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• The total number of points is 100. There are 12 multiple choice questions worth 4 points each, and 3 written questions
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Q1. [48 pts] Multiple Answer
Fill in the bubbles for ALL correct choices: there may be more than one correct choice, but there is always at least one correct
choice. NO partial credit: the set of all correct answers must be checked.

(a) [4 pts] Suppose we are doing ridge regression with a design matrix X ∈ Rn×d and a vector y ∈ Rn of labels. Recall that
we find the weight vector w that minimizes the cost function J(w) = ‖Xw − y‖22 + λ‖w‖22, where λ > 0 is a positive scalar.
Suppose we solve this problem with Newton’s method. Recall that its update rule is

w(k+1) = w(k) − (∇2J(w(k)))−1∇J(w(k)).

We start the method from some arbitrary initial weight vector w(0). Suppose we have a magic computer that does exact
arithmetic on real numbers; it can do arithmetic without ever rounding the numbers. In how many iterations does
Newton’s method converge to the true ridge regression solution?

 A: 1

© B: d

© C: It might never get close to the true solution.

© D: It might never get exactly to the true solution,
but it gets closer with every iteration.

Newton’s method converges in just one iteration on any quadratic function whose Hessian matrix is positive definite, like the
cost function in this ridge regression problem (because λ > 0). To verify this, let us apply the method with α = 1 and w0 to
ridge regression.

w(1) = w(0) − ∇2( f (w(0)))−1∇( f (w(0)))

= w(0) −
1
2

(X>X + λI)−1 · (2(X>X + λI)w(0) − 2X>y)

= w(0) − w(0) +
1
2

(X>X + λI)−1 · 2X>y

= (X>X + λI)−1X>y.

(b) [4 pts] Suppose we are doing classification or regression with a design matrix X ∈ Rn×d and a vector y ∈ Rn of labels,
where X has full rank. Below we specify pairs of the form (transformation of X, learning algorithm). Select the pairs
where the transformation might change the label returned by the learning algorithm for some test point z ∈ Rd. (Note:
assume the implementation isn’t stupid; it applies the same transformation to each test point z that was applied to the
training points.)

© A: (centering X, Gaussian discriminant analysis)

 B: (whitening X, soft-margin support vector ma-
chine)

© C: (invertible affine transformation of X, linear re-
gression)

 D: (decorrelating X, Lasso)

A: GDA is invariant to translation; each class’s Gaussian is shifted by −µ. But the output classes will not change (assuming z is
also shifted by −µ).

B: Because the SVM’s objective is to minimize ‖w‖, unwhitened data might have varying ranges per feature. For example,
to predict the solvency of a person, the income feature will have much higher mean/variance than the age feature, so even
though the weight for age should be higher, the objective highly penalizes large w’s. By whitening the data (so it mostly fits in
a hypersphere around the origin), the SVM can assign weights properly.

C: Linear regression is invariant to affine transformations. D: Decorrelation rotates the feature space. Lasso is sensitive to
directions.

(c) [4 pts] Which of the following statements are true about Gaussian discriminant analysis?
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© A: If we whiten the design matrix X, then
our class-conditional sample covariance matrices in
quadratic discriminant analysis are positive definite.

© B: Assuming our sample is drawn from a normal
distribution, quadratic discriminant analysis gives us
the true optimal Bayes classifier.

 C: Linear discriminant analysis can have higher
bias than quadratic discriminant analysis.

 D: If we replace the sample covariance matrix Σ

with Σ + λI for some λ > 0, we guarantee that the
latter matrix is positive definite.

A: Incorrect. Whitening the data ensures that the covariance matrix is diagonal but does not eliminate the eigenvectors corre-
sponding to eigenvalues of 0. Therefore, the covariance matrices are not necessarily positive definite.
B: Incorrect. Assuming our data is normally distributed, QDA may not yield the true optimum Bayes classifier because we
have finite data and our data can be noisy.
C: Correct, if our covariance matrices are not consistent across classes, then our LDA assumptions will be incorrect and LDA
will underfit.
D: Correct, as a sample covariance matrix is already positive semidefinite, hence has no negative eigenvalues, and adding λI
increases all its eigenvalues by λ.

(d) [4 pts] Which of the following statements are true about logistic regression?

 A: If the points are linearly separable (with a pos-
itive margin), then logistic regression (with suitable
optimization software) can find a decision boundary
with zero training error.

