 with the modules specified above to complete this homework.

(c) You will be running out-of-the-box implementations of Support Vector Machines to classify
three datasets. You will find a set of .npz files in the data folder for this homework. Each
.npz file will load as a Python dictionary. Each dictionary contains three fields:

• training data, the training set features. Rows are sample points and columns are features.

• training labels, the training set labels. Rows are sample points. There is one column:
the labels corresponding to rows of training data above.

• test data, the test set features. Rows are sample points and columns are features. You will
fit a model to predict the labels for this test set, and submit those predictions to Kaggle.

The three datasets for the coding portion of this assignment are described below.

• toy-data.npz is a synthetic dataset with two features (2-dimensional) and two classes.
The training set has 1,000 examples, and no test set is provided. This dataset is only used
in Section 2 of this homework.

• mnist-data.npz contains data from the MNIST dataset. There are 60,000 labeled im-
ages of handwritten digits for training, and 10,000 for testing. The images are flattened
grayscale, 28 × 28 pixels. There are 10 possible labels for each image, namely, the digits
0–9.

HW1,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 2

https://store.continuum.io/cshop/anaconda

Figure 1: Examples from the MNIST dataset.

• spam-data.npz contains featurized spam data. The labels are 1 for spam and 0 for ham.
The data folder includes the script featurize.py and the folders spam, ham (not spam),
and test (unlabeled test data); you may modify featurize.py to generate new features for
the spam data.

To check whether your Python environment is configured properly for this homework, ensure
the following Python script executes without error. Pay attention to errors raised when at-
tempting to import any dependencies. Resolve such errors by manually installing the required
dependency (e.g. execute pip install numpy for import errors relating to the numpy pack-
age).
This file is in scripts/load.py

import sys

if sys.version_info[0] < 3:

raise Exception("Python 3 not detected.")

import numpy as np

import matplotlib.pyplot as plt

from sklearn import svm

from scipy import io

if __name__ == "__main__":

for data_name in ["mnist", "spam", "toy"]:

data = np.load(f"../data/{data_name}-data.npz")

print("\nloaded %s data!" % data_name)

fields = "test_data", "training_data", "training_labels"

for field in fields:

print(field, data[field].shape)

HW1,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 3

1 Honor Code
Declare and sign the following statement:

“I certify that all solutions in this document are entirely my own and that I have not looked at
anyone else’s solution. I have given credit to all external sources I consulted.”

Signature :

While discussions are encouraged, everything in your solution must be your (and only your) cre-
ation. Furthermore, all external material (i.e., anything outside lectures and assigned readings,
including figures and pictures) should be cited properly. We wish to remind you that consequences
of academic misconduct are particularly severe!

HW1,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 4

This section provides background information on Support Vector Machines (SVMs) used in
this homework. You can choose to focus on the coding sections first and revisit this section
later, but make sure that this section precedes the coding questions in your write-up.

2 Theory of Hard-Margin Support Vector Machines
A decision rule (or classifier) is a function r : Rd → ±1 that maps a feature vector (test point) to
+1 (“in class”) or −1 (“not in class”). The decision rule for linear SVMs is of the form

r(x) =

 +1 if w · x + α ≥ 0,
−1 otherwise,

(1)

where w ∈ Rd and α ∈ R are the parameters of the SVM. The primal hard-margin SVM optimiza-
tion problem (which chooses the parameters) is

min
w,α
∥w∥2 subject to yi(Xi · w + α) ≥ 1, ∀i ∈ {1, . . . , n}, (2)

where ∥w∥ =
√

w · w.

We can rewrite this optimization problem by using Lagrange multipliers to eliminate the con-
straints. (If you’re curious to know what Lagrange multipliers are, the Wikipedia page is rec-
ommended, but you don’t need to understand them to do this problem.) We thereby obtain the
equivalent optimization problem

max
λi≥0

min
w,α
∥w∥2 −

n∑
i=1

λi(yi(Xi · w + α) − 1). (3)

Note: λi must be greater than or equal to 0.

(a) Show that equation (3) can be rewritten as the dual optimization problem

max
λi≥0

n∑
i=1

λi −
1
4

n∑
i=1

n∑
j=1

λiλ jyiy jXi · X j subject to
n∑

i=1

λiyi = 0. (4)

Hint: Use calculus to determine and prove what values of w and α optimize equation (3).
Explain where the new constraint comes from.

