CS170 Problem Set 14 Out: Apr 30, 2001
Due: May 7, 2001

Because this homework was issued so late, it is not due until Monday, May 7 at 4pm.

1. CLR Exercise 33.1-5.
2. CLR Exercise 33.2-6.
3. CLR Exercise 33.2-9.
4. CLR Exercise 33.4-1.
5. CLR Exercise 33.5-2.

6. Describe an algorithm for sorting a set of vectors in counterclockwise order about the
origin in O(nlogn) time.

The problem here is that the order is circular, so traditional sorting methods like merge-
sort don’t quite work. When you sort integers, you know that if 1 < j and 57 < k, then
i < k. However, if vector a is ccw (counterclockwise) from vector b, and vector b is ccw
from vector ¢, it is not necessarily true that a is ccw from vector ¢. (Think of a Y shape.)

Assume that each vector is specified as an z-coordinate and a y-coordinate. Your solution
must be comparison-based (no bucketing or radix-sort tricks), and may use orientation
tests and comparisons of coordinates (like “if a, < b, and b, > 0”). Orientation tests
are performed by calling orient(a,b), which returns a positive number if a is ccw of
b, a negative number if ¢ is cw of b, and zero if ¢ and b are collinear. Make sure your
algorithm works correctly if several vectors point in the same direction (in which case
they are treated as being equal) and if there are vectors that point in precisely opposite
directions.



7. A triangulation of a set of points P is a set of triangles that covers (completely fills) the
convex hull of P, where the triangles may not have overlapping interiors. Every triangle
vertex must be in P, and every point in P must be a triangle vertex. The rightmost
figure below is a triangulation of seven points.

Consider the following algorithm for triangulating P. Assume no two points have the
same z-coordinate. Sort the points by z-coordinate, from left to right. Call the first
three points pg, p1, and pa, and construct the triangle Apgpip2 (see above left).

The algorithm is incremental, meaning it maintains a triangulation of all the points
visited so far, and adds one point at a time, creating a new triangulation that includes
the new point as well as the previously visited ones. When we are adding point p;
(for i+ = 3,4,...,n — 1), we find all of the vertices on the convex hull of the previous
i points that are visible from p;. A point p; is visible from p; if the line segment p;p;
does not intersect the convex hull, except at the point p;. For each such vertex, we
create a triangulation edge p;p; (which we write to the output). The illustration above
demonstrates this algorithm from beginning to end.

At all times, the algorithm maintains a circularly-, doubly-linked list of the vertices of
the convex hull (bold edges in the illustration). After each new point is added, the linked
list is adjusted to reflect the new convex hull.

Your job is to fill in the details of the algorithm so that it runs in linear time. (Assume
we use a linear-time radix sort for the initial sorting step.)

(a) Describe (in clear English) an algorithm that will quickly find the convex hull ver-
tices that are visible from p;. Be sure to discuss all orientation tests used, and how
you use their results. Important: your answer should not check more convex hull
vertices than necessary. An algorithm that checks every convex hull vertex for every
new point will take quadratic time on some point sets.

(b) Write pseudocode to insert a vertex p;. The pseudocode should do three things:

implement your answer to part (a), write all the newly created triangulation edges
to the output, and update the circularly-, doubly-linked list of convex hull vertices.
Orientation tests are performed by calling orient(a, b, ¢), which returns a positive
number if a, b, and ¢ occur in counterclockwise order, a negative number if they
occur in clockwise order, and zero if they are collinear.
To implement the linked list, assume each vertex has a ccw and cw pointer. For
example, ps.ccw references the next vertex counterclockwise of ps on the convex
hull boundary, and a statement like a.cw < b sets the next vertex clockwise from
a on the convex hull boundary to be b. It’s up to you to keep these pointers correct
as the convex hull changes. For points not on the convex hull boundary, the values
of ccw and cw are irrelevant.

(c) Show that your algorithm runs in linear time. Hint: any n-vertex triangulation has
O(n) triangles and O(n) edges.