© B: The logistic cost function can be directly ap-
plied to three-class classification.

 C: If we don’t use regularization, the logistic
regression cost function might have infinitely many
minimizers.

© D: Logistic regression with quadratic features pro-
duces the same decision boundary as a quadratic dis-
criminant analysis (QDA) model.

A: Correct. This is from lecture. If the points are linearly separable, then the cost function will eventually approach a loss of
zero with an infinitely large w corresponding to the separating hyperplane.
B: Incorrect. Recall from Discussion Section 6 that the logistic loss must be replaced by the general “softmax” cross-entropy
loss for multi-class softmax regression.
C: Correct. Although logistic regression has a convex cost function, it is not strictly convex. For example, if you have a two-
dimensional feature space but all the training points lie on a common line, then any motion perpendicular to that line does not
change the cost value.
D: Incorrect. Logistic regression with quadratic features and QDA both will yield quadratic decision boundaries but they will
not necessarily be the same.
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(e) [4 pts] Which of the following statements are true about Lasso and ridge regression?

 A: Both ridge regression and Lasso are methods
used to reduce overfitting that might occur in standard
linear regression.

 B: The `1-norm regularization used in Lasso has
a tendency to induce sparsity in the weight vector.

© C: Both ridge regression and Lasso have a cost
function with a minimizing weight vector w∗ that we
can write as a closed-form algebraic expression.

 D: Ridge regression shrinks the weight vector but
rarely drives its components to exactly zero.

Option A holds as the goal of regularization is to reduce model complexity and thereby mitigate overfitting. To see that Option
B holds, we first note that the `0-norm is in fact neither a true norm nor a convex function. Moreover, by virtue of the triangle
inequality any `p-norm with p ≥ 1 is convex. The `1-norm is the closest convex approximation to the l0-norm. Option C is false
because it is not possible to write a minimizer of Lasso in closed form, though its solution can be expressed as the solution to
a quadratic program. Option D holds as Ridge regression tends to penalize larger components of the weight vector more than
smaller values. This is a consequence of the square-operator inherent to ridge.

(f) [4 pts] You are given a set of sample points X1, X2, . . . , Xn ∈ R
d sampled independently from a multivariate Gaussian

distribution N(µ, σ2I), where µ ∈ Rd, σ > 0, and I is the d × d identity matrix. We know the exact true value of σ, but
we don’t know µ. We want to use maximum likelihood estimation to estimate µ from the sample points. Which of the
following optimization problems gives us a suitable estimate? (Select all that apply.) We choose µ̂ ∈ Rd that . . .

 A: minimizes
n∑

i=1

 ‖Xi − µ̂‖
2
2

2σ2 + d ln
√

2π + d lnσ


© B: minimizes
n∑

i=1

‖Xi − µ̂‖
2
1

2σ2 + d ln
√

2π + d lnσ


 C: maximizes
n∏

i=1

exp
−‖Xi − µ̂‖

2
2

2σ2


 D: minimizes

n∑
i=1

‖Xi − µ̂‖
2
2

A,C, and D are all equivalent to the MLE formulation since after taking derivative w.r.t µ and setting it to 0, we all get the
final solution of µ̂ =

∑
i Xi/n. B is incorrect because it uses the 1-norm, not the 2-norm as required by multivariate Gaussian

distribution. This is because (Xi − µ)>(σ2Id)−1(Xi − µ) = ‖Xi − µ‖
2
2/σ

2.

(g) [4 pts] Select the true statements about the decision boundaries obtained by linear discriminant analysis (LDA) and
quadratic discriminant analysis (QDA).

 A: If we add extra features, LDA could produce
a decision boundary that is nonlinear relative to the
original input features.

© B: QDA never produces a linear decision bound-
ary.

 C: Sometimes the QDA decision boundary is an
ellipsoid.

 D: Consider using LDA for a two-class classifi-
cation problem in which both classes have prior prob-
ability 0.5. LDA computes estimated means µ̂C and
µ̂D for the two classes; suppose they are not equal.
The midpoint halfway between µ̂C and µ̂D lies on the
decision boundary obtained from LDA.

A. True. Adding nonlinear features usually leads to a nonlinear decision boundary.

B. False. If we find that the covariances of each class is the same, then QDA reduces to LDA, which will give us a linear
decision boundary.