(b) Suppose we know the values λ∗i and α∗ that optimize equation (3). Show that the decision rule
specified by equation (1) can be written

r(x) =

 +1 if α∗ + 1
2

∑n
i=1 λ

∗
i yiXi · x ≥ 0,

−1 otherwise.
(5)

(c) Applying Karush–Kuhn–Tucker (KKT) conditions (See Wikipedia for more information), any
pair of optimal primal and dual solutions w∗, α∗, λ∗ for a linear, hard-margin SVM must satisfy
the following condition:

λ∗i (yi(Xi · w∗ + α∗) − 1) = 0 ∀i ∈ {1, . . . , n}

HW1,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 5

https://en.wikipedia.org/wiki/Lagrange_multiplier
https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions

This condition is called complementary slackness. Explain what this implies for points corre-
sponding to λ∗i > 0.

(d) The training points Xi for which λ∗i > 0 are called the support vectors. In practice, we fre-
quently encounter training data sets for which the support vectors are a small minority of the
training points, especially when the number of training points is much larger than the number
of features. Explain why the support vectors are the only training points needed to evaluate the
decision rule.

(e) The obtained parameters when fitting the linear SVM to the 2D synthetic dataset found in
toy-data.npz approximately correspond to

w =
−0.4528
−0.5190

 and α = 0.1471. (6)

Using only matplotlib basic plotting functions, in your write-up, produce a plot of

• the data points,

• the decision boundary,

• the margins, defined as {x ∈ R2 : w · x + α = ±1}.

In this plot, where are the support vectors?

Hint: You can use the following snippet, that plots the data points and decision boundary but
not the margins.
plt.scatter(data[:, 0], data[:, 1], c=labels)

Plot the decision boundary

x = np.linspace(-5, 5, 100)

y = -(w[0] * x + b) / w[1]

plt.plot(x, y, ’k’)

Plot the margins

TODO

(f) Assume the training points Xi and labels yi are linearly separable. Using the original SVM
formulation (not the dual) prove that there is at least one support vector for each class, +1 and
−1.

Hint: Use contradiction. Construct a new weight vector w′ = w/(1 + ϵ/2) and corresponding
bias α′ where ϵ > 0. It is up to you to determine what ϵ should be based on the contradiction.
If you provide a symmetric argument, you need only provide a proof for one of the two classes.

HW1,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 6

For the entire assignment, you may use sklearn only for the SVM model. Everything else
must be done without the use of sklearn.

3 Data Partitioning and Evaluation Metrics
In machine learning, it is typical to rely on a set of held-out data points, or “validation” dataset,
to evaluate the performance of a model and ultimately select the best performing one, while using
the rest of the data, or “training” dataset, to train models. In its simplest form, evaluating a trained
model requires you to (i) have set aside a validation dataset, and (ii) selected a reasonable metric
to evaluate model performance.

In this question, you will implement these components that will be useful for the rest of the assign-
ment. Please do not use any sklearn functions in this section.

(a) Data partitioning: Rarely will you receive “training” data and “validation” data; usually you
will have to partition available labeled data yourself. In this question, you will shuffle and par-
tition each of the datasets in the assignment1. Shuffling prior to splitting crucially ensures that
all classes are represented in your partitions. For this question, please do not use any functions
available in sklearn. For the MNIST dataset, write code that sets aside 10,000 training images
as a validation set. For the spam dataset, write code that sets aside 20% of the training data as
a validation set.

(b) Evaluation metric: There are several ways to evaluate models. We will use classification
accuracy, or the percent of examples classified correctly, as a measure of the classifier perfor-
mance. Error rate, or one minus the accuracy, is another common metric. Write a function,
taking as inputs the set of true labels y and the set of predicted labels ŷ, that computes the
(unweighted) accuracy score s,

s =
1
n

n∑
i=1

I
[
yi = ŷi

]
. (7)

Here, I
[
yi = ŷi

]
is an indicator function defined as

I
[
yi = ŷi

]
=

1 if yi = ŷi

0 otherwise
(8)

n is the total number of input observations, and for any i ≤ n, yi and ŷi respectively denote the
ground-truth and predicted label for observation i.

Deliverable: Attach a copy of your data partitioning and evaluation metric code to your homework
report under question 3.

1Make sure that you shuffle the labels with the training images. It’s a very common error to mislabel the training images by
forgetting to permute the labels with the images!

