
CS170 Problem Set 7 Out: Feb 22, 2001
Due: Mar 2, 2001

1. Money Changing. Fix a set of positive integers called denominations x1, x2, . . . , xn (think
of them as the integers 1, 5, 10, and 25). The problem you want to solve for these
denominations is the following: Given an integer A, express it as

A =
n∑
i=1

aixi

for some nonnegative integers a1, . . . , an ≥ 0.

(a) Under which conditions on the denominations xi are you able to do this for all
integers A > 0?

(b) Given any set of denominations xi, not necessarily satisfying the conditions in the
first part, describe the set of sufficiently large integers A that you can express as
A =

∑n
i=1 aixi with nonnegative ai. In other words you should prove a statement

like “If A exceeds X, then we can write A =
∑n
i=1 aixi for ai ≥ 0 if and only if

A has the following simple property....” You do not have to give X explicitly, but
prove it exists.

(c) Suppose that you want, given A, to find the nonnegative ai’s that satisfy A =∑n
i=1 aixi, and such that the sum of all ai’s is minimal —that is, you use the

smallest possible number of coins. Define a greedy algorithm for this problem.
(d) Show that the greedy algorithm finds the optimum ai’s in the case of the denomi-

nations 1, 5, 10, and 25, and for any amount A.
(e) Give an example of a denomination where the greedy algorithm fails to find the

optimum ai’s for some A. Do you know of an actual country where such a set of
denominations exists?

(f) How far from the optimum number of coins can the output of the greedy algorithm
be, as a function of the denominations?

2. Shannon’s Theorem. In the lecture notes we defined the set F of all possible files such
that

• each file contains m characters
• there are c distinct characters C1,...,Cc.
• Ci appears exactly fi times in each file, where

∑c
i=1 fi = m.

Let |F | be the number of members (files) of the set F . In class we said that at least
log2 |F | bits are needed to encode F by any algorithm, just to distinguish among all
possible different files. In this question you will devise an encoding that actually uses
log2 |F |+O(logm) bits.

In particular you should devise a function fenc=Encode(f, C1, C2, ..., Cc) that takes a file
f meeting the above criteria with the list of characters, and returns fend, an encoded file
at most log2 |F | + O(logm) bits long. You should also device a function Decode(fenc)
that takes fenc and returns f . The point of O(logm) is that you can include a header in
fenc to include useful information such as m and possibly other data. You may assume
for simplicity that the character set is either fixed length or has the prefix (free) property
to make it easy to write Encode. You may assume that c and the length of each Ci is
O(1). Do not worry about trying to make Encode and Decode very efficient.

3. (From the Spring 1998 Midterm). In this question we will consider how much Huffman
coding can compress a file F of m characters taken from an alphabet of n = 2s characters
x0, x2, ... , xn−1.

• How many bits does it take to store F without using Huffman coding?

• Suppose m = 1000 and n = 8, with characters 0,1,2,3,4,5,6, and 7. Give an example
of a file F (a string of 1000 digits from 0 through 7) in which every character xi
appears at least once, which compresses the most under Huffman coding. How many
bits does it take to store the compressed file?

• Let f(xi) denote the frequency of xi, i.e. the number of times xi appears in F .
Prove that there exist frequencies f(xi) > 0 such that the number of bits needed
to store F without Huffman coding is Ω(log n) times the number of bits to store F
when it is Huffman encoded. You can assume that the length of the file m, is much
larger than n. Be sure to exhibit the bit patterns representing each character, both
with and without Huffman coding, as well as explicit formulas for each f(xi).

4. CLR 16-2

5. CLR 16-3