C. True.

D. True. We consider the two classes whose means are the closest. Since the classes have the same prior, the decision boundary
include a segment of the perpendicular bisector of the two means of these classes. Intuitively, this segment will include the
midpoint of the means of the two classes.

(h) [4 pts] Which of the following statements are true about ROC curves for binary classification?
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 A: They are monotonically non-decreasing.

© B: The area under a ROC curve is always at least
0.5.

 C: The ideal classifier has a ROC curve that passes
through the top left corner at coordinate (0, 1).

 D: ROC curves are a practical aid to choosing a
loss function.

A holds since ROC curves can never decrease over some interval (although they can remain constant). B does not hold since
you can have a classifier that performs worse than random (e.g., deliberately guessing the wrong answer) and thus a Area Under
Curve < 0.5. C holds since a perfect classifier has a true positive rate of 1 and a false positive rate of 0. D is true: one of the
main purposes of plotting a ROC curve is so you can decide how to trade off false positives against false negatives.

(i) [4 pts] Consider a generative two-class classifier where we estimate the distribution of each class and the prior probability
of each class, but we use an asymmetrical loss function. (Assume the distributions are continuous.) What must be true
at every point x ∈ Rd that lies on the decision boundary?

© A: The class conditional probabilities must be
equal: P(X = x|Y = 0) = P(X = x|Y = 1).

© B: The prior probabilities must be equal.

© C: The posterior probabilities must be equal.

 D: The risk of predicting either class (evaluated at
x only) must be equal.

The decision rule maps test points to the class which minimizes the risk. The posteriors P(y|x) are only equal in the case of a
symmetric loss function (e.g., the 0-1 loss). Furthermore, by Bayes’ Theorem, P(y|x) ∝ P(x|y)P(y), so there are no guarantees
about the relationship between the class conditional probabilities or priors.
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(j) [4 pts] Consider a design matrix X ∈ Rn×d. Which of the following is true of its sample covariance matrix Σ?

© A: If the same sample point appears twice in X,
then the sample covariance matrix Σ must be singular.

 B: The PDF of the multivariate Gaussian distribu-
tion N(µ,Σ) has isocontours whose axes are aligned
with the eigenvectors of Σ.

 C: If some column of X is all 2’s, then the sample
covariance matrix Σ must be singular.

© D: The PDF of the multivariate Gaussian distri-
bution N(µ,Σ) has elliptical isocontours whose axis
lengths are linearly proportional to the eigenvalues
of Σ.

A column of all 2’s makes all of the data lie on a common hyperplane. Centering changes it to all 0’s, so the covariance matrix
is singular. Repeating a same sample point will not make the covariance matrix singular, so long as there are enough other
sample points that they don’t all lie on a common hyperplane. The isocontours of the Gaussian are indeed aligned with the
eigenvectors of Σ. However, the shape of the isocontours are proportional to the eigenvalues of Σ1/2.

(k) [4 pts] We are solving a least-squares linear regression problem without regularization. Suppose that the following two

weight matrices both have the same cost: w1 =

106
 and w2 =

−2
3
3

. That is, RSS(w1) = RSS(w2). Which of the following

statements become true if regularization is incorporated into the regression?

© A: If l2 regularization is added with sufficiently
high λ, w1 will be preferred over w2.

© B: If l∞ regularization is added with sufficiently
high λ, w1 will be preferred over w2. (Recall that
‖w‖∞ = maxi |wi|.)

 C: If l1 regularization is added with sufficiently
high λ, w1 will be preferred over w2.

© D: If l2 regularization is added with λ > 0, there
might be infinitely many weight vectors that minimize
RSS(w).

||w1||2 = 37 and ||w2||2 = 22, ||w1||1 = 7 and ||w2||1 = 8, ||w1||∞ = 6 and ||w2||∞ = 3. So ||w1|| is preferred when there is high
enough l1 regularization and ||w2|| is preferred when there is high enough l2 or l∞ regularization. The last option is false because
adding l2 regularization (that is, doing ridge regression) guarantees a unique solution w.

(l) [4 pts] Suppose we are doing ridge regression with a design matrix X ∈ Rn×d and a vector y ∈ Rn of labels. The ridge
regression cost function is J(w) = ||Xw − y||22 + λ||w||22, where λ ≥ 0. Which of the following conditions are sufficient for
the Hessian matrix ∇2J to be positive definite?