HW1,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 7

4 Support Vector Machines: Coding
We will use linear Support Vector Machines (SVM) to classify our datasets. For images, we will
use the simplest of features for classification: raw pixel brightness values. In other words, our
feature vector for an image will be a row vector with all the pixel values concatenated in a row
major (or column major) order.

Train a linear SVM on the spam and MNIST datasets. For each dataset, plot the accuracy on the
training and validation sets versus the number of training examples that you used to train your
classifier. The number of training examples to use are listed for each dataset in the following parts.

You may use sklearn only for the SVM model. Everything else must be done without the use of
sklearn.

(a) For the MNIST dataset, use raw pixels as features. Train your model with the following num-
bers of training examples: 100, 200, 500, 1,000, 2,000, 5,000, 10,000. For the largest training
set, you should expect validation accuracies between 70% and 90%. When you calculate the
training accuracy, you only need to calculate on the subset of the data used to train the model,
not necessarily the full training dataset.2

(b) For the spam dataset, use the provided word frequencies as features. In other words, each
document is represented by a vector, where the ith entry denotes the number of times word i (as
specified in featurize.py) is found in that document. Train your model with the following
numbers of training examples: 100, 200, 500, 1,000, 2,000, ALL. When you calculate the
training accuracy, you only need to calculate on the subset of the data used to train the model,
not necessarily the full training dataset.

For the largest training set, you should expect validation accuracies between 70% and 90%.

Note: You can use either SVC(kernel=’linear’) or LinearSVC as your SVM model, though
they each solve slightly different optimization problems using different libraries. On MNIST,
LinearSVC was faster on one member of Course Staff’s laptop, though the exact results will likely
depend on your computer, the parameters of the algorithm, and the data (number of data points vs
number of features).

Deliverable: For this question, you should include two plots showing number of examples versus
training and validation accuracy for each of the datasets. Additionally, be sure to include your code
in the “Code Appendix” portion of your write-up.

2Hint: Be consistent with any preprocessing you do. Use either integer values between 0 and 255 or floating-point values
between 0 and 1. Training on floats and then testing with integers is bound to cause trouble.

HW1,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 8

5 Hyperparameter Tuning
In the previous problem, you learned parameters for a model that classifies the data. Many clas-
sifiers also have hyperparameters that you can tune to influence the parameters. In this problem,
we’ll determine good values for the regularization parameter C in the soft-margin SVM algorithm.
The interpretation of this parameter, as well as the functioning of the soft-margin SVM will be
covered in lecture. For now, consider C as a parameter of a black-box algorithm that we aim to
optimize.

When we are trying to choose a hyperparameter value, we train the model repeatedly with different
hyperparameters. We select the hyperparameter that gives the model with the highest accuracy on
the validation dataset. Before generating predictions for the test set, the model should be retrained
using all the labeled data (including the validation data) and the previously-determined hyperpa-
rameter.

The use of automatic hyperparameter optimization libraries is prohibited for this part of the
homework.

Deliverable: For the MNIST dataset, find the best C value. In your report, list at least 8 C values
you tried, the corresponding accuracies, and the best C value. You should try a geometric sequence
of C values (not an arithmetic sequence). As in the previous problem, for performance reasons,
you are required to train with at least 10,000 training examples. You can train on more if you like,
but it is not required. Again, reference any code you used to perform a hyperparameter sweep in
the code appendix.

HW1,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 9

6 K-Fold Cross-Validation
For smaller datasets (e.g., the spam dataset), the validation set contains fewer examples, and our
estimate of our accuracy might not be accurate—the estimate has high variance. A way to combat
this is to use k-fold cross-validation.

In k-fold cross-validation, the training data is shuffled and partitioned into k disjoint sets. Then the
model is trained on k − 1 sets and validated on the kth set. This process is repeated k times with
each set chosen as the validation set once. The cross-validation accuracy we report is the accuracy
averaged over the k iterations.

Use of automatic cross-validation libraries is prohibited for this part of the homework.

Deliverable: For the spam dataset, use 5-fold cross-validation to find and report the best C value.
In your report, list at least 8 C values you tried, the corresponding accuracies, and the best C value.
Again, please include your code for cross validation or include a reference to its location in your
code appendix.

Hint: Effective cross-validation requires choosing from random partitions. This is best imple-
mented by randomly shuffling your training examples and labels, then partitioning them by their
indices.

HW1,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 10

7 Kaggle
• MNIST Competition: https://www.kaggle.com/competitions/cs189-hw1-mnist-spring-2024

• SPAM Competition: https://www.kaggle.com/competitions/cs189-hw1-spam-spring-2024

With the best model you trained for each dataset, generate predictions for the test sets we provide
and save those predictions to .csv files. The csv file should have two columns, Id and Category,
with a comma as a delimiter between them. The Id column should start at the integer 1 and end at
the number of elements in the test set. The category label should be a dataset-dependent integer
(for MNIST, one of {0, . . . , 9}, and for spam, one of {0, 1}. Be sure to use integer labels (not
floating-point!) and no spaces (not even after the commas). Upload your predictions to the
Kaggle leaderboards (submission instructions are provided within each Kaggle competition). In
your write-up, include your Kaggle name as it displays on the leaderboard and your Kaggle
score for each of the three datasets .

General comments about the Kaggle sections of homeworks. Most or all of the coding home-
works will include a Kaggle section. Whereas other parts of a coding assignment might impose
strict limits about what methods you’re permitted to use, the Kaggle portions permit you to apply
your creativity and find clever ways to improve your leaderboard performance. The main restric-
tion is that you cannot use an entirely different learning technique. For example, this is an SVM
homework, so you must use an SVM; you are not permitted to use a neural network or a decision
tree instead of (or in addition to) a support vector machine. (You are also not allowed to search for
the labeled test data and submit that to Kaggle; that’s outright cheating.)

For example, to achieve higher positions on the Kaggle leaderboards, you may optionally add
more features or use a nonlinear SVM kernel. Spam is a particularly good dataset for playing
with feature engineering; one easy way to perform better in spam/ham is to add extra features with
featurize.py (see below). Other examples of things you might investigate include SIFT and
HOG features for images, and a bag-of-words model for spam/ham. For reasons we’ll learn later
this semester, dropping features that have little or no predictive power will often improve your
test performance as much as adding the right new features. Although extensive creativity isn’t
generally necessary to get full points on an assignment, topping the Kaggle leaderboard gives your
professor good material for letters of recommendation.

Whatever creative ideas you apply, please explain what you did in your write-up. Cite any external
sources where you got ideas. If you have any questions about whether something is allowed or not,
ask on Ed Discussion.

Remember to start early! Kaggle only permits two submissions per leaderboard per day. To help
you format the submission so that Kaggle can interpret it correctly please use scripts/check.py
to run a basic sanity check.

To check your submission csv,
python check.py <competition name, eg. mnist> <submission csv file>

Deliverable: Your deliverable for this question has three parts. First, submit to all the Kaggle
competitions listed above, and include your Kaggle score in your write-up. Second, include an

HW1,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 11

https://www.kaggle.com/competitions/cs189-hw1-mnist-spring-2024
https://www.kaggle.com/competitions/cs189-hw1-spam-spring-2024

explanation of what you tried, what worked, and what didn’t to improve your accuracy. Finally,
make sure to include all the code you used in the code appendix and provide a reference to it.

Modifying features for spam: The Python script scripts/featurize.py extracts features from
the original emails in the Spam dataset. The spam emails can be found in data/spam/, the ham
(ie. not spam) emails can be found in data/ham/, and the emails for the test set can be found
in data/test/. You are encouraged to look at the emails and try to think of features you think
would be useful in classifying an email as spam or ham.

To add a new feature, modify featurize.py. You are free to change the structure of the code
provided, but if you are following the given structure, you need to do two things:

• Define a function, eg. my_feature(text, freq) that computes the value of your feature
for a given email. The argument text contains the raw text of the email; freq is a dictionary
containing the counts of each word in the email (or 0 if the word is not present). The value
you return should be an integer or a float.

• Modify generate_feature_vector to append your feature to the feature vector. For ex-
ample:
feature.append(my_feature(text, freq))

Once you are done modifying scripts/featurize.py, re-generate the training and test data by
entering the scripts directory and running
python featurize.py

HW1,©UCB CS 189, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 12

	Honor Code
	Theory of Hard-Margin Support Vector Machines
	Data Partitioning and Evaluation Metrics
	Support Vector Machines: Coding
	Hyperparameter Tuning
	K-Fold Cross-Validation
	Kaggle