 A: λ > 0

© B: XX> has full rank

 C: X>X has full rank

© D: n < d

The Hessian of J is X>X + λI. For the eigenvalues of the Hessian to be strictly positive, either X>X must be invertible
(equivalently, it must have full rank; choice C) or λ must be strictly positive (choice A). Choice D is wrong because X>X is
singular when n < d. Choice B is wrong because when n < d, XX> might have full rank but X>X does not.
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Q2. [20 pts] Convergence of Gradient Descent
Consider the problem of finding a weight vector w ∈ Rn that minimizes the cost function J(w) = w>Aw + b>w + α, where
A ∈ Rn×n is a symmetric matrix, b ∈ Rn is a vector, and α ∈ R is a scalar.

(a) [5 pts] Write an expression for ∇J(w) and a closed-form expression for a critical point w∗ of J(w). For full points,
your expression for w∗ should be a critical point even when A is singular, assuming that J has a critical point. (Hint: you
can simply use the notation you learned in Discussion Section 6.)

∇J(w) = 2Aw + b. The cost function J(w) is minimized when 2Aw + b = 0, so a minimizer is

w∗ = −
1
2

A+b

where A+ is the Moore–Penrose pseudoinverse of b.

(b) [5 pts] Write the gradient descent update rule for this optimization problem, with step size ε, in the form “w(k+1) ←

some function of w(k)”. (Here, w(k) denotes the kth iterate of the weight vector, given some fixed starting value w(0).)

The general gradient descent update rule is w(k+1) ← w(k) − ε∇ f (w(k)). For our particular cost function, the update rule is

w(k+1) ← w(k) − ε(2Aw(k) + b).

(c) [5 pts] We define the “error” in an iterate w(k) to be e(k) = w(k) − w∗. Rewrite your update rule in the form “e(k+1) ←

some function of e(k)”, so that e(k) appears only once and the letters w and b do not appear at all. (Hint: remember the
equation you solved for part (a).) Simplify the expression as much as you can.

e(k+1) = e(k) + w∗ − ε(2A(e(k) + w∗) + b) − w∗

= (I − 2εA)e(k) − ε(2Aw∗ + b)
= (I − 2εA)e(k).

(d) [5 pts] Show that if every eigenvalue λi of A satisfies 0 < λi <
1
ε

, then each successive error e(k+1) is shorter than the

previous error e(k), so the iterations cause the error to converge to zero. Hint: use the eigendecomposition of A and the
fact that an orthonormal matrix does not change the length of a vector it is multiplied by.

With the eigendecomposition A = VΛV>, we have

e(k+1) = (I − 2εVΛV>)e(k)

= V(I − 2εΛ)V>e(k)

As each eigenvalue λi on the diagonal of Λ satisfies 0 < λi <
1
ε

, each eigenvalue γi on the diagonal of I − 2εΛ satisfies

−1 < γi < 1. Thus we can see that V>e(k) has the same length as e(k); that (I − 2εΛ)V>e(k) is shorter than e(k) (by a factor
of at least maxi |γi|); and since e(k+1) is the same length as (I − 2εΛ)V>e(k), it is also shorter than e(k).
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Q3. [12 pts] Gaussian Discriminant Analysis
Suppose we know the true distributions of two classes, f (X = x|Y = 1) = N(µ1,Σ1) and f (X = x|Y = 2) = N(µ2,Σ2), where

µ1 =

[
1
1

]
and µ2 =

[
−1
−1

]
. Σ1 has eigenvector

[
1/
√

2
1/
√

2

]
with eigenvalue 1 and eigenvector

[
−1/
√

2
1/
√

2

]
with eigenvalue 4, and Σ2

has the same eigenvectors with the eigenvalues swapped: eigenvector
[
1/
√

2
1/
√

2

]
with eigenvalue 4 and eigenvector

[
−1/
√

2
1/
√

2

]
with

eigenvalue 1.

(a) [6 pts] What is the value of the matrix Σ1, with the eigenvectors and eigenvalues listed above?

Σ1 =

[
1/
√

2 −1/
√

2
1/
√

2 1/
√

2

] [
1 0
0 4

] [
1/
√

2 1/
√

2
−1/
√

2 1/
√

2

]
=

[
2.5 −1.5
−1.5 2.5

]
.

(b) [6 pts] Draw some isocontours of the quadratic functions Q1(x) = (x−µ1)> Σ−1
1 (x−µ1) and Q2(x) = (x−µ2)> Σ−1

2 (x−µ2),
using the same isovalues for both functions (so you can easily compare them). You may choose any isovalues you like,
but draw at least three isocontours for each function. Show clearly which contours are for Q1 and which are for Q2.

Then draw and label the Bayes optimal decision boundary. (Hint: Where do the isocontours intersect each other? The
Bayes optimal decision boundary is not a straight line; try to get it curving in the right direction.)

(Note: there are two copies of the grid below so if you mess it up, you can start over. But you only need to draw on one.)

-4 -2 0 2 4

-4

-2

0

2

4

Note that it isn’t necessary to get the part of the decision boundary at top right for full points.
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Q4. [20 pts] Coins, Clones, and Maximum Likelihood
As described in class, imagine that we repeatedly flip a biased coin that comes up heads with probability p and tails with
probability 1 − p. If we flip the coin n times, the number of times it comes up heads is a random variable X ∼ B(n, p) drawn
from a binomial distribution. Note that X ∈ [0, n].

In this problem, we grow 100 clones of you in a whiskey vat. The clones are numbered, from 1 to 100. Clone number n flips the
biased coin n times. All coin flips are independent of each other. The number of heads obtained by clone number n is a random
variable Xn ∼ B(n, p). Note that n is different for every clone, but p is always the same. We will use maximum likelihood
estimation to estimate p from these counts.

(a) [2 pts] Let’s start with clone number 3, who flips the coin n = 3 times. What is the probability of getting exactly two
heads (as a function of p)?

By summing the probabilities of HeadHeadTail, HeadTailHead, and TailHeadHead, we have a probability p × p × (1 −
p) + p × (1 − p) × p + (1 − p) × p × p = 3p2(1 − p) of exactly two heads. You could also write

(
3
2

)
p2(1 − p).

(b) [3 pts] For an arbitrary n ∈ [1, 100], what is the probability P(Xn = x) that clone number n will get exactly x heads?
(Hint: You can use the expression

(
n
x

)
to denote the number of ways to choose x items from a total of n items. If you can’t

figure out the right constant for the binomial distribution, we’ll give partial credit for getting the dependence on p right.)

P(Xn = x) =

(
n
x

)
px(1 − p)n−x.

(c) [4 pts] We want to use maximum likelihood estimation to estimate the parameter p, knowing that clone number n got x
heads, but having no data yet about the other clones. Write the likelihood functionL(p; x) and the log likelihood function
`(p; x). Simplify the log likelihood so it has no exponents.

The likelihood is

L(p; x) =

(
n
x

)
px(1 − p)n−x

and the log likelihood is

`(p; x) = ln
(
n
x

)
+ x ln p + (n − x) ln(1 − p).
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(d) [5 pts] Suppose we collect data from all the clones, and we know that clone n reported xn heads. Write the likelihood
function L(p; x1, x2, . . . , x100) and the log likelihood function `(p; x1, x2, . . . , x100). Simplify the log likelihood so it has
a summation but no exponents. (Note: feel free to just write “const” for any constant that will not affect the optimal
value of p.)

The likelihood is

L(p; x1, x2, . . . , x100) =

100∏
n=1

(
const pxn (1 − p)n−xn

)
and the log likelihood is

`(p; x1, x2, . . . , x100) = const +

100∑
n=1

(xn ln p + (n − xn) ln(1 − p))

(e) [6 pts] What is the estimate p̂ of the parameter p obtained by maximum likelihood estimation as a function of x1, x2, . . . , x100?
Please simplify it as much as you can.

The derivative of the log likelihood with respect to p is

d
dp
L(p) =

∑100
n=1 xn

p
−

∑100
n=1(n − xn)

1 − p
.

To find the p that maximizes the log likelihood, we set d
dpL(p) to zero.∑100

n=1 xn

p
−

∑100
n=1(n − xn)

1 − p
= 0

(1 − p)
100∑
n=1

xn − p
100∑
n=1

(n − xn) = 0

100∑
n=1

xn = p
100∑
n=1

n = 5,050p.

Hence, our estimate is

p̂ =

∑100
n=1 xn

5,050
.

However, we will give full points for simply writing

p̂ =

∑100
n=1 xn∑100
n=1 n

.
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